
Optical Character Recognition

Yafang Xue
Department of Biomedical Engineering

University of Michigan

Abstract—This paper describes two implementations in
optical character recognition using template matching method
and feature extraction method followed by support vector
machine classification. With proper image preprocessing, the
texts are segmented into isolated characters and the correlations
between a single character and a given set of templates are
computed to find the similarities and then identify the input
character. In the second method, features extracted from the
segmented characters are used to train the SVM classifiers,
which are later, tested by a test set of handwritten digits.

Keywords—Optical character recognition; template matching;
feature extraction; support vector machine.

I. INTRODUCTION
Optical Character Recognition usually abbreviated to

OCR involves a computer system designed to translate
images of typewritten or handwritten text (usually captured
by a scanner) into machine readable and editable text [1].
OCR could be applied to many fields like vehicle license
plate recognition, information retrieval, document digitization,
and in text-to-speech applications.

Over the years, OCR has attracted a great deal of
researches and has developed various successful methods of
recognition. In this project, I implement two commonly used
methods of OCR to translate images of letters and digits into
computer readable texts.

II. PREPROCESSING

A. Data
I have obtained images of 35 fonts from Microsoft Word

for the typewritten characters and 120 samples of handwritten
digits from 10 people (captured by a scanner). The
handwritten texts contain all of the uppercase letters of the
alphabet.

B. Binarization
The scanned images of texts require certain pre-processing

steps so that they are in suitable forms for character
recognition. Since most OCR algorithms require bi-tonal
images, we must first convert color or gray images to black
and white images, this is called “binarization”.

Figure 1 shows the comparison between the original image
and the black and white version. After the original RGB
image is converted to gray scale, binarization is simply
choosing a threshold value.

Fig.1 Original input image and after binarization

C. Morphological Standardization
Initially, the scanned images typically contain varying line

thickness for the characters, even within individual letters. To
begin with, I use bwmorph(img,‘thin’,inf) to thin each line in
the image. As is shown in figure 2, the lines in the letters are
now reduced to the same thickness (1-2 pixels).

Fig.2 Thinned image

Because of the pixels reduction after thinning, now there
are some extra “little hairs” in the letters. To cut those
unwanted little hairs, I use the Matlab pruning algorithm,
bwmorph(img, ‘spur’) to prune the skeleton of each letter. As
we can see in fig 3, the letters are now a lot smoother.

Fig.3 Pruning

In some cases, there would be some smudges or unwanted
little dots in the image that may interfere the recognition. To
avoid this, I use the function “bwareaopen” to remove all the
possible small components in the image. Then, the final step is
to thicken the thinned image using Matlab’s bwmorph(img,

University of Michigan

‘dilate’,1) so that the lines in the letters do not disappear or
fall apart due to the thinning process.

Fig.4 Remove small components

Fig.5 Dilated image

D. Line Detection

 This step is necessary to improve the output page layout.
By detecting the lines of texts, we are able to determine the
order of characters and possibly their layout on the page in
later steps. This is done by a horizontal projection of the page.
First I assume there is no overlapping between lines of texts,
which is the case in most scanned printed images. If the sum
of all the pixels within a single row is 0 (no pixels in the line
breaks), this row is considered a break between the lines.
After we find the break, we could easily find and crop each
line matrix.

Fig.6 Divided lines of texts

E. Character Segmentation
Segmentation is the most important step of the pre-

processing procedure. Most recognizing methods can only
identify single characters. For instance, in feature extraction
method, segmentation allows the system to extract features
from the segmented letters and then classify them. Here I
implement two methods of character segmentation. The first
approach is to use the “regionprops” operation to cut up the
image into possible pieces of interest. First, I compute the
measurements of “Area”, “Centroid” and “BoundingBox”, if
the measurements of the region meet a certain criteria (for
instance, if the region contains certain pixels), this region
would be extracted from the original image and form a
subimage and thus each letter within the image is segmented.
Below shows the segmented letters of the “EECS 451”.

Fig.7 Segmented letters

Another approach is to use “bwlable” to check the
connectivity of the letters and lable the connected components.
The following step is to crop out each labled group of pixels
by finding the group’s minimum and maxium values of its
row and column and extracting the letter out. Both methods
can successfully segment the characters.

III. CHARACTER RECOGNITION

A. Template Matching
Template matching is a classic Optical Character

Recognition technique. It is the process of finding the location
of a sub image called a template inside an image. Once a
number of corresponding templates are found their centers are
used as corresponding points to determine the registration
parameters[2]. Template matching involves comparing
similarities between a given set of templates and an input
image, which is normalized as the same size of the templates
and then determining the certain template that produces the
highest similarity.

The matching formula I implement here to detect
similarities between the patterns of 2 signals is the cross-
correlation method we learned in class except it is
implemented in 2D instead of 1D. I use the matlab function
“corr2” to compute the correlation coefficients from each
comparison between the tested image and the template. In the
formula below, if Amn is the input image, Bmn is one of the
templates. The matching function r will return a value
indicates how well Amn matches Bmn. If one of the correlation
coefficients is the highest, the input image is identified as this
letter or digit.

Following line detection and character segmentation, the

matching process starts to read the input signal from the first
line of the texts to the bottom line, from left to right, which
guarantees the order of each letter and their output layout of
each line. Then the final step is to write the words in a text file.
For an input image in Figure 1, the system could read the
image into texts as shown in the figure below.

Fig.8 Output texts

B. Drawbacks of the Template Matching Method
In Template Matching method, the recognition is based

on measuring the similarities between the structure of the
input image and a given set of templates. Inherently, this

method is sensitive to template mismatch when the input
characters are not exactly the same font as the templates. In
the example below, errors occur when the font of the input
image (Ariel) is different from the template. The system
misreads letter I,Q and R to 0,O and P, respectively. Because
of the slightly change in the structure of the input characters,
the highest matches of certain characters are not found in
their true corresponding templates of letters or digits. The
recognition accuracy of this method is highly affected by the
font of the input characters.

Fig.9 Template Mismatch

IV. FEATURE EXTRACTION AND SVM CLASSIIFIER
Another technique I implement is digits recognition by

feature extraction and Support Vector Machines (SVM)
classification.

A. Dataset
 The training dataset consists of 1020 synthetic and
handwritten images of digits 0-9 and the test set is composed
of 120 samples of handwritten digits from 0 to 9. Before
feature extraction, the images undergo similar image
preprocessing steps as mentioned above: first the input image
is binarized to black and white, and then single characters are
segmented, and finally the image is resized to a 16 by 16
pixels scale and ready to feed in the feature extraction
procedure.

B. HOG Feature Extraction
In feature extraction method, the extracted features are

used to train the classifier and later identify the character.
Therefore it is crucial to determine which features can best
represent the characters and are optimal for classification.
First let’s consider the most straightforward case, the raw
pixels values of a single character. The input image is a 16 by
16 grayscale image with each pixel value range from 0 to 255.
The simplest feature is to use the 16h16 pixels as a feature
vector to train the classifier. However, we can predict
intuitively that the feature of raw pixels values is not the most
representative classification feature since it cannot provide
much information concerning the structure and the shape of a
character. Thus the gradient histogram feature is introduced.

I experiment with features constructed through
histograms of oriented gradients using the Matlab function
“extractHOGFeatures”. Each pixel in the image is assigned
an orientation and magnitude based on the local gradient and
histograms are constructed by aggregating the pixel responses
within cells of various sizes [3]. I construct with cell size
parameter of 2h2, 4h4, and 8h8 and visualize the result to
see which cell size contains the right amount of structure and
shape information of a character.

Fig.10 Comparison of different cell sizes
Figure 8 shows the visualization of 3 cell size parameters.

First, cell size 8h8 does not contain much shape information.
Cell size 2h2 seems to be the most representative figure
among the three cell sizes. However, since HOG works by
decomposing the input image into square cells of size
“CellSize”, computing the histogram of oriented gradient in
each cell and then renormalizing the cells by looking into
adjacent blocks [4]. A decrease in the cell size means a
significantly increase in the dimensionality of the HOG
feature vector. So for compromising purposes, I choose 4h4
as the cell size since it limits the dimensions in HOG feature
vectors and also contains enough shape information to identify
a character.

C. Support Vector Machine Classifier
 After choosing the optimal cell size, we start to train the
SVM classifiers using the extracted HOG features and raw
pixels values features. A support vector machine is a
classifier defined by a separating hyperplane. Given labeled
training data, the SVM algorithm outputs an optimal
hyperplane that categorizes other test data [5].The Matlab
function implemented for training the SVM classifiers is
“svmtrain”. Since Matlab only supports 2-class SVM
classifier, a commonly used multiclass SVM classification
method called “one–to-all” is implemented here to classify
digits 0-9. The idea of one-to-all is that we train the SVM
classifier of each digit, for classifier SVM(0), the samples
recognized as this class(0) is considered positive whereas
samples of all the other classes (1-9) are negative. By looping
through all the classifiers SVM(0-9), a digit could be
classified into one of these 10 classes.
 Then we test the SVM classifiers trained above. The
procedure is similar: first extract HOG and raw pixels values
features of the test set, and then classify the test images
according to their features by the SVM classifiers using
Matlab function svmclassify.

Fig.11 Digits Classification Process

D. Results
 The rows of the tables contain the results of each SVM
classifier for raw pixel values feature and HOG feature. An
ideal classification system should present a diagonal line of
12 (numbers of test images of each digit) in the matrix, with 0
elsewhere. As we can see in the tables below there are false
positives in both cases. As predicted, the SVM classifiers
trained by the feature of raw pixels values do not perform
satisfactorily. They only have a relatively high classification
accuracy on digit “0”, “1”, and “4”.

Table 1. Raw Pixels Values

 The SVM classifiers trained by HOG features perform
much better than the raw pixels values classifiers. Digit “1”,
“2” and “4” have the highest classification accuracy. The
most difficult digits to read are “9” and “5”, and SVM(6) has
the highest false positive rate.

Table 2. HOG features

V. DISCUSSION
 In this project, I implement two methods of optical
character recognition. The template matching method is one
of the classic methods in OCR. The theory is easy to
understand and implement. But it has an obvious drawback of
template mismatch. The recognition accuracy of this method
is highly dependent on the similarities between the input
image and the templates.
 In the second implement, the classifiers created by feature
extraction seem to have a relatively low accuracy in
recognition with the highest accuracy being 83.3% (SVM(1)
of HOG features). The main reason of this might be the
training set we select here is not big and representative
enough and there is a rather big gap in the similarities
between the training set and the test set. A larger dataset
might improve the performance of the classifiers. Although
with the relatively poor classification accuracy of the two sets
of classifiers, the advantage of the HOG features extraction
over raw pixels values is still notable.

VI. OTHER IN-CLASS DSP TOOLS
 I’m really interested in the convolution matrixes aka
kernels we learned in class so I have tried some kernels on
my image of letters.

Fig.12 Horizontal and Vertical edge detection

These two filters can perform local differencing
operations by convolving with matrixes [1,1; -1,-1] and [1,-1;
1,-1]. When there is a large jump in neighboring pixel values,
the output will be large. The identification of horizontal and
vertical edges is clearly shown through the letter E in the
above image. Another matrix I implement is [-1,-1,-1;-1,8,-
1;-1,-1,-1]. Also by detecting the large jump in neighboring
pixel values, the output gives us the outlines of the letters.

Fig.13 Edge detection

VII. CONCLUSION
 Optical Character Recognition is an interesting project to
implement and learn. There are various approaches of
identifying a character, but they always start with an image
preprocessing procedure. Proper preprocessing steps like
binarization, morphological standardization, and
segmentation are crucial for future steps of recognition.
Template matching is one of the oldest approaches in OCR
field. The simple, yet powerful theory is to compare the input
image with a stored template and identify the character
according to its highest match in similarities. The obvious
drawback of this method is that the recognition accuracy
depends highly on the similarities between the input image
and the stored templates. Another approach is by feature
extraction with the following SVM classification. The
histogram of oriented gradient feature is more representative
and valuable than the raw pixels values feature in training an
OCR system. Though the accuracy of this approach is not
ideal due to the small dataset and the disparity between the
training set and test set, we could still see the feasibility of
this method. If there are future opportunities in implementing
OCR, I would like to try more classifiers and explore more
on the machine learning aspect like neural network.

REFERENCES

[1] Kumar, R., & Singh, A. (2010). Detection and segmentation of lines
and words in Gurmukhi handwritten text.
doi:10.1109/IADCC.2010.5422927

[2] Patel, Krunal M. and Amrut N. Patel “Approaches for Multi-Font/Size
Character Recognition:A Review .” Quest International
Multidisciplinary Research Journal 1.2 (2012) : 189 – 193.

[3] Maji, Subhransu, Author Malik, Jitendra, Author. (n.d.). Fast and
Accurate Digit Classification. EECS Department, University of
California.

[4] VLFeat - Documentation > C API. (n.d.). Retrieved from
http://www.vlfeat.org/api/hog.html

[5] Introduction to Support Vector Machines — OpenCV 2.4.9.0
documentation. (n.d.). Retrieved from
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introducti
on_to_svm.html

