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Abstract - This paper describes a means by which a 
platform containing Intel Trusted eXecution 
Technology (TXT), including CPU SMX leaf 
instructions, virtualization extensions VT-x & device 
virtualization VT-d, along with an implementation of 
Unified Extensible Firmware Interface (UEFI)-
based platform code, can be isolated from pre-OS 
malware, bus-master DMA devices, non-host 
platforms such as system service processors 
(SSP’s), baseboard management controllers 
(BMC’s), and platform service processors.  With 
service processors always facing the network and 
running a full web services stack, the non-
host/embedded platform isolation is even more 
imperative to guard against.   This is in addition to 
the isolation of the UEFI DXE core implementation 
from 3

rd
 party UEFI drivers, applications, and OS 

loaders.   

Keywords: BIOS, Trusted Computing, Virtualization, 

TXT, service processor 

 

1 Introduction 

The first several million instructions executed when a 
system is powered on are firmware, software stored 
in a chip.  The firmware is responsible for initialization 
of much of the system, including important 
components such as RAM, video, and keyboards and 
mice.  The firmware is responsible for finding and 
loading the operating system (such as Microsoft® 
Windows XP ® or Linux) from a number of different 
types of media, ranging from hard disks to LANs.  
Firmware then cooperates with the operating system 
to load further parts of the operating system before 
the operating system completely takes over.    Today, 
on PC-class machines at least, that class of software 
is known as “BIOS.” 

What do we mean when we mention “UEFI” and 
“Beyond BIOS?”  “UEFI” [1] is an industry group that 
is standardizing what were the EFI1.10 specification 
and the Framework PEI (Pre-EFI Initialization) and 
DXE (Driver Execution Environment) specifications 
[3][4].  Within UEFI, the main UEFI specification 
(beginning with UEFI2.0) is handled by the UEFI 
Specification Working Group (USWG) and the 
Platform Initialization (PI) Architecture PEI/DXE 
content are handled in the Platform Initialization (PI) 

Working Group (PIWG).  The differences are that 
USWG is focused on the OS-to-platform interfaces, 
whereas the PIWG is focused upon platform 
initialization.  The USWG parties of interest are the 
OS (operating system) vendors, pre-OS application 
writers, and independent hardware vendors who write 
boot ROM’s for block or output console devices.  The 
PIWG parties of focus include the platform builders, 
such as Multi-National Corporations/Original 
Equipment Manufacturers (MNC’s/OEMs), chipset 
vendors, and CPU vendors.   The PIWG work can 
accommodate both UEFI operating systems and 
today’s conventional/Int19h-based OS’s.   
 
PIWG-based components provide one means of 
producing the UEFI interfaces.   What is common 
across both UEFI and PI Arch is the extensibility of 
code and interfaces.  For UEFI and PI DXE, the 
extensibility point is a loadable driver model and for 
PI PEI extensibility is through firmware files with PEI 
Modules.  Although it is common to think of firmware 
as being stored in a ROM (Read-Only Memory), most 
firmware is stored in NOR flash devices, which act 
like a ROM but may be updated to add 
enhancements or fix bugs.  The flash devices are 
divided into the equivalent of sectors on a disk. 

Background 
The primary problem being addressed is that that 
platform manufacturer (PM)/Original Equipment 
Manufacturer (OEM)/Multi-national corporation 
(MNC) brand value is based upon the expected 
behavior of the platform in the field.    OEM’s 
spend substantial sums validating their platform, 
etc.    So isolating the pre-OS firmware 
implementation (i.e., DXE core) from non-OEM 
code is imperative in order to have assurance of 
the OEM factory validated behavior.    We don’t do 
things like DXE isolation for the OS and it’s Digital 
Rights Management (DRM) [32] applications, etc, 
to a first order.   This is done to vet for the OEM 
platform behavior and provide a basis of integrity 
upon which other features can be based, such as 
trustworthy launch of OS and pre-OS applications. 
 
Another problem being addressed is that any 
firmware-based security feature, such as the 
cryptographic loading and checking of UEFI 



application signatures using digital signature 
technology like Authenticode, can only be 
guaranteed to operate as designed in the field if 
the implementation of the codes are isolated from 
untrusted content.   To-date, pre-OS isolation has 
been effected via ad hoc, incomplete mechanisms 
like System Management Mode (SMM) [28], but in 
a world where SMM may not be available or to 
meet the cross-architecture requirements of UEFI, 
another solution is required.    
 

Solution 

The solution described in this design is the use of 
Intel®’s Trusted Execution Technology (TXT) 
®[12][27], which has the SMX leaf instructions to 
allow for authorizing which code enables 
Virtualization Technology, such as VT-x ® 
[17][18][19] for x64; TXT is employed in order to 
isolate the standards-based implementation of 
UEFI interfaces, namely the UEFI Platform 
Initialization (PI) Architecture Driver Execution 
Environment (DXE) components from the basic 
PEI and DXE core in the systemboard.    Because 
of space constraints in today’s ROM’s, the 
implementation is really more of an isolation kernel 
that maps the machine memory in a 1:1 virtual-to-
physical without device emulation, versus a full -up 
hypervisor (Hv) or Virtual machine monitor (VMM) 
that provides non1:1 memory mapping and rich 
device models and inter-guest/operating system 
separation.   The layout of the page tables for this 
architecture is shown in below.   The SINIT module 
used during the Secure Launch is a stripped down 
version that admits to inclusion within the overall 
platform ROM. 
 
Since DXE is the preferred UEFI implementation, 
we refer to this separate are as “IsoDxe.”   This 
design includes TXT-enhanced IsoDxe with DMA 
protections. 

 
Why is this important? 
The threats on the platform for the pre-OS abound, 
including the PCI [30] and ACPI [7] exploits 
described by Heasman [24] or the pernicious 
virtualization virus’s like Blue Pill [25].  
 
In fact, UEFI attacks have been described in a 
recent track at the BlackHat (BH) conference  
[26].  

 
How does this work?   
This design works by launching a platform isolation 
kernel from the UEFI firmware.    The important 
aspect of this design is that the isolation barriers 
are erected prior to launching any untrusted, 3

rd
 

party code.   Since the reset vector and early 
firmware flows are all under control of the OEM, 
the IsoDxe driver can be launched here.    
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Figure 1-1 Launch of IsoDxe 

This work is in contrast to conventional hypervisor 
(Hv) or Virtual Machine Monitor (VMM) isolation 
technologies in that all known deployments treat 
the Hv or VMM as an operating system with 
respect to the platform boot firmware.    In order to 
accrue assurance and availability, though, the 
earliest launch is the most desirable.   Thus this 
design pushes the launch phases into the most 
earliest practical, namely as a Driver Execution 
Environment (DXE) component of the UEFI 
Platform Initialization (PI) phase. 
 
This design is motivated by performing a Clark-
Wilson [8][14] integrity analysis [23] of the pre-OS.    
Certain controlled data items (CDI’s), such as the 
UEFI System Table (uefi_system_table_data_t) 
and other internal state objects for the DXE 
implementation, were noted as not having 
appropriate protection.   The “before” picture is 
shown in Figure 1-2, and the protected, or isolated 
picture is shown in Figure 1-3. 
 
Figure 1-4 shows the flow of this design.    Figures 
1-6 and 1-7 show instances of the use of IsoDxe 
for protecting the UEFI service table from attacks 
by a bus-master DMA device (recall the Heaseman 
[24] PCI device rootkit attack – this is a 
countermeasure). 
 
Below is some of the attack code in an errant 3

rd
 

party driver, for example. 
 
  // 

  // start hack 

  // 

  EfiCopyMem (SystemTableDataBuffer, mSystemTable, 512); 

  ((EFI_SYSTEM_TABLE *)SystemTableDataBuffer)->FirmwareRevision = 

0x12345678; 



  Status = AtaUdmaWrite (IdeDev, SystemTableDataBuffer, StartLba, 

NumberOfBlocks); 

  if (EFI_ERROR (Status)) { 

    DEBUG ((EFI_D_ERROR, "Write SystemTable buffer error - %r\n", 

Status)); 

    return ; 

  } 

  Status = AtaUdmaRead (IdeDev, mSystemTable, StartLba, 

NumberOfBlocks); 

  if (EFI_ERROR (Status)) { 

    DEBUG ((EFI_D_ERROR, "Read SystemTable buffer error - %r\n", 

Status)); 

    return ; 

  } 
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Figure 1-2 System prior to DXE isolation 
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Use CPU Virtualization technology

To push the UEFI implementation into

Ring “-1” and isolate from 3rd party codes
 

Figure 1-3 Figure after the isolation 

Without this design, an errant 3
rd

 party driver could 
usurp the UEFI services by doing things like 
patching API’s in the UEFI System Table.     
 
The design uses the Virtual Translation Lookaside 
Buffer (VTLB) algorithm and manages the access 
state of each page via AVAIL bits, viz.,  

– Page type 

– Use AVAIL bits (9:11) to mark page 

type. 

– Bit 9:   NEED 

AUTHORIZED 

– Bit 10: READ 

PROTECTED 

– Bit 11: WRITE 

PROTECTED 

– Active Page table (1:1 mapping present) 

– For Authorized CODE (Check 

Write) 

– Not allow update 

– For Authorized DATA Write (Check 

Write) 

– Check AVAIL bit 

– For Authorized DATA Read/Write 

(Check Access) 

– Check AVAIL bit 

The actual protection is implemented during a page 
fault by assessing the following algorithm 

 
 

 

 

  
Again, the layout of the page tables for this 
architecture is shown below. 
 
These same page-table for inter-guest (i.e., 
separation of drivers from DXE core) can be used 
for the bus-master DMA isolation, namely the 
programming of VT-d [22] viz.,  

– DMAR ACPI table 

– The platform should report 
DMAR ACPI table earlier. 
Maybe gathering 
information in build HOB for 
VMM. 

– So that VMM can get DMAR 
information in its entrypoint. 

 
   typedef { 
      ACPI_DMAR_TABLE  DmarTable; 
   } EFI_DMAR_HOB; 

The UEFI PI PEI will create a hand-off block 
(HOB) [31] in order to describe the isolation of 



the IsoDxe from Direct Memory Access (DMA) 
busmaster devices. 
 
The specifics of the DMA protection are as 
follows 

– Guest use the same method to 
report what memory attribute as 
mentioned in DxeIsoByVT. (no 
update) 

– VMM setup Context Entry table for 
all PCI device and map to one 
domain. 

– VMM setup domain page table for 
all memory space. 

– VMM update domain page table to 
create hole for critical memory for 
authorized code, authorized data. 

 

 
 
 
 
The TXT protection is enabled as follows via the 
interface: 

– BIOS/SINIT ACM information 

– The platform should report 
BIOS/SINIT ACM 
information earlier. Maybe 
gathering information in 
build HOB for VMM. 

– So that VMM can get ACM 
information in its entrypoint, 
and run SCHECK and 
SENTER. 

 
typedef { 

   EFI_PHSICAL_ADDRESS  BiosACMAddress; 

   UINTN                            BiosACMLength; 

   EFI_PHSICAL_ADDRESS  SinitACMAddress; 

   UINTN                            SinitACMLength; 

} EFI_TXT_ACM_HOB; 

 

BIOS/SINIT ACM information 

– Before BIOS expose 

EFI_TXT_ACM_HOB, it should 

program all required chipset register 

to meet the SCHECK/SENTER 

execution requirement. 

– BIOS should know VMM info so that 

no SCHECK will be performed again 

in BIOS code. 

 

 
Today, UEFI implementations co-locate the DXE 
implementation and the third party UEFI 
drivers/OS loaders in ring0.   There is no isolation 
between the two classes of code (OEM and 3

rd
 

party).   This design will erect an isolation barrier 
by pushing the DXE into “ring -1”, thus can avoid 
breaking compatibility with the 3

rd
 party UEFI 

codes that still believe they have unfettered “ring 
0” access.  
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Figure 1-4 Flow of the design 



The design of this approach is to essentially use spare 
bits in the page table to mark which entries in the 
UEFI memory map [1] are owned by IsoDxe and the 
DXE implementation, versus which pages are free or 
owned by 3

rd
 party UEFI drivers and applications.    

This allows the page-table emulation algorithm of 
IsoDxe to transparently allow UEFI applications, 
including but not limited to diagnostics, operating 
system loaders, drivers, and applications, to believe 
that they are executing in 1:1 virtual-to-physical and 
their view of the page tables reflect the actual 
machine. 

 

Figure 1-5 Page table design for IsoDxe 

The following pictures demonstrate the creation of attack 

code that attempt to hijack or corrupt the UEFI System 

Table [1].    The before picture shows the UEFI system 

table contents, as displayed by a UEFI shell application 

that has attacked a system without these protections.   The 

latter picture shows the same attack that has been foiled by 

the presence of IsoDxe. 

 

Figure 1-6 VT-d attack 

 

Figure 1-7 VT-d attack mitigation 

GGooiinngg  ffoorrwwaarrdd  --  MMoorree  CCoovveerraaggee  
In addition to having IsoDxe to protect the UEFI 
phase of execution when 3

rd
 party option ROM’s 

and drivers load, this art can be extended to 
protect the entire pre-OS from reset vendor up-to-
and-including the UEFI phase.    
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Figure 1-8 Isolation of entire UEFI PI boot flow 

 
The motivation for this is that both the PEI and 
DXE phase of execution admit the loading of 
additional  binary modules.   Today the trust model 
is that PEI and DXE are OEM extensible only, but 
in a future of having the equivalent of 3

rd
 party 

content in this phase, the PEI and DXE core 
components need to be protected.    The earliest 
isolation kernel would run from PEI and we call it 
“IsoPei” as an analogous term to the earl ier 
described IsoDxe.   PEI has additional space 
constraint in the ROM and available memory, so it 
is much simpler than IsoDxe.    
 
The process of one hardware virtualization-aware 
agent, such as IsoPei, invoking a successive one, 
such as IsoDxe, we refer to as “Hexec” (which 
stands for “hypervisor execute”) since the process 
is akin to the Kexec usage model where one Linux 
kernel can invoke another. [34] 
 
The policy-control of a given virtualization launch 
using Launch-Control Policy (LCP) [33] is shown in 
Figure 1-9. 
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Figure 1-9 Launch control policy 

Finally, this protect allows for fine-grain access control 

and inter-domain service invocation.   Specifically, 

imagine isolating a particular UEFI option ROM that 

supplies the EFI_BLOCK_IO_PROTOCOL services from 

the rest of the system.   Below is a diagrammatic view of 

such a protection scenario. 
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Figure 10 Isolation of driver w/ given API 

RReellaatteedd  wwoorrkk    
This art complement implementations of secure 
boot, whether BIOS-based [2] or UEFI-based [16], 
but really entails use of virtualization in the pre-OS 
for isolation and assurance of construction for 
features like secure boot.   Other trusted 
computing practice has been described, in general, 
by [20].   And the use of runtime VMM’s for 
isolation [15][35].   But beyond some designs in 

[29], this is the first reduction to practice of  
virtualization [21] for pre-OS security. 
 

CCoonncclluussiioonn  
Intel can use this design to allow UEFI platforms to 
be more malware/virus resistant than legacy BIOS 
platforms or ones that do not implement this 
isolation.   This design will ensure that the promise 
and value of UEFI’s extensibility does not become 
an issue in market deployment.    
 
This design is novel in that it allows platforms to 
maintain compatibility with the EFI1.02 drivers that 
expect unfettered ring 0 execution and applications 
that have been shipping since 1999 and to harden 
emergent UEFI capabilities, such as  UEFI secure 
boot [16].         
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