
SSyysstteemm IIssoollaattiioonn BBeeyyoonndd BBIIOOSS uussiinngg tthhee UUnniiffiieedd EExxtteennssiibbllee

FFiirrmmwwaarree IInntteerrffaaccee

Vincent J. Zimmer

System Software Division

Intel Corporation

DuPont, Washington, USA

Abstract - This paper describes a means by which a
platform containing Intel Trusted eXecution
Technology (TXT), including CPU SMX leaf
instructions, virtualization extensions VT-x & device
virtualization VT-d, along with an implementation of
Unified Extensible Firmware Interface (UEFI)-
based platform code, can be isolated from pre-OS
malware, bus-master DMA devices, non-host
platforms such as system service processors
(SSP’s), baseboard management controllers
(BMC’s), and platform service processors. With
service processors always facing the network and
running a full web services stack, the non-
host/embedded platform isolation is even more
imperative to guard against. This is in addition to
the isolation of the UEFI DXE core implementation
from 3

rd
 party UEFI drivers, applications, and OS

loaders.

Keywords: BIOS, Trusted Computing, Virtualization,

TXT, service processor

1 Introduction

The first several million instructions executed when a
system is powered on are firmware, software stored
in a chip. The firmware is responsible for initialization
of much of the system, including important
components such as RAM, video, and keyboards and
mice. The firmware is responsible for finding and
loading the operating system (such as Microsoft®
Windows XP ® or Linux) from a number of different
types of media, ranging from hard disks to LANs.
Firmware then cooperates with the operating system
to load further parts of the operating system before
the operating system completely takes over. Today,
on PC-class machines at least, that class of software
is known as “BIOS.”

What do we mean when we mention “UEFI” and
“Beyond BIOS?” “UEFI” [1] is an industry group that
is standardizing what were the EFI1.10 specification
and the Framework PEI (Pre-EFI Initialization) and
DXE (Driver Execution Environment) specifications
[3][4]. Within UEFI, the main UEFI specification
(beginning with UEFI2.0) is handled by the UEFI
Specification Working Group (USWG) and the
Platform Initialization (PI) Architecture PEI/DXE
content are handled in the Platform Initialization (PI)

Working Group (PIWG). The differences are that
USWG is focused on the OS-to-platform interfaces,
whereas the PIWG is focused upon platform
initialization. The USWG parties of interest are the
OS (operating system) vendors, pre-OS application
writers, and independent hardware vendors who write
boot ROM’s for block or output console devices. The
PIWG parties of focus include the platform builders,
such as Multi-National Corporations/Original
Equipment Manufacturers (MNC’s/OEMs), chipset
vendors, and CPU vendors. The PIWG work can
accommodate both UEFI operating systems and
today’s conventional/Int19h-based OS’s.

PIWG-based components provide one means of
producing the UEFI interfaces. What is common
across both UEFI and PI Arch is the extensibility of
code and interfaces. For UEFI and PI DXE, the
extensibility point is a loadable driver model and for
PI PEI extensibility is through firmware files with PEI
Modules. Although it is common to think of firmware
as being stored in a ROM (Read-Only Memory), most
firmware is stored in NOR flash devices, which act
like a ROM but may be updated to add
enhancements or fix bugs. The flash devices are
divided into the equivalent of sectors on a disk.

Background
The primary problem being addressed is that that
platform manufacturer (PM)/Original Equipment
Manufacturer (OEM)/Multi-national corporation
(MNC) brand value is based upon the expected
behavior of the platform in the field. OEM’s
spend substantial sums validating their platform,
etc. So isolating the pre-OS firmware
implementation (i.e., DXE core) from non-OEM
code is imperative in order to have assurance of
the OEM factory validated behavior. We don’t do
things like DXE isolation for the OS and it’s Digital
Rights Management (DRM) [32] applications, etc,
to a first order. This is done to vet for the OEM
platform behavior and provide a basis of integrity
upon which other features can be based, such as
trustworthy launch of OS and pre-OS applications.

Another problem being addressed is that any
firmware-based security feature, such as the
cryptographic loading and checking of UEFI

application signatures using digital signature
technology like Authenticode, can only be
guaranteed to operate as designed in the field if
the implementation of the codes are isolated from
untrusted content. To-date, pre-OS isolation has
been effected via ad hoc, incomplete mechanisms
like System Management Mode (SMM) [28], but in
a world where SMM may not be available or to
meet the cross-architecture requirements of UEFI,
another solution is required.

Solution

The solution described in this design is the use of
Intel®’s Trusted Execution Technology (TXT)
®[12][27], which has the SMX leaf instructions to
allow for authorizing which code enables
Virtualization Technology, such as VT-x ®
[17][18][19] for x64; TXT is employed in order to
isolate the standards-based implementation of
UEFI interfaces, namely the UEFI Platform
Initialization (PI) Architecture Driver Execution
Environment (DXE) components from the basic
PEI and DXE core in the systemboard. Because
of space constraints in today’s ROM’s, the
implementation is really more of an isolation kernel
that maps the machine memory in a 1:1 virtual-to-
physical without device emulation, versus a full -up
hypervisor (Hv) or Virtual machine monitor (VMM)
that provides non1:1 memory mapping and rich
device models and inter-guest/operating system
separation. The layout of the page tables for this
architecture is shown in below. The SINIT module
used during the Secure Launch is a stripped down
version that admits to inclusion within the overall
platform ROM.

Since DXE is the preferred UEFI implementation,
we refer to this separate are as “IsoDxe.” This
design includes TXT-enhanced IsoDxe with DMA
protections.

Why is this important?
The threats on the platform for the pre-OS abound,
including the PCI [30] and ACPI [7] exploits
described by Heasman [24] or the pernicious
virtualization virus’s like Blue Pill [25].

In fact, UEFI attacks have been described in a
recent track at the BlackHat (BH) conference
[26].

How does this work?
This design works by launching a platform isolation
kernel from the UEFI firmware. The important
aspect of this design is that the isolation barriers
are erected prior to launching any untrusted, 3

rd

party code. Since the reset vector and early
firmware flows are all under control of the OEM,
the IsoDxe driver can be launched here.

Pre EFI (PEI)

Initialization

Driver Execution

Environment (DXE)

Boot Dev

Select

(BDS)

Transient System

Load (TSL)

After

Life

(AL)

Power on [. . Platform initialization . .] [. . . . OS boot] Shutdown

Run Time

(RT)

?

OS-Present

Application

Final OS

Environment
Final OS Boot

Loader

OS-Absent

Application

Transient OS

Environment

Transient OS

Boot Loader

Boot

Dispatcher

PEI Core/

dispatcher

Chipset

PEIM

Board

PEIM

v
e
ri
fy

Exposed

UEFI

APIs

Pre-

Verifier

DXE

Dispatcher

Boot Services

Runtime Services

DXE Services

security

Security

(SEC)

Device,

Bus, or

Service

Driver

Time

Invoke IsoPEI from

SEI immediately

after enabling

Cache-as-RAM

(CAR). VMCS in

CAR, etc.

Migrate IsoPEI

from CAR to main

memory after

Mem-Init complete.

Load IsoDXE with

decompressed

FVMain

Load Main Hypervisor

(HV) or Virtual Machine

Monitor (VMM) from OSV

– Qualify Integrity with

Launch-Control Policy

(LCP)

Figure 1-1 Launch of IsoDxe

This work is in contrast to conventional hypervisor
(Hv) or Virtual Machine Monitor (VMM) isolation
technologies in that all known deployments treat
the Hv or VMM as an operating system with
respect to the platform boot firmware. In order to
accrue assurance and availability, though, the
earliest launch is the most desirable. Thus this
design pushes the launch phases into the most
earliest practical, namely as a Driver Execution
Environment (DXE) component of the UEFI
Platform Initialization (PI) phase.

This design is motivated by performing a Clark-
Wilson [8][14] integrity analysis [23] of the pre-OS.
Certain controlled data items (CDI’s), such as the
UEFI System Table (uefi_system_table_data_t)
and other internal state objects for the DXE
implementation, were noted as not having
appropriate protection. The “before” picture is
shown in Figure 1-2, and the protected, or isolated
picture is shown in Figure 1-3.

Figure 1-4 shows the flow of this design. Figures
1-6 and 1-7 show instances of the use of IsoDxe
for protecting the UEFI service table from attacks
by a bus-master DMA device (recall the Heaseman
[24] PCI device rootkit attack – this is a
countermeasure).

Below is some of the attack code in an errant 3

rd

party driver, for example.

 //

 // start hack

 //

 EfiCopyMem (SystemTableDataBuffer, mSystemTable, 512);

 ((EFI_SYSTEM_TABLE *)SystemTableDataBuffer)->FirmwareRevision =

0x12345678;

 Status = AtaUdmaWrite (IdeDev, SystemTableDataBuffer, StartLba,

NumberOfBlocks);

 if (EFI_ERROR (Status)) {

 DEBUG ((EFI_D_ERROR, "Write SystemTable buffer error - %r\n",

Status));

 return ;

 }

 Status = AtaUdmaRead (IdeDev, mSystemTable, StartLba,

NumberOfBlocks);

 if (EFI_ERROR (Status)) {

 DEBUG ((EFI_D_ERROR, "Read SystemTable buffer error - %r\n",

Status));

 return ;

 }

S E C , P E I

D X E -P re-S M M

S M M

D X E -P ost -S M M D X E -P re -S M M

E F I R un tim e S vcs

D X E -P re -S M M ho ists
S M M in to p lace

E F I V a r iab les used to
pass da ta dow n

P ost E F I B o o t S erv ices C om par tm en t

S M M Locke d

E xitB oo tS e rvices ()

E F I p re-boo t

O S Loade r

M S O S K e rne l

D isk
sto rage

R ing 0

D X E

E F I boo t and run tim e,
d r ive rs, os-absen t apps, op tion rom s,

boo t m anage r

W ou ld like D X E to be p ro tected aga inst
E F I – bu t they a re no t m em ory iso la ted

today

L e g e n d

Id e a l ly o n ly O E M

E x te n s ib le

T h ird p a rty

e x te n s ib le
B oo t device se lect

S M M

N ote tha t seve r a l com par tm en ts sha re

sto rage and so sto rage iso la tion is
p r ob lem a tic

P la tfo rm
F lash

B oo t m anage r

Figure 1-2 System prior to DXE isolation

S E C , P E I

D X E -P re-S M M

S M M

D X E -P ost -S M M D X E -P re -S M M

E F I R un tim e S vcs

D X E -P re -S M M ho ists
S M M in to p lace

E F I V a r iab les used to
pass da ta dow n

P ost E F I B o o t S erv ices C om par tm en t

S M M Locke d

E xitB oo tS e rvices ()

E F I p re-boo t

O S Loade r

M S O S K e rne l

D isk
sto rage

R ing 0

D X E

E F I boo t and run tim e,
d r ive rs, os-absen t apps, op tion rom s,

boo t m anage r

W ou ld like D X E to be p ro tected aga inst
E F I – bu t they a re no t m em ory iso la ted

today

L e g e n d

Id e a l ly o n ly O E M

E x te n s ib le

T h ird p a rty

e x te n s ib le
B oo t device se lect

S M M

N ote tha t seve r a l com par tm en ts sha re

sto rage and so sto rage iso la tion is
p r ob lem a tic

P la tfo rm
F lash

B oo t m anage r

Use CPU Virtualization technology

To push the UEFI implementation into

Ring “-1” and isolate from 3rd party codes

Figure 1-3 Figure after the isolation

Without this design, an errant 3
rd

 party driver could
usurp the UEFI services by doing things like
patching API’s in the UEFI System Table.

The design uses the Virtual Translation Lookaside
Buffer (VTLB) algorithm and manages the access
state of each page via AVAIL bits, viz.,

– Page type

– Use AVAIL bits (9:11) to mark page

type.

– Bit 9: NEED

AUTHORIZED

– Bit 10: READ

PROTECTED

– Bit 11: WRITE

PROTECTED

– Active Page table (1:1 mapping present)

– For Authorized CODE (Check

Write)

– Not allow update

– For Authorized DATA Write (Check

Write)

– Check AVAIL bit

– For Authorized DATA Read/Write

(Check Access)

– Check AVAIL bit

The actual protection is implemented during a page
fault by assessing the following algorithm

Again, the layout of the page tables for this
architecture is shown below.

These same page-table for inter-guest (i.e.,
separation of drivers from DXE core) can be used
for the bus-master DMA isolation, namely the
programming of VT-d [22] viz.,

– DMAR ACPI table

– The platform should report
DMAR ACPI table earlier.
Maybe gathering
information in build HOB for
VMM.

– So that VMM can get DMAR
information in its entrypoint.

 typedef {
 ACPI_DMAR_TABLE DmarTable;
 } EFI_DMAR_HOB;

The UEFI PI PEI will create a hand-off block
(HOB) [31] in order to describe the isolation of

the IsoDxe from Direct Memory Access (DMA)
busmaster devices.

The specifics of the DMA protection are as
follows

– Guest use the same method to
report what memory attribute as
mentioned in DxeIsoByVT. (no
update)

– VMM setup Context Entry table for
all PCI device and map to one
domain.

– VMM setup domain page table for
all memory space.

– VMM update domain page table to
create hole for critical memory for
authorized code, authorized data.

The TXT protection is enabled as follows via the
interface:

– BIOS/SINIT ACM information

– The platform should report
BIOS/SINIT ACM
information earlier. Maybe
gathering information in
build HOB for VMM.

– So that VMM can get ACM
information in its entrypoint,
and run SCHECK and
SENTER.

typedef {

 EFI_PHSICAL_ADDRESS BiosACMAddress;

 UINTN BiosACMLength;

 EFI_PHSICAL_ADDRESS SinitACMAddress;

 UINTN SinitACMLength;

} EFI_TXT_ACM_HOB;

BIOS/SINIT ACM information

– Before BIOS expose

EFI_TXT_ACM_HOB, it should

program all required chipset register

to meet the SCHECK/SENTER

execution requirement.

– BIOS should know VMM info so that

no SCHECK will be performed again

in BIOS code.

Today, UEFI implementations co-locate the DXE
implementation and the third party UEFI
drivers/OS loaders in ring0. There is no isolation
between the two classes of code (OEM and 3

rd

party). This design will erect an isolation barrier
by pushing the DXE into “ring -1”, thus can avoid
breaking compatibility with the 3

rd
 party UEFI

codes that still believe they have unfettered “ring
0” access.

Reset Hardware Platform.

Put Machine in Protected

Mode. Enable CAR.

Iso=FALSE

Add Page to

the Exclusion

List

IsoPEI

Driver in

BB ?

Launch

IsoPEI Driver.

IsoPEI=TRUE

Yes
Yes

No
No

No

Add’l

PEIm’s

?

Continue

Execution

Yes

Yes

No

No

Yes

Yes

No

VT

Enabled

?

Create 1:1 Virtual Mapping

in CAR Shadow CR3

Critical

Page Allocation

?

Allocate

Pages to

Access List

Continue

Executing PEIm’s

Memory

Access?

Block if In the

No-Access

List

Perm.

 Memory

 Ready?

Yes

No

Migrate IsoPEI

Into Main DRAM

From CAR

Memory

Access?

IsoDXE

Driver Ready?

Block/Allow

Based upon

Access List

TXT LCP

Launch of

IsoDXE

No

Yes

Figure 1-4 Flow of the design

The design of this approach is to essentially use spare
bits in the page table to mark which entries in the
UEFI memory map [1] are owned by IsoDxe and the
DXE implementation, versus which pages are free or
owned by 3

rd
 party UEFI drivers and applications.

This allows the page-table emulation algorithm of
IsoDxe to transparently allow UEFI applications,
including but not limited to diagnostics, operating
system loaders, drivers, and applications, to believe
that they are executing in 1:1 virtual-to-physical and
their view of the page tables reflect the actual
machine.

Figure 1-5 Page table design for IsoDxe

The following pictures demonstrate the creation of attack

code that attempt to hijack or corrupt the UEFI System

Table [1]. The before picture shows the UEFI system

table contents, as displayed by a UEFI shell application

that has attacked a system without these protections. The

latter picture shows the same attack that has been foiled by

the presence of IsoDxe.

Figure 1-6 VT-d attack

Figure 1-7 VT-d attack mitigation

GGooiinngg ffoorrwwaarrdd -- MMoorree CCoovveerraaggee
In addition to having IsoDxe to protect the UEFI
phase of execution when 3

rd
 party option ROM’s

and drivers load, this art can be extended to
protect the entire pre-OS from reset vendor up-to-
and-including the UEFI phase.

PEIM 1

PEIM 2

PEIM 3

PEI FRAMEWORK

PEI Phase

DRIVER 1

DXE FRAMEWORK

DXE Phase

EFI APP EFI APP

EFI LIB

EFI FRAMEWORK

UEFI 2.1

Execution Phase

DRIVER 3

DRIVER 2

Ring 0

Ring -1

OS Launch

CORE FRAMEWORK (TCB)EFI

Figure 1-8 Isolation of entire UEFI PI boot flow

The motivation for this is that both the PEI and
DXE phase of execution admit the loading of
additional binary modules. Today the trust model
is that PEI and DXE are OEM extensible only, but
in a future of having the equivalent of 3

rd
 party

content in this phase, the PEI and DXE core
components need to be protected. The earliest
isolation kernel would run from PEI and we call it
“IsoPei” as an analogous term to the earl ier
described IsoDxe. PEI has additional space
constraint in the ROM and available memory, so it
is much simpler than IsoDxe.

The process of one hardware virtualization-aware
agent, such as IsoPei, invoking a successive one,
such as IsoDxe, we refer to as “Hexec” (which
stands for “hypervisor execute”) since the process
is akin to the Kexec usage model where one Linux
kernel can invoke another. [34]

The policy-control of a given virtualization launch
using Launch-Control Policy (LCP) [33] is shown in
Figure 1-9.

PO Policy

PD Policy

. . .

. . .

TPM NV MENV Join

MENV Init.

SENTER

Event

MENV Ops

Responding Logical
Processor (RLP)

LCP

Check

All

Threads

SENTER

Instr/Event

X
Trusted Execution

Technology (TXT)

Shutdown

LCP Check

Platform Default (PD)

Policy Data

Platform Owner (PO)

Policy Data

Is

PO Policy

Set ?

Is

PD Policy

Set ?

no Measure &

Launch
no

Use PO

Policy

Process

Policy

Use PD

Policy

yes yes pass

fail

2
nd

 MENV

Initialization

Load SINIT &

MVMM

Initiating Logical
Processor (ILP)

Figure 1-9 Launch control policy

Finally, this protect allows for fine-grain access control

and inter-domain service invocation. Specifically,

imagine isolating a particular UEFI option ROM that

supplies the EFI_BLOCK_IO_PROTOCOL services from

the rest of the system. Below is a diagrammatic view of

such a protection scenario.

Flag

GUID1 Interface1 1

GUID2 Interface2 0

...

HANDLE

Function Pointer

...

Protocol Interface

Function Pointer

Device Specific

Context

PEI MODULE OR

DXE DRIVERBlklo->ReadBlocks(Blklo, ...)

 TEMPORARY PAGE TABLE

CPU

REAL PAGE TABLES

PRIVILEGED

(TRUSTED) MEMORY

PEI/DXE

 FRAMEWORK

NON-PRIVILEGED (NON-

TRUSTED) MEMORY

SESSION PAGE

TABLE

PROTOCOL

INTERFACES

IMAGE HANDLERS

PAGE DIRECTORY

Figure 10 Isolation of driver w/ given API

RReellaatteedd wwoorrkk
This art complement implementations of secure
boot, whether BIOS-based [2] or UEFI-based [16],
but really entails use of virtualization in the pre-OS
for isolation and assurance of construction for
features like secure boot. Other trusted
computing practice has been described, in general,
by [20]. And the use of runtime VMM’s for
isolation [15][35]. But beyond some designs in

[29], this is the first reduction to practice of
virtualization [21] for pre-OS security.

CCoonncclluussiioonn
Intel can use this design to allow UEFI platforms to
be more malware/virus resistant than legacy BIOS
platforms or ones that do not implement this
isolation. This design will ensure that the promise
and value of UEFI’s extensibility does not become
an issue in market deployment.

This design is novel in that it allows platforms to
maintain compatibility with the EFI1.02 drivers that
expect unfettered ring 0 execution and applications
that have been shipping since 1999 and to harden
emergent UEFI capabilities, such as UEFI secure
boot [16].

2 References

[1] Unified Extensible Firmware Interface Specification

Version 2.1, January 23, 2007. http://www.uefi.org.

[2] W. A. Arbaugh, D. J. Farber, and J. M. Smith, ``A

Secure and Reliable Bootstrap Architecture,'' in

Proceedings 1997 IEEE Symposium on Security and

Privacy, pp. 65-71, May 1997.

[3] Vincent Zimmer, Michael Rothman, Robert Hale,

Beyond BIOS: Implementing the Unified Extensible

Firmware Interface Specification with Intel’s Framework.

Intel Press, September 2006. ISBN 0-9743649-0-8

http://www.intel.com/intelpress/sum_efi.htm

[4] Vincent Zimmer, “Advances in Platform Firmware

Beyond BIOS and Across all Intel® Silicon”, Technology

@ Intel Magazine, January 2004.

http://www.intel.com/technology/magazine/systems/it
01043.pdf.

[5] Trusted Computing Group EFI Protocol and Platform

Specifications, Version 1.2.

https://www.trustedcomputinggroup.org/specs/PCClient

[6] Frank Stajano, Ross Anderson, “The Resurrecting

Duckling: Security Issues for Ad-Hoc Wireless

Networks,” Lecture Notes in Computer Science, Issue

1796. Springer-Verlag, 1999.

[7] Advanced Configuration and Power Interface (ACPI)

Specification, Version 3.0b, http://www.acpi.info.

[8] D. Clark and D. Wilson, “A Comparison of

Commercial and Military Security Policies,” IEEE

Symposium on Security and Privacy, 1987.

http://www.uefi.org/
http://www.intel.com/intelpress/sum_efi.htm
http://www.intel.com/technology/magazine/systems/it01043.pdf
http://www.intel.com/technology/magazine/systems/it01043.pdf
https://www.trustedcomputinggroup.org/specs/PCClient
http://www.acpi.info/

[9] NSA Suite B Cryptography.

www.nsa.gov/ia/industry/crypto_suite_b.cfm

[10] X. Wang, Y.L. Yin, and H. Yu. Finding Collisions
in the Full SHA-1, Advances in Cryptology --
Crypto'05.

[11] Integrity Measurement Architecture.
http://domino.research.ibm.com/comm/research_proj
ects.nsf/pages/ssd_ima.index.html

[12] Intel ® Trusted Execution Technology.

http://download.intel.com/technology/security/downloads

/31516803.pdf

[13] Secure Hash Standard.

csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

[14] K. J. Biba, “Integrity Considerations For Secure

Computer Systems,” ESD-TR-76-372, NTIS#AD-

A039324, Electronic Systems Division, Air Force Systems

Command, April 1977

[15] T. Garfinkel, B. Pfaff, J. Chow, M., Rosenblum, and D.
Boneh, "Terra: A virtual machine-based platform for
trusted computing," in Proceedings of the 19th ACM
Symposium on Operating Systems Principles, pp. 193–206,
2003.

[16] Vincent Zimmer, “Platform Trust Beyond BIOS
Using the Unified Extensible Firmware Interface,” in
Proceedings of the 2007 International Conference on
Security And Management, SAM’07, CSREA Press,
June 2007

[17] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy
Santoni, C.M. Martins, Andrew Anderson, Steven
Bennet, Alain Kagi, Felix Leung, Larry Smith, “Intel
Virtualization Technology,” IEEE Computer, May
2005

[18] Intel Corp., "Intel Virtualization Technology

Specification for the IA-32 Architecture," at

www.intel.com/technology/vt

[19] Intel Corp., "Intel Virtualization Technology
Specification for the Intel Itanium Architecture" at
www.intel.com/technology/vt/

[20] P. England, B. Lampson, J. Manferdelli, M. Peinado,

B. Willman, "A Trusted Open Platform," IEEE Computer,

pp. 55–62, July 2003.

[21] R. Goldberg, "Survey of Virtual Machine Research,"

IEEE Computer, pp. 34–45, June 1974

[22] Intel Corp., "Intel Virtualization Technology
Specification for Directed I/O Specification," at
www.intel.com/technology/vt/

[23] Trent Jaeger and Reiner Sailer and Xiaolan Zhang.

Analyzing Integrity Protection in the SELinux Example

Policy. in Proceedings of the 11th USENIX Security

Symposium, pages 59--74. August, 2003

[24] Heasman PCI ACPI
http://www.ngssoftware.com/research/papers/Imple
menting_And_Detecting_A_PCI_Rootkit.pdf

[25] Rutkowska Blue Pill
http://blackhat.com/presentations/bh-usa-06/BH-
US-06-Rutkowska.pdf.

[26] Heaseman EFI attack discussion

https://www.blackhat.com/presentations/bh-usa-
07/Heasman/Presentation/bh-usa-07-heasman.pdf

[27] David Grawrock, The Intel Safer Computing

Initiative Intel Press, 2006

http://www.intel.com/intelpress/sum_secc.htm

[28] Intel® 64 and IA-32 Architectures Software

Developer's Manual

Volume 3A: System Programming Guide

http://www.intel.com/products/processor/manuals/

[29] Vincent J. Zimmer, “A Method For Providing
System Integrity And Legacy Environment
Emulation”, US Patent #7,103,529, Issued 9/5/2006.

[30] Peripheral Component Interconnect (PCI)
Specification www.pcisig.org

[31] UEFI Platform Initialization Specification,
Version 1.0, Volumes 1 -5 www.uefi.org

[32] Biddle, England, Peinado, Willman, “The
Darknet and the Future of Content Distribution”
http://crypto.stanford.edu/DRM2002/darknet5.doc

[33] Joseph Cihula. “Trusted Boot: Verifying the
Xen Launch.”
http://xen.org/files/xensummit_fall07/23_JosephCihul
a.pdf

[34] Hariprasad Nellitheertha. “Reboot Linux faster
using kexec. “
http://www.ibm.com/developerworks/linux/library/l-
kexec.html

[35] Seshadri, Luk, Qu, Perrig, “SecVisor: a tiny
hypervisor to provide lifetime kernel code protection,”
ACM Symposium on OS Principles, Stevenson, WA
2007

http://www.nsa.gov/ia/industry/crypto_suite_b.cfm
http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf
http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf
http://www.infosec.sdu.edu.cn/paper/sha1-crypto-auth-new-2-yao.pdf
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_ima.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_ima.index.html
http://www.intel.com/technology/vt/
http://www.intel.com/technology/vt/
http://www.intel.com/technology/vt/
http://www.usenix.org/events/sec03/tech/full_papers/jaeger/jaeger.pdf
http://www.usenix.org/events/sec03/tech/full_papers/jaeger/jaeger.pdf
http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf
http://www.ngssoftware.com/research/papers/Implementing_And_Detecting_A_PCI_Rootkit.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
http://blackhat.com/presentations/bh-usa-06/BH-US-06-Rutkowska.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
https://www.blackhat.com/presentations/bh-usa-07/Heasman/Presentation/bh-usa-07-heasman.pdf
http://www.intel.com/intelpress/sum_secc.htm
http://www.intel.com/products/processor/manuals/
http://www.pcisig.org/
http://www.uefi.org/
http://crypto.stanford.edu/DRM2002/darknet5.doc
http://xen.org/files/xensummit_fall07/23_JosephCihula.pdf
http://xen.org/files/xensummit_fall07/23_JosephCihula.pdf
http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://www.ibm.com/developerworks/linux/library/l-kexec.html

