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ABSTRACT 

 Martensite steels are required for high temperature applications where hardness is required. In this study, 

four grades of Martensite steels are compared in a 1D model simulation of welding, where a sequential thermal 

and structural analysis is done. The welding heat flux with thermal boundary conditions gives the temperature 

distribution. The structural boundary conditions along with lateral welding process are taken as a parameter 

variation direction, applying symmetric conditions. Thermal Load Affect is carried out for structural variations 

of distortion and stress as a decoupled system. All calculations are done in MS Excel.  The thermal stresses are 

about 30 times more than the elastic stresses causing the residual stress affect 
 

Keywords: Martensite Steel, Weld Finite Element, Thermo mechanical affects, distortion, and residual stresses.. 

 

1. INTRODUCTION 

The basic objective of this study is to provide a 

1D Finite element model for the welding process. 

Many books have dealt with the subject of heat 

transfer models [1], [2] and [3] Welding is a thermo 

metallurgical and structural problem, a coupled 

formulation is preferred but it became complicated for 

analysis. A decoupled or sequential simulation is 

implemented in this study using a 1D finite element in 

the lateral direction to the weld direction. The heat of 

weld is   evaluated with thermal load and boundary 

conditions of the temperature distribution. The 

temperature distribution is taken as a load and 

sequentially applied to the structural stiffness element 

and structural boundary conditions again evaluated as 

elimination from the heat transfer analysis obtained by 

the temperature distribution due to the heat of welding 

which is modeled using Load Vector. The 1D model 

also uses the symmetry of thermal load and material 

in the base materials joined by lap welding process. 

The variation is assumed only in the lateral direction 

and it is assumed to be same along the depth and the 

thickness resulting in the simple 1D model. Welding 

in lap joint is done by providing temperature above 

the 1460
o
C at the weld fusion zone. The distribution is 

seen as a temperature nodal output. Linear shape 

functions are used to obtain, conduction, convection 

and load vectors. In further study the temperature 

output is used in obtaining structural distortion and 

residual stresses. 

The Wear resistance properties of Martenstic 

steels [9] for high stiffness to mass ratio, the 

coefficient of thermal expansion for such material is 

given in terms of atomic percentage of carbon in 

Marten site.  

 

2. RELATED THERMO-STRUCTURAL 

MODELS 

The structural load on a material gives a flexural 

distortion and stresses which disappear once the load 

is removed. But thermal load causes residual strain, 

distortion and stresses which remains same in the 

system after the heat of thermal distribution is 

removed as it gets absorbed in the material as per the 

coefficient of thermal expansion. In the following part 

of the report modeling of the thermal load and 

resulting displacements and stresses are discussed. 

 

http://sreyasijst.org/
http://sreyasijst.org/
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3. FINITE ELEMENT SIMULATION 

MODELING 

 

3.1 Temperature Effects 

In an isotropic linearly elastic material, a heat load 

causes temperature distribution. The difference in 

temperature is the cause of heat flow. The thermal 

stress problem is due to a distribution of change in 

temperature, ∆𝑇 𝑥 ,  which causes a change in length 

and the strain is due to the change in temperature and 

it can be treated as an initial strain,𝜖0, given by Eq. (1)  

 

𝜖0 = 𝛼∆𝑇                   (1) 

 

 
Figure 1. Stress – Strain in the presence of an Initial 

Thermal Strain. 

 

Where 𝛼 is the coefficient of thermal expansion. it is 

to be mentioned that a positive ∆𝑇 implies a rise in 

temperature.  The stress – strain law in the presence of 

𝜖0 is shown in Figure 1. From this Figure, we see that 

the stress – strain relation is given by Eq. (2) 

 

                    𝜎 = 𝐸 𝜖t − 𝜖0                                (2)      

 

The strain energy per unit volume, u, is equal to the 

shaded area in Figure 1.  And is given by  

𝑢 =
1

2
𝜎 εt, This  flexural strain energy is due to total 

strain minus thermal strain, Eq. (3). 

 

                𝑢 =
1

2
 𝜖t − 𝜖0 𝐸 𝜖t − 𝜖0                   (3) 

 

The total strain energy U in the structure is obtained 

by integrating u over the volume of the structure of 

length L and cross sectional area A, given by Eq. (4) 

 

        𝑈 =  
1

2

 

𝐿
 𝜖t − 𝜖0 𝐸 𝜖t − 𝜖0  𝐴dx             (4) 

 

3.2 Carbon Dependent Co-efficient of Linear 

Expansion: 

The linear coefficient of thermal expansion, α, is 

dependent on atomic Carbon percentage [9] is given 

by α  = (14.9-1.9Cm)*10
-6

 /
o
C. Figure 2 shows for 

increase in Carbon percentage, there will be a 

decrease in linear expansion coefficient for Martensite 

steels. This variation is taken into consideration in the 

calculation of distortions and linear stresses which are 

evaluated for each of the four alloys considered. The 

objective of the study is to see the distortions and 

residual stresses caused by the temperature load due to 

the welding heat load θ. In Eq. (14) the finite element 

model of all the loads are obtained  𝒇𝑒 + 𝑻𝒆 +𝑒

𝜽𝒆+𝑷𝒊. The flexural body loads f, surface loads T, 

and point loads P, cause elastic distortions and 

stresses which disappear on removal of these loads. 

However, the temperature induced distortions and 

stresses are permanent and remain same. Therefore, in 

Eq. 19 the net external force F is only due to 

temperature θ, thermal load. 

 In Table 1. Four AISI grades of Martensite steels are 

shown for evaluation. Apart from the element 

percentage composition, Atomic Number of each is 

given. Atomic weight and its percentage Atomic 

Weight is given. Atomic weight of Carbon is required 

for calculating the alloy linear coefficient of thermal 

expansion. It is seen that for AISI 4130 & AISI 4140 

the Atomic Carbon percentage is 3.316%, for 

AISI4340 due to the presence of Ni, the carbon 

percentage atomic weight is less, 2.853 and for 

AISI4330 it is high, 4.356, due to the absence of S and 

Ph. Calculate percentage of Atomic weight of Carbon 

using following formula: 

 

Atomic weight % of Carbon = 

  
Weight  % Carbon

𝐴𝑡𝑜𝑚𝑖𝑐  𝑤𝑒𝑖𝑔 𝑕 𝑡  𝑜𝑓  𝐶𝑎𝑟𝑏𝑜𝑛

 of  all  elements  of  alloy ,
Weight  % element

𝐴𝑡𝑜𝑚𝑖𝑐  𝑤𝑒𝑖𝑔 𝑕 𝑡  𝑜𝑓  𝑒𝑙𝑒𝑚𝑒𝑛𝑡
  
 * 100 

 

 

 

𝜖0 
𝜖 

𝜎 

𝜖0 

𝜖0 

𝜖0 

         σ = 

E(εt -εo) 

 

 

εo) 
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Table1: Composition of Martensitic Stainless Steel 

 
Element Cr Mn C Si Mo S Ph Ni Fe Total 

AISI# Atomic Wt. 51.90 54.94 12.01 28.09 95.90 32.60 30.97 58.71 55.80 As reqd. 

4130 

Wt % Comp. 0.95 0.50 0.31 0.23 0.20 0.04 0.04 0.00 97.75 100.0 

Wt%/At. Wt 0.02 0.01 0.03 0.01 0.00 0.00 0.00 0.00 1.75 1.82 

At%C 
  

1.40 
       

4140 

Wt % Comp. 0.95 0.75 0.41 0.23 0.20 0.04 0.04 0.00 97.40 100.0 

Wt%/At. Wt 0.02 0.01 0.03 0.01 0.00 0.00 0.00 0.00 1.75 1.82 

At%C 
  

1.85 
       

4330 

Wt % Comp. 0.50 0.90 0.25 0.70 0.40 0.00 0.00 1.25 96.00 100.0 

Wt%/At. Wt 0.01 0.02 0.02 0.02 0.00 0.00 0.00 0.02 1.72 1.82 

At%C 
  

1.15 
       

4340 

Wt % Comp. 0.80 0.70 0.40 0.23 0.25 0.04 0.04 1.83 95.73 100.0 

Wt%/At. Wt 0.02 0.01 0.03 0.01 0.00 0.00 0.00 0.03 1.72 1.82 

At%C 
  

1.83 
       

 

Based on the carbon atomic weight %, Cm, variation 

in linear coefficient of thermal expansion is calculated 

with a linear decrease is as Cm increases. In Figure 2,  

For AISI4330,  α =  0.127*10
-4

; AISI4130,  α =  

0.122*10
-4

; AISI4340,  α =  0.114*10
-4

; AISI4140,  α 

=  0.113*10
-4

 The relation between α and Cm is linear 

and is decreasing with increasing Cm, atomic %, as 

seen in Figure 2.  These values of α are used in the 

thermal load equation, Q=α∆𝑇.  

 

Figure 2: Variation of α, with Carbon Atomic Weight % 

4. EXAMPLE OF BUTT WELDED JOINT 

A Martenstic material of size 150mm length, 75mm 

width and 5 mm thick is welded with a similar 

material with 150mm along the length, 75mm lateral 

length on either side with a bead thickness of 5mm. 

This problem is symmetric in terms of thermal load, 

mechanical clamping, material, geometric & boundary 

conditions. 

Length l=75mm, For Marten site material with 

Conductivity K=46W/m
o
C, Convective heat transfer 

coefficient h=10W/m
2o

C. The molten temperature is 

about 1460
o
C. Boundary conditions are applied using 

the elimination approach which is more suiTable for 

hand calculations. The temperature distribution at 

fusion zone is at 1600
o
C.  

For structural problem, the load is differential 

temperature and coefficient of thermal expansion. 

Differential temperature from ambient of 25
o
C is 

obtained from the thermal calculation. In this first step 

of thermal, finite element analysis of temperature 

distributions are obtained for two Boundary 

Conditions of specified temperatures and for specified 

heat at the fusion zone. In this Study the second case 

of specified heat at fusion and the resulting 

temperatures is taken for further structural distortions 

and residual stress analysis. 

4.1 First Step: Heat of welding is input and 

Temperature distribution is output 
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Heat Flow problem is a scalar field problem with 

temperature T, as the field is variable. Though 

temperature is a scalar rate of heat flow or 

temperature change is a vector and it can have 

different values. Welding process having heat power 

in Watts, Q, is given through an Electric path, Q= 

ηVI, Where η is the process efficiency, V is the Volts 

and I is the current. This data is taken from [10]. 

 From this equation Assuming K= 𝐻𝑇 + KT , the 

equation of steady state heat flux, W/m
2
, is given by, 

after assembly, the linear simultaneous equations: 

 𝑇𝑒 =K
-1

{R} 

The solution is obtained after applying the boundary 

conditions and solving by any method like, Gaussian 

elimination method [1].  Among the temperature 

distributions evaluated, the   selected one is having 

heat flux at the fusion zone of weld as shown in 

Figure (3). The temperature distribution is linearly 

decreasing from 1600
o
to 30

o
 at the other end.  

 

Figure 3:  Welding Temperature for ambient temperature 

end 

 

4.2 2
nd

 Step: With the temperature obtained get 

thermal Load and calculate structural distortion 

and residual stresses. 

 The Natural coordinate, 𝜉, system used, is related to 

the Cartesian coordinates x, Eq. (5). Natural co-

ordinate limits are -1 to +1 over the element length: 

 𝑥2 − 𝑥1 = 𝑙e 

𝜉 =
2

𝑥2−𝑥1
 𝑥 − 𝑥1 − 1              (5) 

The derivatives in natural and Cartesian are also 

related, Eq. (6).  

𝑑𝜉 =
2

𝑥2−𝑥1
𝑑𝑥  = 

2

𝑙𝑒
𝑑𝑥            (6) 

In this equation le is the length of a 2 nodded 1D 

element. The Finite elements were given as 

combinations of the linear shape functions, N1 & N2. 

From Figure 4 the displacement, 𝑞 𝜉 , at any point, 

𝜉, −1 < 𝜉 < 1 . in the element is given in terms of 

nodal displacements and shape functions Eq.  (7).  

𝑞 𝜉 = 𝑁1𝑞1 + 𝑁2𝑞2     (7) 

= 𝑁𝑞𝑒 , Vector N gives temperature within element in 

terms of the nodal displacements, 𝑞𝑒   

Where, N is a vector of shape functions and q
e
 is 

vector of nodal variables q1 and q2.  The derivatives 

give the strain,  𝜖t − 𝜖0  = 
𝑑𝑞

𝑑𝑥
, given in Eq.  (8) ∶ 

𝑑𝑞

𝑑𝑥
=

𝑑𝑞

𝑑𝜉

𝑑𝜉

𝑑𝑥
 

=
2

le

𝑑𝑁

𝑑𝜉
. 𝑞𝑒  

=
1

le
[1, 1]𝑞𝑒  

𝑑𝑞

𝑑𝑥
= 𝐵𝑇𝑞

𝑒                (8) 

Where, BT =
1

le
 [−1, 1]     (9) 
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Vector 𝐵𝑇  gives strain variation in the element in 

terms of the nodal displacements.  

 

                               

𝜉 = −1)                                           2(𝜉 = +1) 
Figure 4.  A Linear Element with thermal Load. 

A linear Finite element in 1D is shown in Figure - 3 

using a natural co-ordinate system in ξ. For a structure 

modeled with linear elements, along with Eq. (9) total 

strain energy is in Eq. (10) 

      𝑈 =  
1

2
𝐴𝑒

𝑙𝑒

2𝑒   𝜖 − 𝜖0 
𝑇1

−1
𝐸𝑒 𝜖 − 𝜖0 𝑑𝜉     (10) 

Noting that 𝜖 = 𝐵𝑞, we get summation of element, e, 

matrices for the structure. The total potential energy, 

∏ is given in Eq. (11). 

∏ =

 
1

2
𝑞𝑇

𝑒  𝐸𝑒𝐴𝑒
𝑙𝑒

2
 𝐵𝑇𝐵𝑑𝜉

1

−1
 𝑞 −

  𝑞𝑇
𝑒 𝐸𝑒𝐴𝑒

𝑙𝑒

2
𝜖0  𝐵𝑇1

−1
𝑑𝜉 +  

1

2𝑒 𝐸𝑒𝐴𝑒
𝑙𝑒

2
𝜀0

2     (11) 

investigative the strain energy expression, Rayleigh 

Ritz method  of  minimization of total potential 

energy with respect to the nodal displacements we get 

the equations of stiffness and load. The third term in 

Eq. (11) is a constant term and is of no consequence 

since it drops out of the equilibrium equations during 

derivative evaluation, which are obtained by setting 

d∏ / dq =0. 

The first term,   𝐸𝑒𝐴𝑒
𝑙𝑒

2
 𝐵𝑇𝐵𝑑𝜉

1

−1
 , yields the 

element stiffness matrix, Eq. (12), 

   Ke  = 
 𝐸𝑒𝐴𝑒

𝑙𝑒
 

1 −1
−1 1

           (12) 

 

The second term yields the desired element load 

vector 𝜃𝑒 , as a result of the temperature change: 

  𝜃𝑒 = 𝐸𝑒𝐴𝑒
𝑙𝑒

2
𝜖0  𝐵𝑇1

−1
𝑑𝜉       (13) 

From Equation 13 we can calculate   𝜃𝑒  for each of 

the elements and nodes. As we can see except for the 

relative load has positive and negative values are 

taken from Table 2 and added to get the net load. For 

these calculations, E will vary with the grade of the 

Marten site.  The Coefficient of Linear expansion 

varies and is taken from the Table 1 as it varies with 

Martensite material grade and the Atomic percentage 

of Carbon in the material. The values of nodal 

temperature are from reference [10]. The first cell of  

first row gives temperature is at fusion, temperature 

drops to the end of the lateral surface to 30 
0
C.  The 

second row is the ambient temperature and the third 

row gives the differential temperature.  The last row 

gives the element temperature which is taken as the 

average of the two nodal temperatures. 

Table 2. Temperature, 
0
C distribution of element and nodes 

 

4.3 Definition of Problem: This model is adopted 

from the reference [10], a steady state heat transfer 

problem with no transient temperature, 
𝑑𝑇

𝑑𝑡
, terms. The 

model has symmetry of heat input about the Fusion 

Zone. Symmetry is in geometry, material 

composition, heat input. Heat input is in the Fusion 

zone, which is at node 1, Figure 5. One part is 

considered lateral to the weld path. Node 1 has the 

high melting temperature due to heat load Q, say T(1) 

=1600
o
C and the other end is  insulated or heat flux 

q(n) =0, which is equal to an insulated end. 

 

 

Figure 5.  A Linear Martensite part to be welded 

At X=0, heat is a thermal Load which causes a 

temperature change say along x, θ(x) a function of the 

distance x. For a Welding problem Heat flux, Qe, is on 

the narrow region, represented by an element, as 

Temp. node 1600 1160 760.6 410 30 

T0 25 25 25 25 25 

ΔT 1575 1135 735.6 385 5 

Temp. element 1355 935.3 560.3 195 - 

Symmetric end, middle  

Of Fusion  Zone,  Node1, 

X=0 

 

Node n, 
X=L, BC,  

T=Tamb. 
 

Symmetric end, 

middle  

Of Fusion  

Zone,  Node1, 

X=0 
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directed by the electric arc, VIη.  Figure 5, is a linear 

thermo- structural element with thermal load. Let Ae, 

be the cross sectional area, le, be the length of the 

element. The product Aele gives the volume of the 

element. We can have different Boundary Conditions, 

BCs of Structure, at end node, n: Clamped, Simply 

supported etc. There are two parts, the first part is a 

heat load. The output is a temperature distribution, t. 

The second part is a structural problem, with the 

temperature distribution as input load and with the 

structural BC which gives distortions and residual 

stresses. Doing these two problems sequentially is 

called a decoupled model, which is used in this study. 

5. RESULTS 

The 1D finite element simulation model is done in MS 

Excel. Two boundary conditions are considered.  The 

welded material and process is considered symmetric 

thus, only one of the welded parts is considered for 

modeling. Instead of giving the load and getting 

melting temperatures, at node1, the Fusion Zone, FZ a 

temperature of melting 1600
o
C is specified.  The other 

end is considered as thermally insulated or q=0, no 

heat flows out from that end.  

In Table2. The Nodal temperatures are obtained from 

the thermal analysis from reference [10]. Also the 

ambient temperature, T0, was 25 Degrees C. The net 

temperature, ΔT at each node, is the difference ΔT at 

each of the 5 nodes of the 4 elements in the system. 

The Temperature of each element is obtained by an 

average of the two nodes of the element, shown in 

Table 2. 

In Table 3, the thermal Load For each element in the 4 

element part to be welded is shown, the welding is to 

a similar part which is symmetric, hence, one of the 

parts is analyzed. Thermal Load, of element e is given 

by θe =A
e
 EαΔT. As shown in Table 3, the values are 

calculated as per Equation 13 Individual values are 

given in this Table, added values in Table 4. 

 

 

Table 3. Nodal Thermal load at each node 

Elem

ent 

ΔT/ 

Mater

ial 

1355 
935.

3 
560.3 195 E*1

0^9 
α 

AISI

4330 

3871

913 

2672

620 

1601

057 

5572

12.5 

2.4E

+11 

0.000

0127 

AISI

4130 

2789

606 

1925

549 

1153

518 

4014

56.3 

1.8E

+11 

0.000

0122 

AISI

4340 

2027

419 

1399

443 

8383

48.9 

2917

68.8 

1.4E

+11 

0.000

0114 

AISI

4140 

2870

906 

1981

667 

1187

136 

4131

56.3 

2E+

11 

0.000

0113 

 

This equation can be simplified by substituting for B 

=  −1 1 /(𝑥2 − 𝑥1) and noting that 𝜖0 = 𝛼 ∆𝑇. 

Thus Thermal load is given by Eq. (13) 

     𝜃𝑒 =
𝐸𝑒𝐴𝑒 𝑙𝑒𝛼 ∆𝑇

𝑥2−𝑥1
 
−1
1
 = 𝐸 𝐴𝑒𝛼 ∆𝑇  

−1
1
       (13) 

In Eq. 13, ∆𝑇 is the average change in temperature 

within the element. Table 4. Thermal load on the 5 

nodes of each grade 

Table 4: Nodal Thermal Load Added 

Node 

load/ 

Material θ5 θ4 θ3 θ2 θ1 

AISI4330 

-

38719

13 

119929

3 

107156

3 

104384

5 

557

212.

5 

AISI4130 

-

27896

06 

864057

.4 

772031

.3 

752061.

4 

401

456.

3 

AISI4340 

-

20274

19 

627976

.1 

561093

.8 

546580.

1 

291

768.

8 

AISI4140 

-

28709

06 

889239

.4 

794531

.3 

773979.

4 

413

156.

3 

 

The temperature load vector can be assembled along 

with the body force, and point load vectors to yield 

the global load vector F, for the structure.  
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In Table 4. The Thermal load at every node is 

calculated at the Fusion node 1 from element 1 the 

load, θ1, say positive at that node from the other part 

to be butt welded also contributes because of the 

symmetric boundary condition, only one half is taken. 

As we move to the next node 2, the thermal load on 

the node is from element 1 is negative and from 

element 2 is positive the net load is θ2. Same process 

is continued until node 5 where there is no 

neighbouring node and only one element contributes 

to the thermal load. This process is from the thermal 

load of an element given in Equation 13, which has a 

positive value on one node and negative at the other. 

Table 5: Element thermal load for each grade of material 

Element 

stress σ=αΔTE 

AISI4330 

4130.0

4 

2850.79

4 

1707.79

4 

594.3

6 

AISI4130 

2975.5

8 

2053.91

9 

1230.41

9 

428.2

2 

AISI4340 

2162.5

8 

1492.73

9 

894.238

8 

311.2

2 

AISI4140 3062.3 

2113.77

8 

1266.27

8 440.7 

 

From the nodal thermal loads as in Table 5, we can 

calculate thermal stresses using equation σ=αΔTE. 

This may be obtained by dividing Elemental Thermal 

Load of Table 4 by the area of the element.  The 

stresses in Fusion region are shown first and the last 

column gives the stress in the base material at the 

open end of the lateral surface.  Among the Materials, 

AISI 4349 has the least stress and AISI 4330 the 

maximum.  This stress variation is proportional to the 

Elastic modulus. 

Apart from thermal load there can be other loads as 

given in Equation 14, including body forces 𝒇𝑒 ,  

tractional forces  𝑻𝒆,  and point forces at nodes Pi. In 

this problem we have considered only Thermal Load. 

This assembly can be denoted as  

            𝐹 =   𝒇𝑒 + 𝑻𝒆 + 𝜽𝒆 + 𝑷𝒊𝑒             (14) 

For a Linear Element body force, f,  in the element is 

distributed to nodes  𝒇𝑒 ,  given by Eq. (15) 

         𝑓𝑒 =
𝑙𝑒𝐴𝑒𝑓

2
 
1
1
                                           (15)  

Similarly, the traction force, T,  in the element is 

distributed to nodes  𝑻𝑒 ,  given by Eq. (16). 

These temperatures are obtained from Thermal 

stiffness matrix, [10], from 𝑘𝑇 , the  

              𝑃𝑒 =
𝑃𝑖

2
 
1
1
                                            (16) 

5.1 Structural Problem: 

Once the temperature is obtained and total load vector 

F of combined thermal and structural is obtained, then 

we apply Rayleigh Ritz method of minimizing the 

total potential energy to obtain the equations of 

equilibrium of forces.   

The above equations give the total potential energy,  

∏, as Eq. (17) 

               ∏  =
1

2
qT𝐾𝑞 − qT F                          (17)                                              

Applying Rayleigh Ritz method of variation of total 

Potential energy, ∏,  with respect to each of the nodal 

displacements, q, we get the equations of equilibrium 

of forces  Eq. (18) 

    Kq = F                             (18)  

The element stiffness matrix given as 
𝐸𝑒𝐴𝑒

𝑙𝑒
 
   1 −1
−1   1

  

where Ae is the element cross sectional area, Ee, is the 

element Young’s Modulus; le is the element length le. 

Assembly of the elemental stiffness matrices using the 

common node compatibility condition gives the global 

or structural stiffness matrix K. Once the global 

stiffness matrix and force vector are obtained the 

global nodal wise displacement vector, q, is obtained 

by solving Equation 18 by applying the structural 

boundary conditions by elimination method. Table 6 

gives the stiffness matrix in  
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Table 6: Unconstrained Stiffness Matrix 

1200 -1200 0 0 0 

-1200 2400 -1200   0 

0 -1200 2400 -1200 0 

0 0 -1200 2400 -1200 

0 0 0 -1200 1200 

 

The stiffness matrix of  the structure,  K, Table 6,   

obtained by assembling the element stiffness matrix  

given as 
𝐸𝑒𝐴𝑒

𝑙𝑒
 
   1 −1
−1   1

  where Ae is the element cross 

sectional area, Ee, is the element Young’s Modulus, 

Ae  is the element cross sectional area and Element 

length le. Equation 18 is solved for displacements, q, 

by applying the structural boundary conditions by 

elimination or penalty method. 

From Displacements, relative motions give distortions 

and also we can get residual stresses due to the 

flexural load and thermal load as below. 

𝜎𝑒 = 𝐸𝑒(𝑩𝒒 − 𝛼 ∆𝑻)                 (19) 

𝜎𝑒 =
𝐸𝑒

 le
 −1 1 𝑞𝑒 − 𝐸𝑒𝛼𝑒  ∆𝑇𝑒      (20) 

In Eq. (19) or (20), is the combined structural and 

thermal stress is shown. These two are separately 

calculated. The thermal stresses are shown in Figures 

6 & 7. Structural stresses in Table 7. 

 

Figure 6: Thermal stress in AISI4330 

The thermal stresses vary from the fusion region of 

node 1 to the least in the base material at the free end 

as shown in Figure 6. for AISI4330 material. 

 

Figure 7. Thermal stresses for Martensite grades of steel 

The structural displacement obtained with the base 

material end is fixed and it is obtained   by solving 

Equation 20. An elimination approach is used to 

obtain the displacements of nodes stating at fusion end 

node 1 to fixed node 5.  

Table7: Structural stress 

Node q, mm element σ  

1 7.252 20.925 

2 6.787 58.68 

3 5.483 101.565 

4 3.226 145.17 

5 0   

 

From the nodal displacements obtained the structural 

Stress in each element can be obtained as σ= E(q2-

q1)/L as shown in Table 7 for AISI 4330 material. It 

might be observed that the structural stresses are far 

less by about 30 times than the thermal stresses. 

Hence the formation of residual stresses due to the 

thermal loading on the material is due to welding. 
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6. CONCLUSION 

A  One Dimensional Heat Transfer model was made 

using Finite Element Method to evaluate the 

distortions and stresses due to the thermal load in four 

grades of  Martensite steels using 1D FEM.  

 The Carbon Atomic % affect on the 

coefficient of linear expansion α, is evaluated 

for each of the grades. The Atomic % of C is 

inversely proportional to α.  α is least for 

AISI4140 and Highest for AISI4330, 

.0000127. 

 Thermal temperatures are proportional to the 

temperature distribution highest for AISI4330 

and lowest for AISI4340. 

 The net thermal load varies from negative 

value to positive value; for AISI4330 it 

changes from  -3871913N to 1199293N 

 Thermal stresses are maximum at Fusion 

4130N/m
2
 compared to 594.4 N/m

2
 at the 

base material end. It may be observed that at 

fusion as melting and reformation happens 

yield stress comparison reoccurs after the 

weld solidifies.  

 Thermal stresses are maximum for AISI4330 

and least for AISI4340 for a similar welding 

process; reason is that these stresses are 

proportional to the modulus of elasticity. 

 Structural stresses are far less, about 30 times, 

than the thermal stresses and hence the 

residual stresses are due to the thermal loads 

of welding. 

Welding stresses for four grades of Marten 

site steels are calculated using MS-Excel and 

can be formulated with far more generality in 

Mat lab. 
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