

Abstract—This paper considers the characteristics and behavior

of the modern 64-bit ext4 file system under the Linux operating

system, kernel version 2.6. It also provides the performance

comparison of ext4 file system with earlier ext3 and ext2 file systems.

The work involves mathematical analysis of the file system access

time with and without journaling option. The performance is

measured using the Postmark benchmarking software that simulates

the workload of Internet mail server. We have defined three types of

workloads, generally dominated by relatively small objects. Test

results have shown superiority of modern ext4 file system compared

to its predecessors, ext2 and ext3 file systems. Benchmark results are

interpreted based on mathematical model of file system access times.

Keywords—Linux, File systems, ext4/ext3/ext2, journaling,

inodes, file block allocation, disk performances.

I. INTRODUCTION

XT4 file system is the ext3 file system successor. It is

supported on today’s most popular Linux distributions

(RedHat, Ubuntu, Fedora). In contrast to the 32-bit ext3 file

system [1] [2], [3] that has only some features added to its

predecessor ext2 and maintains a data structure as in the ext2

file system, the ext4 file system has integrated more substantial

changes compared to ext3. Ext4 has improved data structure

and enhanced features, which brought more reliability and

efficiency. It is a 64-bit, allowing the file size of up to 16 TB

[4], [5], [6], [7]. Great efforts that have been put into the

process of ext4 development resulted in new features and

techniques: extents, journaling check summing, simultaneous

allocation of multiple units, delayed allocation, faster fsck (file

system check), and online defragmentation of small and large

size directories. This way formed folders can have up to

64,000 files.

Manuscript received September 15, 2011: Revised version received Month

Day, Year. This paper has been partially financed by Serbian Ministry of

Science and Technological Development (Development Projects TR 32025,

TR 32037 and III 43002).

B. Djordjevic is with the University of Belgrade, and Mihailo Pupin

Institute, Volgina 15, 11060, Belgrade, Serbia (phone: +381112773383; fax:

+381112775835; e-mail: bora@impcomputers.com).

V. Timcenko is with the University of Belgrade, and Mihailo Pupin

Institute, Volgina 15, 11060, Belgrade, Serbia (phone: +381112774959; fax:

+381112575978; e-mail: valentina.timcenko@institutepupin.com).

II. PROBLEM FORMULATION

The main objective of this study was to notice the new

features added to ext4, then examine the performance of

modern file system ext4 in comparison of its characteristics

and performances with its predecessor, ext3 and ext2 file

systems, and finally identify the most dominant new features

responsible for resulting differences in the performances. Ext4

file system includes many improvements, especially when

comparing to ext3 file system, but being the 64-bit file system,

ext4 is much cumbersome. This characteristic opens the

possibility to obtain some unexpected results after performing

the test procedures. A number of innovations have been added

to ext4, and those are in detail explained in this chapter.

A. 64 bit file system

Ext4 is a 64-bit FS, allowing the file size reaches a size of

up to 16 TB.

B. Inode size of 256 bytes

Namely, the default size of an index node in ext4 file system

is 256 bytes. Index node greater than 128 bytes is required for

storing timestamps, and extended attributes (eg, ACL lists) in

the index node (thus, the extended attributes that do not fit in

the i-node, are stored in separate blocks) [4][8]. Inode

numbers in ext4 are 64bit (Figure 1). The lowest four to five

bits of the inode number are dedicated to storage of the offset

bits within the inode table block. The rest of inode number are

for storage of the 32-bit block group number as well as 15-bit

relative block number within the group. This inode structure

permits a dynamic inode table allocation.

Ext4 file system is compatible with its predecessors, ext2

and ext3 file systems. After installing ext2 or ext3 file system,

one can change a few options and use it as ext4 file system.

Existing data will not be lost because ext4 file system will use

new data structures only on newly formed data. Although this

feature of ext4 file system is very useful, it is recommended to

keep a backup copy of data on additional storage disk space.

However, because of the differences in the data structure, there

is slight limited compatibility between ext3 and ext4 file

Ext4 file system in Linux Environment:

Features and Performance Analysis

Borislav Djordjevic, Valentina Timcenko

E

32-bit block group #

15-bit

relative

block #

4-bit

offset

5063 18 3 0

Fig. 1 64nit - inode layout

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

37

system, which in some cases reduces the possibility of using

the ext4 file system and activate it as an ext3 file system.

C. Extents

One of the major differences between ext3 and ext4 file

system is the way that block numbers are stored with data files.

Ext3 uses indirect mapping blocks (Fig.2).

i_data

Disc block

200

201

211

212

1237

6553

0

213

1236

1238

...

......

...

...

65531 65532

1239

...

...

...

...

...

...

0

1

11

12

13

14

...

...

0

200

213

1239

65533

201

...

Direct block

Double indirect block

Triple indirect block

Indirect block

Fig. 2 ext2/ext3 mapping

node header

extent index

extent index

Index nodeext4_inode

i_block

en_header

root

node header

extent index

extent index

leaf nodes

node header

extent index

extent index

disc blocks

Fig. 3 Map of ext4 extents tree

This is effective when dealing with small and scattered files,

but not efficient in dealing with large files, especially when

deleting large files. Today, with the growth of the number of

files with multimedia content and ever-faster internet, it seems

inefficient to use this scheme. To solve this problem, instead

of block mapping, the principle of mapping extents is being

applied. This way, instead of mapping each block separately,

ext4 remembers the number of blocks in extent (descriptor that

represents a continuous series of physical blocks) [4][9][10].

Ext4 file system is based on a dynamic allocation of the i-

nodes which provides good system performance, robustness

and compatibility. To be able to perform successfully with

different file sizes, ext4 has inherently implemented dynamic

inode allocation's and 64-bit inode number. In addition, unlike

ext3, regardless of the file size, ext4 file system ensures better

file allocation based on a special block allocator, and specific

strategies for different allocation requirements. For smaller

size allocation requirements ext4 will try to allocate blocks

from a one process group, which will be shared by all

allocation requirements generated by the same process. For

large size allocation requests, ext4 will allocate the space from

i-node group. This way it is assured that the small files are

stored continuously, one after another, which reduces

fragmentation of large files that are stored in the same

continuity (Fig. 3).

D. Directory scalability

In order to better support large directories with many

entries, the directory indexing feature will be turned on by

default in ext4. By default in ext3, directory entries are still

stored in a linked list, which is very inefficient for directories

with large numbers of entries. The directory indexing feature

addresses this scalability issue by storing directory entries in a

constant depth Htree data structure, which is a specialized

BTree-like structure using 32-bit hashes. The fast lookup time

of the HTree significantly improves performance on large

directories [4][8]. For directories with more than 10,000 files,

improvements were often with a factor of 50 to 100.

E. Block allocation enhancement

In order to meet the goal of the increased file system

throughput, developers are constantly attempting to reduce file

system fragmentation. The main problem is that high

fragmentation rates cause greater disk access time affecting

overall throughput. It has also impact on increased metadata

overhead causing less efficient mapping. Many of new features

do take advantage of the existing extents mapping and are

aimed at reducing file system fragmentation by improving

block allocation techniques.

F. Persistant preallocation

The ability to preallocate blocks for a file up-front, without

having to initialize those blocks with valid data or zeros is a

main advantage applied to some applications, like databases

and streaming media servers. Enhancements provided by

introduction preallocation have ensured adjacent allocation as

far as possible for a file regardless the order and time that the

data were written. It also guarantees space allocation for writes

within the preallocated size, especially in the case where there

is an information of required disc space for specific

application. The file system internally interprets the

preallocated but not yet initialized portions of the file as zero-

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

38

filled blocks. This avoids exposing old data for each block

until it is explicitly initialized through a subsequent write.

For applications concerning entirely sequential writes, it is

possible to make a difference between initialized and

uninitialized segments of the file. However, this is not

sufficient good enough in the case when applying preallocation

to databases and other similar applications. Than, random

writes into the preallocated blocks can occur in any order. The

file system needs to be able to identify ranges of uninitialized

blocks in the middle of the file. Some extent based file systems

(XFS, ext4), therefore provide support for marking allocated

but uninitialized extents associated with a provided file.

Upon reads, an uninitialized extent is treated just like a hole,

so that the VFS returns zero-filled blocks. During writes, the

extent must be split into initialized and uninitialized extents,

merging the initialized portion with an adjacent initialized

extent if contiguous.

G. Delayed and multiple block allocation

Delayed and multiple block allocation can significantly improve

file system performance on large I/O. In ext3, during the write

operation the block allocator allocates one block at a time, which is

inefficient for larger I/O. Since block allocation requests are passed

through the VFS layer one at a time, the possibility of file

fragmentation is increased due to the fact that the underlying ext3 file

system cannot foresee and cluster future requests.

Delayed allocation is a distinguished technique in which block

allocations are delayed to page flush time, rather than during the

write() operation. This way it is possible to combine many block

allocation requests into a single request, reducing possible

fragmentation and saving CPU cycles. Another advantage of using

delayed allocation is the possibility to avoid unnecessary block

allocation for short-lived files.

H. Online defragmentation

Although applying many enhancements introduced into new file

systems, there is still a possibility that with age, the used file system

can still become quite fragmented. The ext4 online defragmentation

tool, e4defrag, can defragment individual files or the entire

filesystem, and this way helps avoid file fragmentation caused with

file system aging.

I. Reliability

Ext3 is one of the most reliable file systems, therefore ext4

developers are putting much effort into maintaining the

reliability of the file system to make it even more reliable

[4][11][12][13]. This supposes to make ext4 fields 64-bits in

size, but the problem might be to make such large amounts of

space actually usable in the real world.

J. e2fsck and unused inode count

In e2fsck, the checking of inodes in pass 1 (phase 1) is by

far the most time consuming part of the operation. This

operation supposes the following: reading all of the large

inode tables from disk, scanning them for valid, invalid, or

unused inodes, and then verifying and updating the block and

inode allocation bitmaps. Pass 1 scaning can be extremely

lengthy so when applying the uninitialized groups and inode

table high watermark feature it can be successfuly skipped.

This can drastically reduce the total time taken by e2fsck (by

2 to 20 times), depending on how full the file system is.

This feature guarantees that the kernel stores the number of

unused inodes at the end of each block group’s inode table. As

a result, e2fsck can skip not only the operation of reading these

blocks from disk, but also scanning them for in-use inodes.

K. Checksumming enhancements

During usual journal operation the commit block is not sent

to the disk until the transaction header and all metadata blocks

which make up that transaction have been written to disk.

With this two-phase commit, if the commit block has the

same transaction number as the header block, it should

indicate that the transaction can be replayed at recovery time.

If they do not match, the journal recovery is ended. However,

there is possibility that this procedure ends wrong and lead to

file system corruption.

Metadata checksumming when added into ext4 allows easier

corruption detection. The checksum is also integrated into the

group descriptors and into journaling. Therefore, in ext3 and

ext4 each journal transaction has a header block and commit

block.

With journal checksumming, the journal code computes a

CRC32 over all of the blocks in the transaction including the

header, and the calculated checksum is further written to the

commit block of the transaction. If the case that the checksum

does not match at journal recovery time, it is an indication of

the corruption of one or more metadata blocks in the

transaction or unsuccessful writing of the metadata blocks to

disk. The concerned transaction, along with later ones, will be

discarded as if the computer had crashed slightly earlier and

not written a commit clock at all.

There is need for having a two-phase commit for each

transaction since the journal checksum in the commit block

allows detection of blocks that were not written into the

journal. The commit block can be written at the same time as

the rest of the blocks in the transaction, which can speed up the

file system operation noticeably (as much as 20%, instead of

the journal checksum being an overhead).

III. WORKLOAD SPECIFICATIONS

File-based workloads are designed for testing procedures of

file systems, and usually consist of large number of file

operations (creation, reading, writing, appending and file

deletion). It comprises large number of files and data

transactions. Workload can be generated synthetically, as a

result of applying benchmark software, or as a result of

working with some real data applications.

Workload characterization is a hard research problem [14],

[15] as arbitrarily complex patterns can frequently occur. In

particular, some authors chose to emphasize support for spatial

locality in the form of runs of requests to contiguous data, and

temporal locality on the form of bursty arrival patterns. Some

authors [15] model three different arrival processes:

• Constant: the interarrival time between requests is fixed

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

39

• Poisson: the interarrival time between requests is

independent and exponentially distributed

• Bursty: some of the requests arrive sufficiently close to each

other so that their interarrival time is less than the service

time.

IV. ACCESS TIME FOR EXT4 AND EXT3 FILE SYSTEMS

In this subchapter we will present the access time value

comparison for 64-bit ext4 and its 32-bit predecessors, ext3

and ext2. Expected access time for file system, for specified

workload, comprises following components:

]__[]__[

]_[

]_[]_[

accessfiledirectEmngmlistfreeE

opmetadataE

opdirectoryEaccessFSE

+

+

+=
 (1)

Where FS_access represents total time that workload needs

to carry out all operations, directory_op represent total time

for all operations related to working with directories (search,

new object creation and delete of existing objects),

metadata_op represents total time needed for performing

metadata operations (metadata search operations, metadata

cache forming, and metadata objects modifications),

free_list_mngm presents total time needed for performing

operations with free blocks and inode lists (file

expansion/shrinking, creation of new objects or deletion of

existing objects), and direct_file_access is the time required

for direct file blocks operations (read/write). Directory

operations, metadata operations and direct file accesses are

cache based accesses and their performances directly depend

on cache. Under these conditions, the expected effective

access time would be:

]__[_

__

]_[
*_

]__[

TimeServiceMechEprobMiss

RateTransferCache

sizerequestE
probHit

TimeServiceCacheE

⋅

+

≈

 (2)

Mech_Service_Time is the total time needed to perform

disk data transfer.

In the case of cache-miss, performances are strictly

dependent on disc characteristics and consist of number of

time based components:

timeTInterfacetimeTmedia

timeTaccesstimeServiceMech

__

++

=
 (3)

Where Taccess_time is total time needed for mechanical

components of disk transfer, Tmedia_time is total time needed

for write/read operstions from disc medium, and

Tinterface_time is total time needed for read/write operations

from disc cache buffer.

LatencyRotationalSettleTime

SeekTime

rheadCommandOvetimeTaccess

+

++

=_

 (4)

Where CommandOverhead time is time required for disc

commands decoding, SeekTime is time needed for disc servo

system positioning, SettleTime is time required for disc head

stabilization, and RotationalLatency is time wasted on disc

rotation latency.

There are three dominant components, whose sum can be

presented as Mech Service Time, which is the service time for

a request related to the disk mechanism. These components

are: (1) the seek time (SeekTime), which is the amount of time

needed to move the disk heads to the desired cylinder; (2) the

rotational latency (RotationalLatency), which is the time that

the platter needs to rotate to the desired sector; and (3) the

transfer time (TT) same as Tmedia time, which is the time

needed to transfer the data from the disk mechanism to the

next higher level. Since these are typically independent

variables, we can approximate the expected value of the disk

mechanism service time as:

]]_[[][

][]__[

sizerequestTTELatencyRotationalE

SeekTimeETimeServiceMechE

+

+=
 (5)

The transfer time (TT) is a function of two parameters, the

Transfer_rate, which is the transfer rate of data off/onto the

disk and E[request_size]. Function can be approximated as:

]_[/]_[

]_[

rateTranferEsizerequestE

sizerequestTT =
 (6)

Variations will occur as a result of track and cylinder

switches and different track sizes in different zones on the

disk.

The SeekTime can be approximated as the following

function of dis, which is the number of cylinders to be

travelled:

⋅+

≤+

=

=

edisdisdc

edisdisba

dis

disSeekTime

f

p0

00

][
 (7)

where a, b, c, d, and e are disk -specific parameters.

If we assume that the requests are randomly distributed on

the sectors of the given cylinder using a uniform distribution,

than:

2/_]_[timerevolutionlatencyRotationalE = (8)

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

40

A. Expected behaviour of ext4/ext3 file systems

Starting from formula (1) which is appropriate for non-

journaling file systems, for the case of journaling based file

systems, as ext4 and ext3 are, one additional member has to be

added,]_[timejournalingE , which can increase reliability

but can also have negative impact to the global performances:

]_[]__[

]__[

]_[]_[]_[

timejournalingEaccessesfiledirectE

mngmlistfreeE

opmetadataEopdirectoryEaccessFSE

+

++

+=
 (9)

journaling_time is total time needed for performance of

journaling operations (metadata writes to the log, and metadata

log discharge).

At first glance we could assume that perhaps journaling

techniques will decrease file system performances, but the fact

is that this statement can not be taken for sure. Instead of math

simulated workload, we have applied synthetically generated

workload in Postmark benchmark environment.

V. PROBLEM SOLUTION

For purposes of testing the chosen file systems we have used

the Postmark Benchmark [16] software. It simulates the

Internet Mail server load. Postmark creates large initial set

(pool) of randomly generated files, and saves them in any

location in the file system. Over this set of files Postmark and

the operating system perform operations of creation, reading,

registration and deletion of files and determine the time

required to perform these operations. The operations are

performed randomly in order to provide the credibility of the

simulation. Number of files, their size range and number of

transactions are fully configurable. With the aim to eliminate

the cache effect it is recommendable to create large set of files

(at least 10,000) and execution of a large number of

transactions over the generated files.

We have presented the results of three different test

procedures. The first one, Test1, is based on testing of small

files (1K-100K) and it will be a reference when comparing

other test results. Next testing procedure, Test2, considers

drastically smaller files (1byte-1K) and appreciably increased

number of generated files, which will generate high number of

metadata operations with ultra small objects. Test3 considers

slightly increased size of generated files when comparing to

Test1, which implies higher dataflow in workload.

For testing purposes we have chosen disks series HP SAS

10K. These are 3Gb SAS drives, 2.5 inch and 146GB capacity

(Table I).

The hardware configuration assumes several basic

components, and it is presented in Table II. As for the

operating system, it was chosen one of the most popular Linux

distributions for the PC architecture, Red Hat Linux Fedora 13

with kernel version 2.6.33.3-85.fc13.

Table I Disc characteristics

HP Invent SAS 10K, 146GB, 2.5", Hot-swap HD

Capacity 146GB

Interface SAS plug

Average seek time 4 ms

Full stroke seek 8.1msec

Track-to-track seek 0.2msec

Rotational speed 10,000 rpm

Max. buffer throughput 6Gb/sec

Table II. Hardware configuration.

Server HP Proliant ML350 G6

RAM 12 GB

Processors Intel(R)Xeon(R)

CPU Model Quad-core E5506@2.13GHz

Number of CPU kernels 4

CPU speed 2333MHz

L2 cache 2 x 6 MB

Controllers

RAID HP Smart Array P410i SAS

RAID cache memory 256MB

Disc (DualPort) HP Invent SAS 10K, 146GB,2.5"

Operating system Linux Fedora 13, kernel- 2.6.33.3-

85.fc13

Number of CPU kernels 4

CPU speed 2333MHz

Filesystem is organized in the form of LVM partitions [17],

as presented in Table III.

Table III File system layout

Filesystem Size Mounted on

LogVol00 130G / root FS

LogVol01 5G / swap

LogVol02 10G / testing FS

Swap is defined as 5GB partition and implemented as a

logical group LogVol01. This partition can be found on the

testing system by following the path

/dev/mapper/VolGroup00-LogVol01. In the logical group

LogVol02, 10GB in size we have created empty ext2, ext3,

ext4 file system, respectively. It is used for testing purposes.

A. Postmark Test1 (small files)

Files used for the purpose of performing this testing

procedure are relatively small, ranging from 1K to 100K.

Appropriate Postmark configuration used for this test was: file

size range from 1000 to 100000, number of generated files

was 4000, and number of performed transactions was 50000.

Performance results for each file operation (creation,

creation/alone, creation/with transactions, reading, appending,

deleting, deleting/alone, deleting/with transactions) are given

on the Figures 4a and 4b. Operations delete/alone and

create/alone are performed in special benchmark phases, and

do not suppose transactions. Though, they do have high

values.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

41

File Operation - results

0 100 200 300 400 500

creation

creat/with tr

read

appending

deleting

del/with tr

files/s

ext4

ext3

ext2

Fig. 4a File operations with transactions

File Operation - results

0 1000 2000 3000 4000 5000

creat/alone

del/alone

files/s

ext4

ext3

ext2

Fig. 4b File operations without transactions

This configuration generates about 1.6GB of read/write

data. Obtained test results for data flow are presented in Figure

4c:

T1: data flow

0

5

10

15

20

25

30

ext2 ext3 ext4

M
B
/s

Data read

Data write

Fig. 4c Test 1 data flow results

In this test ext4 file system has shown superior

performances comparing to the performances of its

predecessors. Ext4 is more than 40% faster than ext3, and

almost twice as fast as ext2. On the other hand, ext3 is more

than 35% faster than ext2.

The reasons for this behavior can be found in the fact that

ext4 has integrated a number of innovative file allocation

techniques, which are extents, enhanced journaling techniques

and an improved buffer cache mechanism. The workload for

this test is characterized with lower number of files (4000),

moderate number of create/delete operations, file size of 1k-

100k, and solid amount of reads/writes (1.6GB-r/1.8GB-w).

Having into consideration the formula [17], it can be expected

that]__[accessfiledirectE component will be

dominant. Obtained results have shown better write

performances in case of ext4 file system, and the reason for

this behaviour are features obtained by applying delayed

allocation and multiblock allocators. Besides, the presence of

extents and persistent pre-allocation has provided less

fragmented files. Write performances are also improved with

applied different techniques for journaling enhancement, as

journal checksumming and others. This characteristic

positively implies the read performances as well. Certain

influence to read and write performances, and especially to

creation/deletion of files, has feature Htree indexing for

directories. This performance difference is obvious when

considering part of the test deleting/alone, when Postmark

creates and than deletes large number of files. It is obvious that

ext4 file system among other enhancements, uses Htree

directories, ext3 doesn't use it regardless of the fact that it has

it included into the package, and ext2 even doesn't have this

possibility at all.

The obtained results have confirmed that both journaling

file systems, ext3 and ext4, have considerably better

performances than ext2. To conclude, the journaling

techniques combined with the cache mechanism, not only have

not slow down the system, as we have expected when thinking

about greater robustness of ext4, but have significantly

improved performances.

B. Postmark Test2 (ultra small files)

This is also a very intensive test procedure as it involves a

large number of very small files, ranging from 1bytes to 1K.

Used Postmark configuration was: file size range from 1 to

1000, number of generated files was 30000 and number of

performed transactions was 50000. Performance results for

each file operation are given on the Figures 5a and 5b.

File Operation - results

0 500 1000 1500 2000

creation

creat/with tr

read

appending

deleting

del/with tr

files/s

ext4

ext3

ext2

Fig. 5a File operations with transactions

File Operation - results

0 5000 10000 15000 20000 25000 30000 35000

creat/alone

del/alone

files/s

ext4

ext3

ext2

Fig. 5b File operations without transactions

Now, the number of created files is increased to 30000,

which brings about 14MB of read data, and 32MB of written

data. The testing procedure generates a large number of

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

42

metadata and I/O requests. Obtained results for data flow are

presented in Figure 5c:

T2: data flow

0

200

400

600

800

1000

1200

ext2 ext3 ext4

K
B
/s

read

write

Fig. 5c Test 2 data flow results

In this testing procedure with ultra small files, ext4 file

system has also shown better results comparing to its

predecessors, although the differences are smaller than in the

previous test. Ext4 file system is more than 10% faster than

ext3, while it is more than 70% faster than ext2. At the same

time, ext3 file system is more than 60% faster than ext2. The

workload for this test is characterized with: high number of

files (30000), high number of create/delete operations, ultra

small file sizes (1byte-1K), and low amount of reads/writes

(13.61MB-r/31.35MB-w). Having into consideration the

formula [17], it can be expected that the

]_[]_[opmetadataEopdirectoryE + components will

be dominant. The main performance difference is noticed

when Postmark creates and further deletes files alone. Htree

indexing for directories has major impact onto performances,

and this feature is turned on by default in ext4, while in the

case of ext3 directory entries are by default stored in a linked

list, making it inefficient when using for directories with large

numbers of entries. In this test, ext3 has turned on Htree

indexing, while ext2 performs as linked list and this fact makes

the performance difference even more noticeable. There is also

an innovative technique implemented in ext4 based on putting

the whole inode into the directory instead of just a directory

entry that references a separate inode. This avoids the need to

seek to the inode when doing a readdir, because the whole

inode has been read into memory already in the readdir step. If

the blocks that make up the directory are efficiently allocated,

then reading the directory also does not require any further

seeking. To conclude, ext4 read and write performances are

slightly better than in the case of ext3/ext2 primarily because

of applied techniques delayed allocation and multiblock

allocator. As this is the test with ultra small files, techniques as

extents and persistent pre-allocation have no impact on

performances, and buffer cache mechanism absorbs

differences between ext4 and ext3 file systems. This test shows

that both journaling FS, ext3 and ext4, are considerably better

than ext2, which means journaling techniques combined with

the cache mechanism do improve performances.

C. Postmark Test3 (larger files)

This is a very intensive test. Files used for the purpose of

performing this testing procedure are relatively large, ranging

from 1K to 300K.

File Operation - results

0 50 100 150 200

creation

creat/with tr

read

appending

deleting

del/with tr

files/s

ext4

ext3

ext2

Fig. 6a File operations with transactions

Postmark configuration used for this test was: file size range

from 1000 to 300000, number of generated files was 4000, and

number of performed transactions was 50000. Performance

results for each file operation are given on the Figures 6a and

6b.

File Operation - results

0 1000 2000 3000 4000 5000

creat/alone

del/alone

files/s

ext4

ext3

ext2

Fig. 6b File operations without transactions

The total amount of data to be read from the disc is 4.7GB,

and 5.4GB to be written. Test results for data flow are shown

in Figure 6c:

T3: data flow

0

5

10

15

20

25

30

35

ext2 ext3 ext4

M
B
/s

read

write

Fig. 6c Test 3 data flow results

In this test, we have implemented larger files, and approved

that ext4 file system continues to show superior performance

compared to its two predecessors. Ext4 file system is more

than 46% faster than ext3, while about 73% faster than ext2.

At the same time, ext3 file system is over 18% faster than ext2.

The reasons for this behaviour are numerous innovative

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

43

allocate/search files techniques implemented in ext4, but major

impact is on the extents, while journaling techniques and

metadata operations during large transfers have less impact on

performances. This is the reason for slight differences in

performances, especially when comparing ext2 and ext3.

The workload for this test is characterized with lower

number of files (4000), moderate number of create/delete

operations, file size of 100k-300k, and solid amount of

reads/writes(4.6GB-r/5.4GB-w). Having into consideration the

formula [17], it can be expected that

]__[accessesfiledirectE component will be dominant.

Same as in first test, it is noticeable that the obtained results

have shown better write performances in case of ext4 file

system, and the reason for this behaviour are features obtained

by applying delayed allocation and multiblock allocators, and

that the presence of extents and persistent pre-allocation have

provided less fragmented files (specially present when

considering bigger files – 300K). Write performances are also

improved with applied different techniques for journaling

enhancement, as journal checksumming and others. This

characteristic positively implies the read performances as well.

Similar to the situation with the results in the first test, certain

influence to read and write performances, and especially to

creation/deletion of files, has feature Htree indexing for

directories. This performance difference is obvious when

considering part of the test deleting/alone when Postmark

creates and than deletes large number of files. It is obvious that

ext4 file system among other enhancements, uses Htree

directories, ext3 doesn't use it regardless of the fact that it has

it included into the package, and ext2 even doesn't have this

possibility at all. The obtained results have confirmed that both

journaling file systems, ext3 and ext4, have considerably better

performances than ext2. To conclude, the journaling

techniques combined with the cache mechanism, not only have

not slown down the system, as we have expected when

thinking about greater robustness of ext4, but have

significantly improved performances.

VI. CONCLUSION

In this paper, we have summarized the results of Postmark

testing procedures for three mutually compatible file systems

ext2, ext3 and ext4. Obtained results have confirmed majority

of our expectations. A new, modern, 64-bit file system ext4

has shown superior characteristics when compared to its two

predecessors, ext3 and ext2. Its performances are superior in

all three test procedures. A number of innovative techniques

for file allocation (extents, persistent pre-allocation, delayed

allocation and multiblock allocator), and enhanced Htree

indexing for larger directories which is always on, improved

journaling techniques and buffer cache mechanism. This way

ext4 file system has shown superior performances in

comparison to its predecessor in difficult conditions, such as

working with small files that are mostly used for in our

experiments. It can be concluded that ext4 performs better than

any of its predecessors, which means that journaling

techniques combined with the cache mechanism, not only have

not slow down the system, but improved its performance. The

obtained results are encouraging for all Linux users to use ext4

file system.

Future work will be focused on testing ext4 file system and

its predecessors in RAID configurations, as well as in other

benchmark environments such as IOzone, FFSB, Bonnie,, and

for FAT and NTFS sile systems [18].

REFERENCES

[1] M. Seltzer et al., “Journaling versus Soft Updates: Asynchronous Meta-

data Protection in File System”, in USENIX Conference Proceedings,

San Diego, USA, June 2000, pp. 71-84.

[2] Tweedie S., “EXT3, Journaling File system”, presented at the Ottawa

Linux Symposium, Ottawa Congress Centre, Ottawa, Ontario, Canada,

20 July, 2000.

[3] Stergious Papadimitrou Konstatinos Terzidis, “Comparative evaluation

of the recent Linux and Solaris kernel architectures”, in Proceedings of

the 11th WSEAS International Conference on COMPUTERS, Agios

Nikolaos, Crete Island, Greece, July, 2007, pp 460-463.

[4] M. Avantika et al., “The new ext4 filesystem: current status and future

plans”, in the Proceedings of the Linux Symposium, Ottawa, Ontario

Canada, June 2007.

[5] Roderick W. Smith, “Migrating to Ext4”, DeveloperWorks. IBM, 2008

[Online]. Available : www.ibm.com/developerworks/linux/library/l-

ext4/

[6] Wikipedia, Ext4 Howto, January 2011, [Online]. Available:

ext4.wiki.kernel.org/index.php/Ext4_Howto

[7] First benchmarks of ext4, Oct 2006, [Online]. Available: Linuxinsight:

http://www.linuxinsight.com/first_benchmarks_of_the_ext4_file_syste

m.html

[8] G.B.Kim, D.J.Kang, C.S.Park, Y.J.Lee, B.J.Shin, “A Dynamic Bitmap

for Huge File System in SANs”, in Proceedings of the 6th WSEAS

International Multiconference onCircuits, Systems, Communications

and Computers (CSCC 2002), Crete, Greece, 2002, [Online]. Available:

www.wseas.us/e-library/conferences/crete2002/papers/444-415.pdf

[9] Jaechun No, “A Design for Hybrid File System”, in Proceedings of the

The 8th WSEAS International Conference on ENVIRONMENT,

ECOSYSTEMS and DEVELOPMENT (EED '10), Vouliagmeni, Athens,

Greece, December, 2010, pp. 143-148, ISBN: 978-960-474-260-8

[Online]. Available: www.wseas.us/e-

library/conferences/2010/Vouliagmeni/SAM-22.pdf,

[10] Jinsun Suk and Jaechun No, “HybridFS: Integrating NAND Flash-Based

SSD and HDD for Hybrid File System”, in the Proceedings of the 10th

WSEAS International Conference on APPLIED INFORMATICS AND

COMMUNICATIONS (AIC '10), Taipei, Taiwan, August, 2010, pp

178-185, ISSN: 1792-4626 [Online]. Available: www.wseas.us/e-

library/conferences/2010/Taipei/ISTASC-26.pdf,

[11] Jaechun No, “Snapshot-Based Data Recovery Approach”, in the

Proceedings of the the 14th WSEAS International Conference on

SYSTEMS, Corfu Island, Greece July, 2010, pp -160-165, ISBN: 978-1-

61804-023-7. [Online]. Available: www.wseas.us/e-

library/conferences/2010/Corfu/SYSTEMS-24.pdf.

[12] Gyoung-Bae Kim, Chang-Soo Kim, Bum-Joo Shin, “A 64-bit, Scalable

File System for Storage Area Networks”, in the Proceedings of

Proceedings of the 5th WSES International Conference on Circuits,

Systems, Communications and Computers (CSCC 2001) , Rethymno,

Greece, July, 2001. [Online]. Available: www.wseas.us/e-

library/conferences/crete2001/papers/736.pdf

[13] Ruo Ando, Hideaki Miura*,Yoshiyasu Takefuji, “File system driver

filtering against metamorphic viral coding”, in the Proceedings of the

3rd WSEAS Inernational Conference on INFORMATION SECURITY,

HARDWARE/SOFTWARE CODESIGN and

COMPUTER NETWORKS (ISCOCO 2004), Rio De Janeiro, Brazil,

pp217-222. [Online]. Available: www.wseas.us/e-

library/conferences/brazil2004/papers/470-247.pdf

[14] Daniel L Martens and Michael J. Katachabaw, “Disk Access Analysis

for System Performance Optimization”, in the Proceedings of the 5th

WSEAS International Conference on APPLIED COMPUTER

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

44

SCIENCE (ACOS '06), Hangzhou, China, April, 2006,. [Online].

Available: www.wseas.us/e-

library/conferences/2006hangzhou/papers/531-316.pdf.

[15] Elizabeth Shriver, Arif Merchanty, and John Wilkesy, “An analytic

behaviour model for disk drives with readahead caches and request

reordering”, in the Proceedings of the SIGMETRICS

98/PERFORMANCE '98, 1998 ACM SIGMETRICS joint international

conference on Measurement and modelling of computer systems.

[16] J. Katcher, “PostMark: A New File System Benchmark”, 1997,

Technical Report TR3022. Network Appliance Inc.

[17] V. Danen, “Set up Logical Volume Manager in Linux”, Mar 09 2007,

TexhRepublic[Online]. Available:

http://www.techrepublic.com/article/set-up-logical-volume-manager-in-

linux/6166001

[18] Faraz Ahsan et al, “Exploring the Effect of Directory Depth on File

Access for FAT and NTFS File Systems”, in the Proceedings of the 8th

WSEAS International Conference on SYSTEMS THEORY and

SCIENTIFIC COMPUTATION (ISTASC’08), Rhodes, Greece, August,

2008,pp 130-135, ISSN: 1790-2769. [Online]. Available:

www.wseas.us/e-library/conferences/2008/rhodes/istasc/istasc18.pdf.

Borislav S. Djordjevic was born in Pirot, Serbia in 1964. He received his

B.Sc. Electrical Engineering degree, from University of Belgrade, Serbia,

Elektronics specialization in 1989, M. Sc. degree in ICT field in 1992, and

Ph.D. degree in ICT field in 2003.. Her research interests are operating

systems, communication networks, data protection, disc and filesystem

optimization and connecting UNIX with different Operating Systems. She has

joined Institute Mihailo Pupin, Belgrade, Serbia – Computer System division

in 1989 and now works in research and development as Research Associate.

The most important references are:

1. B. Djordjevic, S. Miskovic, “Disk Interface comparison and Operating

System file-caching investigation”, Microprocessors and Microsystems,

Elsevier Science Volume/Issue 27/4 pp. 181-198 (received 10 July 2002,

revised 1 December 2002, accepted 10 January 2003)

2. Dragan Pleskonjic, Nemanja Macek, Borislav Djordjevic, Marko Caric:

"Security of Computer Systems and Networks" Book Preview. Comput. Sci.

Inf. Syst. 4(1): 77-92 (2007). Volume 4, Number 2, December 2007,

Editorial: Marjan Mernik, ISSN: 1820-0214, [Online]. Available:

http://www.comsis.org/ComSIS/Vol4No1/BookPreview/Book.htm

3. B. Djordjevic, V. Timcenko, " Ext4 File System Performance Analysis in

Linux Environment", 11th WSEAS International Conference on APPLIED

INFORMATICS AND COMMUNICATIONS (AIC '11), Florence, Italy,

August 23-25, 2011

Mr. Borislav S. Djordjevic is for many years an IEEE member. He is also

member of Serbian ETRAN and TELFOR society.

Valentina V. Timcenko was born in Belgrade, Serbia in 1978. She received

her B.Sc. Electrical Engineering degree, from University of Belgrade, Serbia,

Telecommunication specialization in 2004, and M. Sc. degree in the same

field in 2010. She is currently working for her Ph.D. degree. In 2005, she has

received CCNA title from Cisco Systems. Her research interests are

communication networks, data protection, disc optimization and connecting

UNIX with different Operating Systems. She has joined Institute Mihailo

Pupin, Belgrade, Serbia – Telecommunications division in 2004 and now

works in research and development as associate researcher. The most

important references are:

1. Timčenko V., Stojanović M., Boštjančič Rakas S. MANET Routing

Protocols vs. Mobility Models: Performance Analysis and Comparison''

// Proceedings of the 9th WSEAS International Conference on Applied

Informatics and Communications (AIC '09). – August, 2009. – P. 271–

276.

2. Timčenko V., Stojanović M., Boštjančič Rakas S. A Simulation Study

of MANET Routing Protocols Using Mobility Models // Computers and

Simulation in Modern Science (Vol. III). – WSEAS Press, 2010. – P.

186–196.

3. B. Djordjevic, V. Timcenko, "Ext4 File System Performance Analysis in

Linux Environment", 11th WSEAS International Conference on

APPLIED INFORMATICS AND COMMUNICATIONS (AIC '11),

Florence, Italy, August 23-25, 2011

Ms.Valentina Timcenko is for many years an IEEE member. She is also

member of Serbian ETRAN and TELFOR society, and received an award for

paper published on ETRAN conference in 2008.

INTERNATIONAL JOURNAL OF COMPUTERS
Issue 1, Volume 6, 2012

45

