
Panel paper for the 2010 IEEE International High-Level Design Validation and Test Workshop 1

Abstract—This paper will give an overview of system firmware

with an eye toward clarifying upon which side of the
hardware/software boundary firmware exists. This overview
will also counterpoint the perception of firmware in the industry
against the reality of firmware development and its role in the
market. This paper will then provide a case study of a class of
firmware, namely the BIOS, to clarify some of these issues. The
evolution of BIOS in the face of the challenges will then be
described. Finally, the challenges of firmware development in
the fact of ever-increasing hardware complexity will be
presented.

Index Terms—BIOS, Firmware, Computing, Validation

I. INTRODUCTION
irmware has become a ubiquitous part of our personal life.
With even a cursory scan of a house, those aware of
firmware can locate its presence in the microwave oven,

the conventional oven, possibly the toaster, possibly the mixer
in the kitchen. In the family room, firmware is present in the
TV, the receiver / amplifier, the DVD player, and the cable
box. If we have modern appliances, the clothes washer and
dryer are firmware controlled. In the garage, if the car is
average it has about 50 processors [1], all with their own
firmware. On our person, we probably carry a cell phone or an
MP3 player, both of which could not function without
firmware. Even on vacation, we’ll use a GPS to find our way
out of the way and a digital camera to record the fact that we
were there – both non-functional without firmware.

In the work environment we are equally surrounded by
firmware. Most office workers use a computer, which must
have firmware to boot. We use copiers and printers, which
have firmware. The routers and bridges and phones with
which we communicate all rely on firmware. Our building’s
heating and cooling system is almost certainly has its
firmware. Our elevators are firmware controlled. The number
of industrial applications only adds to the web of firmware that
constitutes modern life.

Manuscript received April 14, 2010.
Robert P. Hale is a principal engineer with the Software and Services

Group (SSG) of Intel Corporation. Hillsboro, OR 97124 USA (phone: 503
264 8793 e-mail: robert.p.hale@intel.com).

Vincent J. Zimmer is a principal engineer with the Software and Services
Group (SSG) of Intel Corporation. DuPont, WA USA
(vincent.zimmer@intel.com)

Even with this reliance on firmware, it remains all but
invisible. The entire user interface for firmware might be one
or two LEDs and a dial for the microcontroller in a toaster.
Even the firmware in an MP3 player’s user interface is a small
portion of its overall content. Decoding MP3 and JPEG files
is algorithmically, as well as code size, much more complex.
Firmware is generally characterized as user-interface-poor and
content rich.

When we do notice firmware, it is generally for the wrong
reasons. The firmware may explicitly report an error such as
“Maintenance required” at exactly 10,000 miles on most cars
or the dreaded “Cannot find boot device” on a system whose
hard drive worked fine yesterday. Alternatively, the firmware
may be proclaimed as the cause of some famous recall. The
good news, the press will say, is that the fix is a simple 30
minute visit to the automobile dealership. In general, our
reaction to firmware failure is surprise. This tends to indicate
a high level of expectation: firmware works invisibly and well
the vast majority of the time.

This perception seems at odds with the perception in the
industry is “the techniques for creating and validating these
crucial product components remain relatively arcane and less-
studied to the point of being labeled an “art”” [3]. How can
firmware be so badly developed and yet be seen as so reliable
to the end user?

II. PERCEPTION AND REALITY
There are several reasons that can be seen as leading to this

dichotomy.

Firmware is software and thus subject to the same issues as
other software projects. These issues have remained
remarkably consistent over the years at least as far back as [5].
Firmware then imposes its special spin particularly with
respect to limited size and unusually tight hardware binding.

The user could see quality while the internal view is lack of
quality because the validation task, if done properly, stresses
the hardware and firmware beyond what end users would
normally subject a device to. Most users are simply unlikely
to encounter most of the errors in firmware (as with software
or hardware) because they use only the simpler features of
devices.

Neither Seen Nor Heard: Alternative Views of
the State of Firmware

Robert P. Hale and Vincent J. Zimmer, Member, IEEE

F

Panel paper for the 2010 IEEE International High-Level Design Validation and Test Workshop 2

The majority of firmware bugs could also be negligible
enough and users adaptable enough that no one notices most
firmware bugs. For example, if the firmware in an MP3 player
miscalculated the tones in every 256th iteration during an MP3
music decode, most users would probably not notice.

Projects could also simply take 3 or 4 times estimates due to
required debugging and excessive validation runs in order to
reach a satisfactory quality level. The end user would not
notice this because the user probably didn’t know the original
schedule.

There could be confusion between the root cause and the fix
for issues. In particular, there is great pressure to resolve
hardware issues in firmware due to the order-of-magnitudes
difference in the cost of resolution. A “spin” of a chip may
take many weeks and cost millions of dollars whereas a
firmware fix may cost a few thousand dollars and a day or two
of total work. In fact, many modern chips are designed so the
firmware can configure the chips to work around issues in the
field rather than having the hardware recalled. The public is
simply told that there is a firmware issue when, in fact, the
firmware resolved what was a hardware issue.

There could be confusion about product readiness.
Firmware is generally produced in companies and
organizations whose main expertise is hardware, be it
integrated circuits or microwave ovens or remote controls.
The overriding perception is that, when the hardware
completes its validation, the device should be ready to produce
and ship to the customer. The firmware developer is called
upon to both support the hardware debug and ensure that his
own bugs are resolved on time. The time required by the
firmware developer is seen as dead time that is keeping the
hardware from shipping. A more functional view, that the
hardware and firmware go together to make a system, is easy
to have in the abstract but as easily lost in the heat of
scheduling.

The gap in the understanding of the complexity of the
firmware task may also lead to perceptions that firmware
validation is excessively long and arcane. Estimates are that
“embedded software complexity doubles in size every 10
months” [2] , firmware being a subset of embedded firmware.
The developer of the hardware for an MP3 player may not
have the visibility into the complexity associated with playing
an MP3 recording or managing the NAND flash or the
complexity in dealing with user interface experts.

The central role firmware integrating hardware pieces into a
coherent whole means the firmware has a large number of
customers each with different needs. In the case of larger
firmware development, several validation groups think the
main purpose for the firmware is theirs whereas the teams that
do sales or enabling or press think it is theirs. Different
subsystem developers require firmware assistance. Firmware
must meet all requirements and usually has little say in terms
of intermediate or final delivery dates. The subsystem

developers and validation teams, on the other hand, can be
unaware of or are unsympathetic to other needs.

Hardware validation uses firmware as a tool for its
validation. For products that are updated each generation
(such as BIOS, or “Basic Input Output System”), hardware
validation would prefer that the firmware not change at all so
as to provide a consistent platform for hardware validation and
debug. Meanwhile there is pressure from the product teams to
change to have new features. The economics of product
development mean that the same basic source must support all
customers. Over time this necessitates poor design decisions
which have the effect of leading to less consistency and lower
stability during validation.

Unless the firmware developers and validation engineers
have a long working relationship, it is often hard for validation
engineers to gauge the complexity of a task or change to
firmware. Many times the firmware’s design can
accommodate apparently large and apparently monumental
changes while stumbling over apparently quite small changes.
With different players, this is common throughout the software
industry.

Firmware is a wide space. Each of these explanations, plus
probably many more could make up the story that is hidden
behind each piece of firmware and hardware that is created.

III. A CASE STUDY: BIOS
In the early days of computing, the reset vector, and the

locations following, had to be filled in by hand via front panel
toggle switches so the computer would have something useful
to execute at reset. As time proceeded, the toggle switches and
the operator that entered them were replaced by instructions
stored in non-volatile memory chips: Firmware. This code has
had various names including the system loader, the autoloader,
the bootstrap loader, and the boot ROM. Due to the popularity
of the IBM PC, the code now has the generic name BIOS
(Basic Input Output System) [4]. The BIOS can be used as a
case study of firmware heavily involved in validation, required
for production, and which has a long generational record.

The BIOS consists of two main pieces known as POST
(Power On Self Test) and Run-time. POST starts at the reset
vector and ends at the hand off to the operating system’s boot
loader. The run-time provides a series of software interfaces
which are used by the boot loader until the operating system
loads its own drivers and may also be used by the operating
system once it is running.

As the architecture of the PC has evolved the function of
POST has changed. Early on, POST did a considerable
amount of testing and diagnosis to locate which parts of the
system failed. As the number of system components
decreased, the number of failures decreased and the number of
failures that the BIOS could diagnose but which did not also
cause the BIOS to fail also decreased.

Panel paper for the 2010 IEEE International High-Level Design Validation and Test Workshop 3

On the other hand, the BIOS was given more responsibility
for system initialization. In an effort to make PCs easier to use,
upgradeable components including RAM and add-in cards
were made self-describing. The descriptions typically contain
data structures of resource requirements and component
attributes. It was then up to the BIOS to sense the presence of
the add-in devices, read those descriptions, and configure the
on-board hardware properly. The initialization of RAM, a few
hundred bytes in the PC jr, now takes around 100 Kilobytes.

The BIOS must have the firmware equivalent of device
drivers to communicate with those required for booting: media
devices such as hard disks, CD, USB drive, networks,
keyboards, mice, and video cards. Networks and video cards
typically arrive with their own add-in drivers known as option
ROMs. Over the years the specifications for each of these has
evolved considerably. Initially drives were addressed using
cylinder, head, and sector format with a 540MB and now are
addressed as logical blocks with a limitation of above 2^64
bytes.

A modern BIOS must initialize and communicate over
several major buses including SMBUS, USB, and PCIe [10] as
well as the bus connecting the processor to the other chips on
the system board. The BIOS must access devices ranging from
SATA and SCSI to USB Media and HID devices [11] to IPv6.

The BIOS has also important and complex roles to play in
describing the hardware to the operating system (8]), interfaces
to management applications [9], support for the BIOS update
and security, power and thermal management [8]. The original
desktop BIOS has been modified to support many-way servers
down to hand held devices. The BIOS, a less than 64KB
ROM, has evolved into an approximately 2MB
(uncompressed) software package stored in NOR FLASH, a
type of electrically alterable non-volatile memory that is
addressable as ROM.

Although BIOS development was almost exclusively done
in assembly language, much of the rest of BIOS development
was relatively modern. Most BIOS were relatively modular.
Relying heavily on source code control systems, reuse factors
of 70 to 90% between chipset generations were not
uncommon. These allowed the best of the typically relatively
small BIOS groups to produce large amounts of high quality
results.

IV. BIOS INDUSTRY RESPONSE TO COMPLEXITY
By the late 1990s and early 2000s, the complexity faced by

the BIOS was clearly increasing. At the same time the code
bases used to create BIOS were almost entirely in assembly
language and carried 20 years of increasingly archaic
interfaces. This led, over time, to an industry-wide Forum to
start definition of a replacement for the PC BIOS known as
UEFI, the Unified Extensible Firmware Interface. The UEFI
specification itself [6] provides an agreed upon set of
interfaces between the system firmware (the traditional BIOS),
option ROMs on add-in cards, and operating systems. A

companion specification, the Platform Initialization (PI)
Specification describes the underlying structures inside the
system firmware.

The design of the PI specification used the knowledge hard
won through twenty plus years of BIOS development
combined with solid software engineering.

PI is broken into 5 phases:

- SEC (“security” Phase): Basic processor initialization.
Initialization of “starter RAM” (usually cache) to be
used for temporary storage until RAM is available.

- PEI: Continued system initialization with the goal of
initializing RAM. PEI consists of a core and a
number of PEI Modules (PEIMs) communicating via
simple abstractions known as PEIM to PEIM
interfaces (PPIs). PEIMs are executed directly out of
firmware.

- DXE: Continued system initialization and peripheral
initialization. DXE consists of a core and a number
of DXE Drivers communicating via abstractions
known as protocols. DXE Drivers are loaded into
RAM and executed. DXE components are typically
stored compressed.

- BDS: Cooperating with DXE, causes the initialization
of the appropriate boot devices and performs the
initial operating system load. Completes creation of
UEFI interfaces.

- Run-time: Performs similar tasks to BIOS run-time but
with improved interfaces.

Below in Figure 1 is a temporal view of a UEFI-based
firmware stack, as described above.

Figure 1 UEFI PI boot flow

Panel paper for the 2010 IEEE International High-Level Design Validation and Test Workshop 4

In addition to the flow above, below in Figure 2 is a spatial
view of the UEFI based firmware stack.

Figure 2 Spatial view of UEFI PI components

PEI and DXE modules describe their requirements for
execution. The cores then execute the modules in the order
their requirements become satisfied, ensuring a consistent
execution order boot to boot. The modules become objects
that form together to create stacks to implement e.g. file
systems and networking from basic components. Typically
only the basic components change for each generation since
the related hardware changes.

On a typical notebook computer, PI is expected to run in
less than 10 seconds.

V. VALIDATION AND SOFTWARE ARCHITECTURE
The initial implementation [7] started in 2002 and is now in

its 9th generation. Deployment in any serious way started in
2003-2004 with only mixed reviews. Some teams flourished
whereas others suffered greatly. Teams which did prototypes
before plunging into production code were more successful.
Teams which had more high level experience and teams with a
wide range of levels of expertise seemed to do better as well.
We found that, due to the software focus of the architecture,
teams with more software engineers did better than teams that
were dominated by hardware engineers. We also found that
recent college graduates were unexpectedly successful, due to
their training in more modern software skills.

The architecture is designed to encourage most development
in the PEI phase and beyond, where modules are written in C.
The architecture is also designed to isolate modules from each
other enabling high levels of code reuse. In many cases 95%
of modules are reused without change from chipset generation
to chipset generation. This high level of reuse increases
reliability.

The increased modularity has allowed some BIOS
validation teams in Intel to change how they validate firmware.
Instead of treating the entire BIOS as a black box, they do
binary comparisons of modules from one release to the next to
determine automatically which modules have changed. Most
testing is then focused on the modules that have changed. The
results have been encouraging, with test time cut by a factor of
around 3 and escapes reduced.

The architecture has also included features which allow for
improved validation automation. Consider, for example, BIOS
Setup, a “program” within the BIOS which allows the user to
change configurable options and view system information. In
order to gain satisfactory test coverage, the various
permutations of configurations that may be created via Setup
are tested. Typically, this involves a human operator who has
to manually enter Setup, change options, reset the system, and
perform tests for each permutation. In order to improve this
situation, the user interface management in UEFI and PI
enables the ability to automate the manual steps associated
with Setup testing. The testing becomes more reliable and
more testing can be accomplished for a given amount of time.

UEFI / PI systems have, where applied well, allowed for
improvements in development time, readiness, and validation.
They have enabled the use of more modern software
methodologies in the BIOS development community. In doing
so, they provide a solid base for the next 20 to 30 years.

VI. CONCLUSION
Our experience with deploying what is a relatively large and

complex piece of firmware for many years suggests that many
of the validation issues with firmware arise from the different
views the customers have of that firmware. Validation is
simply one more viewer with a different view.

Hardware validation techniques are also not particularly
appropriate to a piece of software. Firmware is software and
software techniques are generally far more applicable to tests
above the subsystem level. Automation is key to successful
software testing. Designing validation hooks in during the
architecture phase has proved useful.

Unlike applications, firmware is software delivered with the
product itself. This means firmware is as much a part of the
product as any piece of hardware is. Teams that remember that
they are testing a system are much more successful than those
that attempt to validate a single piece.

If firmware is software, it is not typical software. It requires
a different mentality than net based development. The
successful firmware developers probably did well in their
operating system classes at school and were probably poor
user interface designers. Hardware engineers who have been
successful BIOS developers have generally focused on
generational hardware changes or had considerable focus on
software in school.

Panel paper for the 2010 IEEE International High-Level Design Validation and Test Workshop 5

ACKNOWLEDGMENT
We would like to thank Mark Doran and Isaac Oram at Intel

for their feedback on this paper. We would also like to thank
Priyadarsan Patra for his guidance in this process.

REFERENCES
[1] “How Car Computers Work,”

http://auto.howstuffworks.com/under-the-hood/trends-
innovations/car-computer.htm

[2] Wolgang Ecker, Wolfgang Muller, Rainer Domer Eds,
Hardware-dependent Software: Principles and Practice,
Springer, 2009, ISBN 978-1-4020-9435-4.

[3] Priyadarsan Patra, Description of the Special Session on
Firmware Validation Challenges, in HLDVT Workshop,
2010.

[4] IBM Corporation, Technical Reference – Personal
Computer PC Jr, Boca Raton, Florida, 1983. Document
number 1502293

[5] Barry W. Boehm, Software Engineering Economics,
Prentice-Hall, 1981, ISBN 0-13-822122-7.

[6] UEFI 2.3 Specification, www.uefi.org
[7] Vincent Zimmer, Michael Rothman, Robert Hale, Beyond

BIOS: Implementing the Unified Extensible Firmware
Interface with Intel’s Framework, Intel Press, 2006, ISBN
0-9743649-0-8.

[8] Advanced Configuration And Power Interface
Specification (ACPI) www.acpi.info

[9] Desktop Management Task Force (DTMF) www.dmtf.org
[10] Peripheral Component Interconnect (PCI) www.pci.org
[11] Universal Serial Bus (USB) www.usb.org

View publication statsView publication stats

