
An Improved Text Sentiment Classification Model Using 
TF-IDF and Next Word Negation  

 
                 Bijoyan Das                                                     Sarit Chakraborty 

                Student Member, IEEE                                 Member, IEEE, Kolkata, India 

 

 

Abstract – With the rapid growth of Text sentiment 
analysis, the demand for automatic classification of 
electronic documents has increased by leaps and bound. 
The paradigm of text classification or text mining has 
been the subject of many research works in recent time. 
In this paper we propose a technique for text sentiment 
classification using term frequency- inverse document 
frequency (TF-IDF) along with Next Word Negation 
(NWN). We have also compared the performances of 
binary bag of words model, TF-IDF model and TF-IDF 
with ‘next word negation’ (TF-IDF-NWN) model for 
text classification. Our proposed model is then applied 
on three different text mining algorithms and we found 
the Linear Support vector machine (LSVM) is the most 
appropriate to work with our proposed model. The 
achieved results show significant increase in accuracy 
compared to earlier methods.  
 

I. INTRODUCTION 
In recent past there has been a good hike in the usage of 
micro-blogging websites. These platforms have brought 
the entire world under a single domain, where everyone 
is free to share their opinions. The current decade has 
become a digital book where each post one shares 
cumulates to the sentiment of a particular topic. A lot of 
research works have been done to gather and calculate 
the sentiment of posts/tweets and also a good number of 
text-mining algorithms have been designed to analyze 
the sentiments.  

 The gradual growth of the number of users and 
the data related to them, has provided a good impetus to 
every company or organizations to mine these micro-
blogging sites to collect information about people’s 

opinion about their services or products. Due to this 
increase in user interaction, the future sales of any 
product or service depends a lot on the sentiments and 
perceptions of the previous buyers [1]. Therefore, it is 
necessary to have an efficient way to predict user 
sentiments about a product or service.  

 The solution to this problem is to classify the 
text using a strong machine-learning algorithm. 
Humans face many decisions on a daily basis and 
sentiment analysis can automate the process of coming 
to a decision based on past outcomes of that decision. 
For example, if someone has to buy tickets for a movie, 
then rather than manually going through all the long 
reviews, a sentiment classifier can predict the overall 
sentiment of the movie. Based on positive or negative 
sentiment a decision can be taken whether or not to buy 

tickets. Although this is a very trivial problem, text 
classification can be used in many different areas as 
follows:   

 Most of the consumer based companies use 
sentiment classification to automatically 
generate reports on customer feedback. It is an 
integral part of CRM. [2] 

 In medical science, text classification is used to 
analyze and categorize reports, clinical trials, 
hospital records etc. [2] 

 Text classification models are also used in law 
on the various trial data, verdicts, court 
transcripts etc. [2] 

 Text classification models can also be used for 
Spam email classification. [7] 

In this paper we have demonstrated a study on the three 
different techniques to build models for text 
classification. The first two techniques which are simple 
binary bag of words model and TF-IDF model are 
common in text classification and we have tried to 
improve the accuracy by introducing next word 
negation. The performance of these techniques on 
several different machine learning algorithms is also 
shown at the end. 

 The methods to perform text classification can 
be broadly classified into supervised and unsupervised 
learning techniques [3]. 

 The unsupervised learning techniques mainly 
use lexicon based approach where they use existing 
lexical resources like WordNet and language specific 
sentiment seed words to construct and update sentiment 
prediction [4]. Although unsupervised learning 
algorithms do not require a corpus of previously 
classified data and generates a general sentiment, they 
fail to capture context/domain specific information of 
the document. 

 The supervised learning techniques use 
machine learning on a previously classified dataset 
which is considered to be almost accurate. These pre-
classified datasets are often domain specific, therefore 
the model it generate can work only for a particular 
domain. These datasets are first converted into 
intermediate models where documents are represented 
as vectors [6], and then the intermediate representations 
are fed to the machine learning algorithm. Through our 
research we have found out that Multinomial Naïve 



  

 

Bayes, Max Entropy Random Forest and Linear 
Support Vector Machines are the popular choice of 
algorithm for text classification.  

 The documents are represented as a vector, 
where every word is converted into a number. This 
number can be binary (0 and 1) or it can be any real 
number in case of TF-IDF model. In case of binary bag 
of words model if a word appears in a document it gets 
a score 1 and if the word does not appear it gets a score 
0. So, the document vector is a list of 1s and 0s. In case 
of TF-IDF the document vector can be a list of any 
numbers which are calculated using term frequency-
inverse document frequency method. 

 In our work we have used three datasets, the 
IMDB movie review dataset [12], Amazon Product 
review dataset [5] and SMS Spam Collection dataset 
[8]. Each of these datasets have textual data pre-
categorized into classes.  

 We have tried all the three approaches on these 
datasets starting with simple binary bag of words 
approach, then moving towards TF-IDF and TF-IDF 
with word negation approaches. In all the cases we have 
started with a base feature size and increased it 
gradually to produce better results.  
  
 In the next section we have displayed a survey 
of the various sentiment analysis techniques used all 
over the world, and then move towards our own 
proposed method, experiments and results. 
 

II. PRIOR WORK 
Pang, Lee and Vaithyanathan were the first to propose 
sentiment classification using machine learning models. 
They analyzed the Naïve Bayes, Max Entropy and 
Support Vector Machine models for sentiment analysis 
on unigrams and bigrams of data [9]. In their 
experiment SVM paired with unigrams produced the 
best results. 
  
 Mullen and Collier performed sentiment 
classification using SVM by collecting data from a lot 
of sources [10]. Their work showed that using hybrid 
SVM with features based on Osgood’s theory [ref.] 
produced the best results.  This method worked well but 
failed to give importance to more contextual 
classifications and because of this domain variability 
the overall result greatly diminished. The accuracy rate 
from their proposed method was 86.6% which needs to 
be greatly improved. 
 
 Zhang constructed a computational model to 
explore reviews linguistics properties [14] to judge its 
usefulness. Support Vector Machine (SVM) algorithm 
was used for classification. Zhang concluded that the 
quality of review is good if it contains both subjective 
and objective information. 

However, the efficiency of the analysis was only 72% 
because of employing fuzzy search technique to opinion 
mining which resulted in occurrence of a major problem 
when confronted by any misspelled word.  
 
 Efthymios et al. under-went sentiment analysis 
on Twitter messages using various features for 
classifications- N-gram feature, lexicon feature, POS 
feature. Their work was mainly subject specific and 
achieved an accuracy of nearly 80% and also concluded 
that POS feature diminishes accuracy level [16].  
  
 Farooq, et.al performed negation handling 
techniques in sentiment analysis [15]. They analyzed 
the effects of both syntactic and diminishing negation 
words in their experiment. They achieved an average 
accuracy rate of 83.3%. 
 
  

III. PROPOSED WORK 
The overview of our proposed model is displayed in 
Figure 1. In the first phase we have imported the data 
from the specific domain and preprocessed that data 
removing the different punctuations. 
 

 
 In the next stage the specific model is prepared 
using the preprocessed data. We have tested the 
performance of three different text representation 
models.  
 
We have started with the simple binary bag of words of 
model where each document is represented as a fixed 
size vector of  
0s and 1s where if a word appears in a document it gets 
a 1 and if it doesn’t then it gets a 0. As an example, 

consider these four document below: 
 
D1: the movie was a very indulging cinematic 
experience. 
D2: standard of this movie is above its contemporaries. 
D3: director brought out the best of the pair. 
D4: moviegoers won’t mind seeing the pair again. 
The binary bag of words representation for these four 
documents using 8 frequently occurring words is 
shown in the table 1. 
 
  
 
 
 
 
 



  

 

 
 
  
 
 
 
 
 This model is 
represents only the existence of words but does not take 
into account the importance of specific words in a 
document, like in the first document “indulging” is a 

much more important word compared to the other 
words for measuring the polarity of the sentence. But in 
this model all the words appearing in document 1 get 
the value ‘1’ and words not appearing get a value of ‘0’. 

Thus, it is a binary model/two dimensional sentiment 
analysis model. This led us to try out some other 
enhanced bag of words models.  
 
 The second model we tested is the bag of words 
model with term frequency-inverse document 
frequency scores. Here the documents are also 
represented as vectors but instead of a vector of ‘0’s and 

‘1’s, now the document contains scores for each of the 
words. These score are calculated by multiplying TF 
and IDF for specific words. So, the score of any word 
in any document can be represented as per the following 
equation:  

 
𝑇𝐹𝐼𝐷𝐹(𝑤𝑜𝑟𝑑, 𝑑𝑜𝑐) = 𝑇𝐹(𝑤𝑜𝑟𝑑, 𝑑𝑜𝑐) ∗ 𝐼𝐷𝐹(𝑤𝑜𝑟𝑑) 
 
Therefore in this method, two matrices have to be 
calculated, one containing the inverse document 
frequency of a word in the whole corpus of documents 
and another containing the term frequency of each word 
in each document. The formulae to calculate both of 
them are as follows: 
 

𝑇𝐹(𝑤𝑜𝑟𝑑, 𝑑𝑜𝑐) =
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑜𝑓𝑤𝑜𝑟𝑑 ∈ 𝑡ℎ𝑒𝑑𝑜𝑐

𝑁𝑜. 𝑜𝑓𝑤𝑜𝑟𝑑𝑠 ∈ 𝑡ℎ𝑒𝑑𝑜𝑐
 

 

𝐼𝐷𝐹(𝑤𝑜𝑟𝑑) = 𝑙𝑜𝑔𝑒 (1 +
𝑁𝑜. 𝑜𝑓𝑑𝑜𝑐𝑠

𝑁𝑜. 𝑜𝑓𝑑𝑜𝑐𝑠𝑤𝑖𝑡ℎ𝑤𝑜𝑟𝑑
) 

 
The proposed example sentences can be converted into 
a TF-IDF model using the above method. Firstly, an 
IDF dictionary is created containing the 8 frequently 
occurring words and their IDF values. Then the TF 
dictionary is formulated containing the TF values for  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

the corresponding words in each documents. The 
TFIDF model is shown in table 2.  
 This model is different compared to the simple 
binary bag of words model as it does not represent the 
documents as vectors of ‘0’s and ‘1’s, rather assigns 

more precise values within 0 and 1 [11]. 
 
 The simple TF-IDF model works well and gives 
importance to the uncommon words rather than treating 
all the words as equal in case of binary bag of words 
model. This model however fails to perform accurately 
when it encounters any sentence containing negations. 
This negation is a very common linguistic construction 
that affects word/sentence polarity. Therefore, the 
model should be framed in such a way that if presence 
of negations is considered then better result can be 
obtained. 
  
 In the third model we have applied a negation 
strategy in which words are negated based on prior 
knowledge of polar expressions [13]. In this model 
whenever a negation word is tracked some changes are 
made to the words succeeding it. Many earlier proposed 
models [13] have also used this strategy before. 
Whenever a negation word is tracked all the words right 
after it are preceded with a ‘not_’ until a punctuation is 

received [13]. But this approach doesn’t seem realistic 
to negate all the words as it will introduced a lot of 
unwanted words in the whole corpus. 
 
 We have modified this strategy and instead of 
negating all the words till punctuation, we have negated 
the very next word following the negation word. So, if 
the sentence,  
“The bird is not flying in the sky” is received then 
instead of converting it to “The bird is not_flying not_in 

not_the not_sky”, we have converted it to “The bird is 

not_flying in the sky”. So, the job of tracking all the 
remaining punctuations after negation word is also 
excluded. In this approach meaning of the very next 
word followed by the negation is changed only and thus 
the meaning of the entire sentence gets changed. 

 
  
 
 
 
 
 

 

Docs/ Words the movie of pair was a wont mind 
D1 1 1 0 0 1 1 0 0 
D2 0 1 1 0 0 0 0 0 
D3 0 0 1 1 0 0 0 0 
D4 0 0 0 1 0 0 1 1 

Docs/ 
Words 

the movie of pair was a wont mind 

D1 0.09 0.09 0 0 0.17 0.17 0 0 
D2 0 0.09 0.09 0 0 0 0 0 
D3 0.18 0 0 0.09 0 0 0 0 
D4 0 0 0 0.09 0 0 0.17 0.17 

Table 1. Binary Bag of Words Model 

Table 2. TFIDF Model 



  

 

The algorithm for preprocessing in case of this model is 
shown in figure 1. The preprocessing phase of removing 
the punctuations, stop words is omitted in the algorithm 
and only the negation part is displayed to simplify the 
explanation. Our model therefore takes as input 
punctuation less documents. It then loops through the 
whole document and for each document performs the 
NWN technique. 
 

 
Figure 1. Proposed Algorithm for NWN 

  
 After this preprocessing, a TFIDF model is 
formed in the same way as before. The proposed 
example sentences converted into the TFIDF NWN 
model is displayed in table 3. 
 
 It can be seen in this model above the word 
“not_mind” has higher score than both “wont” and 

“mind” in the simple TFIDF model. 
 After preparing the model for both training and 
testing using the text dataset, we have fitted the model 
in three popular classification algorithms as mentioned 
before i.e. Linear SVM [17], Multinomial Naïve Bayes 
[18] and Max Entropy Random Forest [19]. These 
models produces the various classifiers that can used to 
predict sentiment of new incoming data. In the next 
section the various experiments along with the obtained 
results are shown. 
 
 

IV. EXPERIMENTAL RESULTS 
We have used three different datasets and we have 
chosen the movie review dataset as the primary one for 
the experiments. For training and testing purposes we 
have split the dataset into two parts with split ratio of 
0.8 (80% data for training and 20% data for testing). In 
the next sub sections we have conducted several 

experiments with different classification algorithms and 
also used various feature sizes.  
 

DATASET  SIZE / Nos. of Instances 
Movie Review Dataset   50,000 
Product Review Dataset 50,000 
SMS Spam Dataset   5,573 

Table 4. Data Volume 
 

System Information: 
Memory : 8 GB DDR4 RAM 
Speed  : 2.133 GHz 
Processor : Intel i5 8th Generation 
Simulation  : Python 3.6 
 
4.1 Exp. 1 (SVM with feature size from 2000-8000): 
 In the movie review dataset, we have used 
40,000 reviews to train the classifier and 10,000 reviews 
to test the model performance. We have found out that 
accuracy of the classification increases as we increase 
the feature size. As shown in the graph below there is a 
steep increase in accuracy between the range of 2000-
3000 and then it gradually slows down. 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Accuracy Rate vs Feature Size 

4.2 Exp. 2 (10-Fold Cross Validation with SVM): 
 After testing the accuracy of the model on the 
test set, we have used 10 fold cross validation technique 
to find out the average accuracy. Dataset was divided in 
10 parts. At every fold 90% of the data are used to train 
the model and 10% of the data are used to check model 
performance. Therefore, after the process we get a list 
of accuracies of the different folds. So, we can calculate 
the mean of these different accuracies to better 
understand the accuracy of the model. Fig. 3 below 
shows the accuracies obtained in each fold of the 



  

 

training set with 5000 features for 10 fold cross 
validation. 

 
Figure 3. Accuracy Rate vs Fold Segment 

4.3 Exp. 3 (Accuracy comparison of three algorithms): 
 We have used three of the most popular 
algorithms to train the classifier. The accuracy rate from 
each of the different algorithms for 10,000 features of 
data are displayed in the table 5 below. We found out 
that Linear Support Vector Machine produces the 
highest amount of accuracy among the three. 
 

Algorithm Accuracy 

Linear Support Vector Machine (LSVM) 89.91 

Multinomial Naïve Bayes (MVB) 86.34 

Max Entropy Random Forest  (MERF) 86.08 

 
Table 5. Accuracies in ML Algorithms 

 
4.4 Exp. 4 (10-Fold Cross Validation Comparison): 
 In this experiment we have tested and compared 
the 10-Fold cross validation results for each of the 
algorithm for IMDB movie review dataset as follows. 
The figure 4 below displays the 10-Fold cross validation 
results for each of the algorithms. These results are from 
testing with 5000 features. 
{ Explain how Graph- goes on }  

 
Figure 4. 10-Fold Cross Validation Comparison 

 

4.5 Exp. 5 (Performance in different Datasets): 
 Apart from using the IMDB large movie review 
dataset [12] we have also tested the model performance 
on two other datasets from two different domain. While 
measuring the accuracies of each of our model in each 

of these datasets we have taken 8000 features into 
account. The accuracies from the different datasets are 
displayed in the table 6 below.  
 

Dataset Accuracy 
IMDB Movie Review Dataset 89.91% 
SMS Spam Collection Dataset 96.83% 

Amazon Product Review Dataset 88.58% 
Table 6. Accuracies in Datasets 

 
4.6 Exp. 6 (Final Comparison of Different Models): 
 In this experiment we have compared the 
performances of the three text representation models on 
the movie review dataset. In this experiment 8000 
features are taken into consideration for maximum 
output accuracy. The accuracies for these models are 
displayed in the figure 5 below and it can be seen that 
our model (TFIDF with next word negation) 
outperforms both the basic binary bag of words 
representation and the simple TFIDF representation.  
 

 
Figure 5. Model Performance Comparison 

 
V. CONCLUSION  

In this paper, we have conducted experiments on three 
datasets, IMDB movie reviews [12], Amazon product 
reviews [5] and SMS spam detection dataset [8]. After 
performing sentiment analysis on these datasets using 
binary bag of words model and TF-IDF model we found 
out the accuracy as XX.XX and XX.XX respectively 
[Fig. 5]. But, after conducting experiment with our 
proposed model, i.e, using NWN with TF-IDF, we 
found out a good increase in the accuracy level.  The 
accuracy percentages for IMDB review datasets, 
Amazon product review and SMS spam datasets came 
as 89.91%, 88.86%, 96.83% respectively[Table 6].  
 So, from our experiments, we have concluded that 
when TF-IDF model is coupled with Next Word 
Negation then the performance of the sentiment 
classifier increases by a good percentage. 
 
 
 
 
 
 



  

 

 
 
 
 
 
 
 
 
 
In future we seek to further improve the accuracy of this 
model by working on contextual opposite of the word 
following the negation word. 
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Docs/ 
Words 

the movie of pair was a not_mind cinematic 

D1 0.09 0.09 0 0 0.17 0.17 0 0.17 
D2 0 0.09 0.09 0 0 0 0 0 
D3 0.18 0 0 0.09 0 0 0 0 
D4 0 0 0 0.10 0 0 0.19 0 

Table 3. TFIDF Model with NWN 


