«Нейросети и проблема искусственного интеллекта»

1. Искусственный интеллект

1.1. История развития искусственного интеллекта

Раньше с понятием искусственного интеллекта (ИИ) связывали надежды на создание мыслящей машины, способной соперничать с человеческим мозгом и, возможно, превзойти его. Эти надежды, на долгое время захватившие воображение многих энтузиастов, так и остались несбывшимися. И хотя фантастические литературные прообразы «умных машин» создавались еще за сотни лет до наших дней, лишь с середины тридцатых годов, с момента публикации работ А. Тьюринга, в которых осуждалась реальность создания таких устройств, к проблеме ИИ стали относиться серьезно. Для того, чтобы ответить на вопрос, какую машину считать «думающей», Тьюринг Предложил использовать следующий тест: испытатель через посредника общается с невидимым для >него собеседником – человеком или машиной. «Интеллектуальной» может считаться та машина, которую испытатель в процессе такого общения не сможет отличить от человека.

Если испытатель при проверке компьютера на «интеллектуальность» будет придерживаться достаточно жестких ограничений в выборе темы и формы диалога, этот тест выдержит любой современный компьютер, оснащенный подходящим программным обеспечением. Можно было бы считать признаком интеллектуальности умение поддерживать беседу, но, как было показано, эта человеческая способность легко моделируется на компьютере.

Признаком интеллектуальности может служить способность к обучению. В 1961 г. профессор Д. Мичи, один из ведущих английских специалистов по ИИ, описал механизм, состоящий из 300 спичечных коробков, который мог «научиться» играть в «крестики и нолики». Мичи назвал это устройство MENACE (Matchbox Educable Naughts and Crosses Engine). В названии («угроза») заключается, очевидно, доля иронии, вызванной предубеждениями перед «думающими машинами».

До настоящего времени единого и признанного всеми определения ИИ не существует, и это не удивительно. Достаточно вспомнить, что универсального определения человеческого интеллекта также нет Дискуссии о том, что можно считать признаком ИИ, а что – нет, напоминают споры средневековых ученых о том, которых интересовало, сколько ангелов смогут разместиться на кончике иглы. Сейчас к ИИ принято относить ряд алгоритмов и программных систем, отличительным свойством которых является то, что они могут решать некоторые задачи так, как кто делал бы размышляющий над их решением человек.

1.2. Основные задачи искусственного интеллекта

Ранее было уже указано, что нельзя дать исчерпывающее определение ИИ. Однако можно перечислить те задачи, методы решения которых на ЭВМ принято связывать с понятием ИИ. Ниже приводятся краткие характеристики таких задач.

Автоматическое решение задач представляет собой не столько вычислительную процедуру поиска ответа, как, например, расчет квадратного корня, сколько нахождение метода решения поставленной задачи. Системы, осуществляющие построение вычислительной процедуры, называют автоматическими решателями задач.

Под распознавателями подразумевают устройства, реагирующие на внешнюю среду через различные датчики, например видеокамеры, и позволяющие решать задачи распознавания образов. В таких устройствах результаты распознавания выводятся на экран, используются для принятия решений, и т.п. Например, на современных автоматических боулинговых дорожках установлены видеокамеры, которые после броска шара распознают число и взаимное расположение оставшихся кегель, для подсчета очков. Системы распознавания речи позволяют упростить взаимодействие с компьютером, с помощью упрощенного естественного языка. Необходимо заметить, что существующие на данный момент системы могут распознавать лишь очень ограниченный набор слов-команд, требуют предварительной настройки на дикцию пользователя и не могут анализировать длительную речь (целые предложения), хотя и ведутся интенсивные исследования в этом направлении.

Задачи доказательства теорем и обучения (например, для овладения навыками в какой-либо игре) решаются с помощью автоматического совершенствования алгоритма посредством обработки пробных вариантов, т.е. как бы с помощью накопления «собственного опыта». Следует отметить, что способность к обучению представляет собой одно из основных свойств ИИ.

В настоящее время многие отождествляют понятие ИИ и экспертных систем. Это отождествление появилось во многом благодаря разработкам по созданию программного и аппаратного обеспечения в рамках японского проекта по созданию «ЭВМ пятого поколения». Существующие экспертные системы включают в себя огромные базы знаний, сформированные с помощью информации, получаемой от экспертов, т.е. специалистов в той области, для которой создавалась каждая система. Манипуляция накопленными данными осуществляется в другой части экспертных систем, содержащей правила вывода. Сейчас такие системы с успехом используются в медицине, геологии, проектировании и многих других отраслях.

Для эффективной работы мощных систем ИИ необходима высокая скорость доступа к большим базам данных, а также высокое быстродействие. ЭВМ с обычной архитектурой не удовлетворяют этим требованиям. Обычные последовательные методы решения задач уступают место методам параллельной обработки, когда несколько процессоров независимо друг от друга выполняют различные части одной программы, или выполняют одинаковые действия над различными частями большого массива данных. Для этого применяются средства от многопроцессорных компьютеров, многомашинных кластеров, до специализированных параллельных процессоров и транспьютеров. Однако в последние годы наблюдается тенденция к использованию массово производящихся, и как следствие дешевых, процессоров для объединения в большие вычислительные комплексы.

В системах искусственного интеллекта человеческие знания, необходимые для решения задач ИИ, должны быть представлены и записаны в форме, пригодной для последующей обработки на компьютере. Сложность заключается в том, что многие аспекты знаний изменяются в зависимости от условий и с трудом поддаются описанию, оставаясь при этом очевидными для человека. Знания должны храниться в системах ИИ в некоторой обобщенной для данной предметной области форме, позволяющей использовать выбранное представление в любой возможной ситуации. Для хранения знаний требуется большая область памяти, и, кроме того, значительное время уходит на их предварительную обработку. Это очевидное условие может быть упущено при разработке системы.

Многие аспекты ИИ связаны с развивающейся в настоящее время наукой – робототехникой. Идея создания «разумного» робота, способного «учиться на собственном опыте», представляет собой одну из центральных проблем ИИ. Такой робот может обладать способностью к ведению диалога на естественном языке и уметь решать задачи, требующие инициативы и некоторой оригинальности мышления. Для этого требуется некоторое предварительное обучение робота, в результате которого он мог бы в отличие от используемых сейчас промышленных роботов выполнять целенаправленные и заранее незапрограммированные действия.

В течение многих лет идеи ИИ серьезно не рассматривались. Это происходило отчасти благодаря чрезмерному оптимизму некоторых теоретиков, а также из-за появления ряда сенсационных публикаций по этому предмету, впоследствии оказавшихся во многом несостоятельными. Идея аппаратно-программных моделей человеческого мозга вызывала насмешки, а в сфере технического производства стали избегать разработок, связанных с ИИ, так как результаты их внедрения явно не соответствовали обещаниям. Эта в полном смысле слова плачевная ситуация в настоящее время изменилась к лучшему благодаря новейшим достижениям в разработке аппаратуры и программного обеспечения.

2. Нейросети

Идея нейронных сетей родилась в ходе исследований в области искусственного интеллекта, а именно в результате попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки, моделируя низкоуровневую структуру мозга. Основной областью исследований по искусственному интеллекту в 60е – 80е годы были экспертные системы. Такие системы основывались на высокоуровневом моделировании процесса мышления ( в частности, на его представлении как манипуляций с символами). Скоро стало ясно, что подобные системы, хотя и могут принести пользу в некоторых областях, не охватывают некоторые ключевые аспекты работы человеческого мозга. Согласно одной из точек зрения, причина этого состоит в том, что они не в состоянии воспроизвести структуру мозга. Чтобы создать искусственный интеллект, необходимо построить систему с похожей архитектурой.

Мозг состоит из очень большого числа (приблизительно 1010)нейронов, соединенных многочисленными связями (в среднем несколько тысяч связей на один нейрон, однако это число может сильно колебаться). Нейроны – это специальные клетки, способные распространять электро-химические сигналы. Нейрон имеет разветвленную структуру ввода информации (дендриты), ядро и разветвляющийся выход (аксон). Аксоны клетки соединяются с дендритами других клеток с помощью синапсов. При активации нейрон посылает электрохимический сигнал по своему аксону. Через синапсы этот сигнал достигает других нейронов, которые могут в свою очередь активироваться. Нейрон активируется тогда, когда суммарный уровень сигналов, пришедших в его ядро из дендритов, превысит определенный уровень (порог активации).

Интенсивность сигнала, получаемого нейроном (а, следовательно, и возможность его активации), сильно зависит от активности синапсов. Каждый синапс имеет протяженность, и специальные химические вещества передают сигнал вдоль него. Один из самых авторитетных исследователей нейросистем, Дональд Хебб, высказал постулат, что обучение заключается в первую очередь в изменениях «силы» синаптических связей. Например, в классическом опыте Павлова каждый раз перед кормлением собаки звонил колокольчик, и собака быстро научилась связывать звонок колокольчика с пищей. Синаптические связи между участками коры головного мозга, ответственными за слух, и слюнными железами усилились, и при возбуждении коры звуком колокольчика у собаки начиналось слюноотделение.

Таким образом, будучи построен из очень большого числа совсем простых элементов (каждый из которых берет взвешенную сумму входных сигналов и в случае, если суммарный вход превышает определенный уровень, передает дальше двоичный сигнал), мозг способен решать чрезвычайно сложные задачи.

Определение классического формального нейрона дается следующим образом:

Если при этом использовать ступенчатую функцию активации, то такой нейрон будет работать точно так же, как описанный выше естественный нейрон.

2.1. Применение нейронных сетей

Сеть можно применять в ситуации, когда имеется определенная информация, и требуется из нее получить некоторую неизвестную информацию. Вот некоторые важные примеры задач, в которых были успешно решены нейросетевые методы.

1.Распознавание состояния больного.
Применение классических статистических методов описано еще в работах Неймана. С помощью медицинской аппаратуры можно наблюдать за различными показателями состояния здоровья человека (например, частотой пульса, содержанием различных веществ в крови, частотой дыхания). Стадии возникновения некоторой болезни может соответствовать определенная и весьма сложная (например, нелинейная и взаимозависимая) комбинация изменений наблюдаемых переменных, которая может быть обнаружена с помощью нейросетевой модели.

2.Прогнозирование на фондовом рынке.
Колебания цен на акции и фондовых индексов – еще один пример сложного, многомерного, но, в определенных ситуациях, частично прогнозируемого явления. Многие финансовые аналитики используют нейронные сети для прогнозирования цен акций на основе многочисленных факторов, например, прошлого поведения цен этих и других акций в совокупности с различными другими экономическими показателями. В качестве альтернативных вариантов здесь применяются модели авторегрессии и технический анализ.

3.Предоставление кредита.
Как правило, у банка имеется большой набор сведений о человеке, обратившемся с просьбой о предоставлении кредита. Это могут быть его возраст, образование, род занятий и многие другие данные. Обучив нейронную сеть на уже имеющихся данных, аналитик может определить наиболее существенные характеристики, и на их основе отнести данного клиента к категории с высоким или низким кредитным риском. Заметим, сто для решения подобных задач можно параллельно использовать и классические методы, такие как дискриминантный анализ и деревья классификации.

4.Системы слежения за состоянием оборудования.
Нейронные сети оказались полезны как средство контроля состояния механизмов. Нейронная сеть может быть обучена так, чтобы отличить звук, который издает машина при нормальной работе («ложная тревога») от того, который является предвестником неполадок. После такого обучения нейронная сеть может предупреждать инженеров об угрозе поломки до того, как она случится, и тем самым исключать неожиданные и дорогостоящие простои.

5.Управление работой двигателя. Нейронные сети используются для анализа сигналов от датчиков, установленных на двигателях. С помощью нейронной сети можно управлять различными параметрами работы двигателя, чтобы достичь определенной цели, например, уменьшить потребление горючего.

3.Нейросети в искусственном интеллекте.

Работы по созданию >интеллектуальных систем ведутся в двух направлениях Сто­ронники первого направления, составляющие сегодня абсолютное большинство среди специалистов в области искусственного интеллекта, исходят из положения о том, что ис­кусственные системы не обязаны повторять в своей структуре и функционировании структуру и проистекающие в ней процессы, присущие биологическим системам. Важно лишь то, что теми или иными средствами удается добиться тех же результатов в поведе­нии, какие характерны для человека и других биологических систем. Сторонники второго направления считают, что на чисто информационном уровне этого не удастся сделать. Феномены человеческого поведения, его способность к обучению и адаптации, по мне­нию этих специалистов, есть следствие именно биологической структуры и особенностей её функционирования.

У сторонников первого – информационного направления есть реально действую­щие макеты и программы, моделирующие те или иные стороны интеллекта. Одна из наи­более ярких работ, представляющих первое направление, – это программа «Общий реша­тель задач» А. Ньюэлла, И. Шоу и Г. Саймона. Развитие информационного направления шло от задачи о рационализации рассуждений путем выяснения общих приемов быстрого выявления ложных и истинных высказываний в заданной системе знаний. Способность рассуждать и находить противоречия в различных системах взаимосвязанных ситуаций, объектов, понятий является важной стороной феномена мышления, выражением способ­ности к дедуктивному мышлению. Результативность информационного направления бес­спорна в области изучения и воспроизведения дедуктивных мыслительных проявлений. Для некоторых практических задач этого достаточно. Информационное направление – наука точная, строгая, вобравшая в себя основные результаты изысканий кибернетики и её математическую культуру. Главные проблемы информационного направления – ввести в свои модели внутреннюю активность и суметь представить индуктивные процедуры. Одна из центральных проблем, это «Проблема активных знаний, порождающих потребно­сти в деятельности системы из-за тех знаний, которые накопились в памяти системы».

У сторонников второго – биологического направления результатов пока сущест­венно меньше, чем надежд. Одним из родоначальников биологического направления в ки­бернетике является У. Мак-Каллок. В нейрофизиологии установлено, что целый ряд функций и свойств у живых организмов реализованы с помощью определенных нейрон­ных структур. На основе воспроизведения таких структур в ряде случаев получены хоро­шие модели, в особенности это касается некоторых сторон работы зрительного тракта.

Создание нейрокомпьютеров, моделирующих нейронные сети (НС), в настоящее время рассматривается как одно из наиболее перспективных направлений в решении про­блем интеллектуализации вновь создаваемых ЭВМ и информационно-аналитических систем нового поколения. В большей части исследований на эту тему НС представляется как совокупность большого числа сравнительно простых элементов, топология соединений которых зависит от типа сети. Практически все известные подходы к проектированию НС связаны в основном с выбором и анализом некоторых частных структур однородных сетей на формальных нейронах с известными свойствами (сети Хопфилда, Хемминга, Гроссберга, Кохоннена и др.) и некоторых описанных математически режимов их работы. В этом случае термин «нейронные сети» метафоричен, поскольку он отражает лишь то, что эти сети в некотором смысле подобны живым НС, но не повторяют их во всей сложности. Вследствие такой трактовки нейронные ЭВМ рассматриваются в качестве очередного этапа высокопараллельных супер-ЭВМ с оригинальной идеей распараллеливания алгоритмов решения разных классов задач. Сам термин «нейронная» ЭВМ – нейрокомпьютер, как правило, никак не связан с какими-то ни было свойствами и характеристиками мозга человека и животных. Он связан только с условным наименованием порогового логического элемента как формального нейрона с настраиваемыми или фиксированными весовыми коэффициентами, который реализует простейшую передаточную функцию нейрона-клетки.

Исследования в области создания нейроинтеллекта ведутся на различных уровнях: теоритический инструментарий, прототипы для прикладных задач, средства программного обеспечения НС, структуры аппаратных средств. Основными этапами на пути создания мозгоподобного компьютера являются выяснение принципов образования межэлементных связей и мозгоподобных системах – адаптивных сетях с большим числом элементов, создание компактного многовходового адаптивного элемента – аналога реального нейрона, исследование его функциональных особенностей, разработка и реализация программы обучения мозгоподобного устройства.

Одним из наиболее существенных путей расширения функционального диапазона НС, а также повышения их эффективности для традиционных задач является более целенаправленное использование в моделях механизмов и принципов организации мозга. Обоснованием этого служит достаточно экономная реализация функций в мозге, пока не доступная для самых совершенных супер-ЭВМ. В мозге, как и в любой сложной системе, процесс функционирования представляет собой совокупный результат работы его элементов и способов их взаимодействия. Оба эти фактора находят свое отражение в системной работе мозга.

В настоящее время становится очевидным, что успех разработки нейрокомпьютеров и интеллектуализации ЭВМ нового поколения в значительной степени определяется успехом работы над созданием нового класса базовых элементов с использованием данных о работе мозга. В первую очередь, это касается усложнения архитектуры, простанственно-временного распределения процессов в самом базовом элементе и расширении его функциональных возможностей. Поэтому актуальна необходимость в новом взгляде на перераспределение основных функций обработки информации между самими базовыми элементами нейрокомпьютера и сетевыми ресурсами в сторону увеличения логической нагрузки на базовые элементы.

Это связано с тем, что только в самое последнее время, на основе данных практической нейрофизиологии появилась возможность выделить из огромного числа процессов в мозге небольшое их количество наиболее значимых для переработки информации и выполнения сложных функций принятия конечных решений. Минимально необходимый набор структур, обеспечивающих эти процессы, значительно сузился и вследствие установленных ограничений существующих ЭВМ, которые не могут быть преодолены в настоящее время без использования свойств работы мозга. Кроме того, широко практикуемые однородные структуры искусственных НС на формальных нейронах не используют в полной мере возможностей реальных нейронов: их разнотипность, свойства распределенной и параллельной работы, многоуровневую иерархическую структурированность и соподчиненность в организации базовых структур головного мозга.

Из огромного числа данных о деятельности мозга, по-видимому, наиболее близко к решению проблемы интеллектуализации разрабатываемых ЭВМ относятся факты о механизмах и принципах элементной и сетевой организации процессов и функций в коре больших полушарий (КБП). Это определяется ее функциональной значимостью и уровнем современных данных о конкретных механизмах ее работы. Известно, что КБП является основным субстратом выполнения высших функций, определяющим уровень интеллекта личности. В настоящее время накоплен и в значительной мере систематизирован экспериментальный и теоретический материал об элементарной организации корковых функций. Все это дает основания предполагать, что данные о работе высшего отдела мозга могут иметь существенное значение и для идеологии создания нейрокомпьютерров, и для конструктивных решений отдельных их блоков. В плане общего подхода к моделированию нейрокомпьютера существенно то, что по мере накопления фактов о морфологии, цитохимии и нейрофизиологии появляется все больше путей для перехода от вероятностных к детерминированным сетям корковой деятельности, основанных на данных об архитектурных принципах организации КБП. На основе этих данных все четче прослеживается связь особенностей функций КБП с конкретной спецификой ее элементов и связей. Это позволяет уже на исходной стадии моделирования решать принципиальный вопрос о соотношении функциональных нагрузок отдельного элемента и сети в целом, определяющим саму стратегию разработки нейрокомпьютера. На практике этот выбор связан, прежде всего, с определением набора функций и свойств базового элемента и зависит как от уровня технической базы, так и от конструкторского решения их реализации.

Обоснованием пересмотра концепции базового элемента нового типа являются данные практической нейрофизиологии, выявившие необходимый минимальный набор базовых свойств реальных нейронов, обеспечивающий реализацию основных информационных функций мозга у животных и человека. В соответствии с этими данными

В задаче создания новых поколений интеллектуальных вычислительных систем и задаче развития робототехники путь интеллектуализации за счет введения квазибиологических автоматов в конечном счете окажется технически и экономически более целесообразным направлением по сравнению с введением элементов интеллекта на основе информационно-логических методов.

Список литературы

  1. Ежов А.А., Шумский С.А. Нейрокомпьютинг и его применения в экономике и бизнесе. – М.: МИФИ, 1998
  2. Маккалистер Дж, Искусственный интеллект и Пролог на микроЭВМ. – М.: Машиностроение, 1990
  3. Девятков В.В. Системы искусственного интеллекта. – М.: Издательство МГТУ им. Н.Э. Баумана, 2001
  4. Амамия М., Танака Ю., Архитектура ЭВМ и искусственный интеллект. – М.: Мир, 1993
  5. Горбань А.Н., Дунин-Барковский В.Л., Кирдин А.Н. и др., Нейроинформатика. – Новосибирск: Наука, 1998
  6. Емельянов-Ярославский Л.Б., Интеллектуальная квазибиологическая система (Индуктивный автомат) – М.: Наука, 1990.
  7. Горбань А.Н., Россиев Д.А. – Новосибирск: Наука,1996.
  8. Нейронные сети. SATISTICA Neural Networks – М.: Горячая линия– Телеком, 2000.
  9. Лачинов В.М., Поляков А.О. Информодинамика или Путь к Миру открытых систем. – СПб.: Издательство СПбГТУ, 1999.