IEEE Standard Hardware Description
Language Based on the Verilog
Hardware Description Language

Section 1

Overview

1.1 Objectives of this standard

The intent of this standard is to serve as a complete specification of the \@eﬁlagdware Description Language
(HDL). This document contains

— The formal syntax and semantics of all Verilog HDL constructs

— The formal syntax and semantics of Standard Delay Format (SDF) constructs

— Simulation system tasks and functions, such as text output display commands

— Compiler directives, such as text substitution macros and simulation time scaling

— The Programming Language Interface (PLI) binding mechanism

— The formal syntax and semantics of access routines, task/function routines, and Verilog procedural interface
routines

— Informative usage examples

— Informative delay model for SDF

— Listings of header files for PLI

1.2 Conventions used in this standard

This standard is organized into sections, each of which focuses on some specific area of the language. There are sub-
clauses within each section to discuss individual constructs and concepts. The discussion begins with an introduction
and an optional rationale for the construct or the concept, followed by syntax and semantic descriptions, followed by
some examples and notes.

The verb “shall” is used through out this standard to indicate mandatory requirements, whereas the verb “can” is used
to indicate optional features. These verbs denote different meanings to different readers of this standard:

Section 1 Copyright 2000 IEEE. All rights reserved. 1
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

a) To the developers of tools that process the Verilog HDL, the verb “shall” denotes a requirement that the
standard imposes. The resulting implementation is required to enforce the requirements and to issue an error
if the requirement is not met by the input.

b) To the Verilog HDL model developer, the verb “shall” denotes that the characteristics of the Verilog HDL are
natural consequences of the language definition. The model developer is required to adhere to the constraint
implied by the characteristic. The verb “can” denotes optional features that the model developer can exercise
at discretion. If used, however, the model developer is required to follow the requirements set forth by the
language definition.

c) To the Verilog HDL model user, the verb “shall” denotes that the characteristics of the models are natural
consequences of the language definition. The model user can depend on the characteristics of the model
implied by its Verilog HDL source text.

1.3 Syntactic description

The formal syntax of the Verilog HDL is described using Backus-Naur Form (BNF). The following conventions are
used:

a) Lowercase words, some containing embedded underscores, are used to denote syntactic categories. For
example:

module_declaration

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a required part of
the syntax. These words appear in a larger font for distinction. For example:

module =>

c) A vertical bar separates alternative items unless it appears in boldface, in which case it stands for itself. For
example:

unary_operator ::=
-~ & &N

d) Square brackets enclose optional items. For example:
input_declaration ::#nput [range] list_of variables

e) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The item may
appear zero or more times; the repetitions occur from left to right as with an equivalent left-recursive rule.
Thus, the following two rules are equivalent:

list_of param_assignments ::= param_assignmeriafam_assignment }

list_of param_assignments ::=
param_assignment
| list_of param_assignmenparam_assignment

f) If the name of any category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example,
msb constant_expression atgb_constant_expression are equivalent to constant_expression.

The main text usegtalicized font when a term is being defined, andnstant-width font for examples, file
names, and while referring to constants, espedally x, andz values.

2 Copyright 2000 IEEE. All rights reserved. Section 1
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

1.4 Contents of this standard

A synopsis of the sections and annexes is presented as a quick reference. There are 27 sections and 8 annexes. All the
sections and annexes A, B, E, F, and G are normative parts of this standard. Annexes C, D, and H are included for
informative purposes only.

1) Overview
This section discusses the conventions used in this standard and its contents.

2) Lexical conventions
This section describes how to specify and interpret the lexical tokens.

3) Datatypes
This section describes net and variable data types. This section also discusses the parameter data type for
constant values and describes drive and charge strength of the values on nets.

4) Expressions
This section describes the operators and operands that can be used in expressions.

5) Scheduling semantics
This section describes the scheduling semantics of the Verilog HDL.

6) Assignments
This section compares the two main types of assignment statements in the Verilog HDL—continuous
assignments and procedural assignments. It describes the continuous assignment statement that drives
values onto nets.

7) Gate and switch level modeling
This section describes the gate and switch level primitives and logic strength modeling.

8) User-defined primitives (UDPS)
This section describes how a primitive can be defined in the Verilog HDL and how these primitives are
included in Verilog HDL models.

9) Behavioral modeling
This section describes procedural assignments, procedural continuous assignments, and behavioral lan-
guage statements.

10) Tasks and functions
This section describes tasks and functions—procedures that can be called from more than one place in a
behavioral model. It describes how tasks can be used like subroutines and how functions can be used to
define new operators.

11) Disabling of named blocks and tasks
This section describes how to disable the execution of a task and a block of statements that has a speci-
fied name.

12) Hierarchical structures
This section describes how hierarchies are created in the Verilog HDL and how parameter values
declared in a module can be overridden. It describes how generated instantiations can be used to do con-
ditional or multiple instantiations in a design.

13) Configuring the contents of a design
This section describes how to configure the contents of a design.

14) Specify blocks
This section describes how to specify timing relationships between input and output ports of a module.

15) Timing checks
This section describes how timing checks are used in specify blocks to determine if signals obey the tim-
ing constraints.

16) Backannotation using the Standard Delay Format (SDF)
This section describes syntax and semantics of Standard Delay Format (SDF) constructs.

17) System tasks and functions
This section describes the system tasks and functions.

18) Value change dump (VCD) files
This section describes the system tasks associated with Value Change Dump (VCD) file, and the format
of the file.

Section 1 Copyright 2000 IEEE. All rights reserved. 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

19) Compiler directives
This section describes the compiler directives.
20) PLI Overview
This section previews the C language procedural interface standard (Programming Language Interface
or PLI) and interface mechanisms that are part of the Verilog HDL.
21) PLI TF and ACC interface mechanism
This section describes the interface mechanism that provides a means for users to link PLI task/function
(TF) routine and access (ACC) routine applications to Verilog software tools.
22) Using ACC routines
This section describes the ACC routines in general, including how and why to use them.
23) ACC routine definitions
This section describes the specific ACC routines, explaining their function, syntax, and usage.
24) Using TF routines
This section provides an overview of the types of operations that are done with the TF routines.
25) TF routine definitions
This section describes the specific TF routines, explaining their function, syntax, and usage.
26) Using VPI routines
This section provides an overview of the types of operations that are done with the Verilog Programming
Interface (VPI) routines.
27) VPI routine definitions
This section describes the VPI routines.
A Formal syntax definition
This normative annex describes, using BNF, the syntax of the Verilog HDL.
B) List of keywords
This normative annex lists the Verilog HDL keywords.
C) System tasks and functions
This informative annex describes system tasks and functions that are frequently used, but that are not
part of the standard.
D) Compiler directives
This informative annex describes compiler directives that are frequently used, but that are not part of the
standard.
E) acc_user.h
This normative annex provides a listing of the contents adi¢beuser.h file.
F) veriuser.h
This normative annex provides a listing of the contents ofpheuser.h file.
G) vpi_user.h
This normative annex provides a listing of the contents ofehieser.h file.
H) Bibliography
This informative annex contains bibliographic entries pertaining to this standard.

1.5 Header file listings

The header file listings included in the annexes E, F, and @dor user.h, veriuser.h , andvpi_user.h
are a normative part of this standard. All compliant software tools should use the same function declarations, constant
definitions, and structure definitions contained in these header file listings.

1.6 Examples

Several small examples in the Verilog HDL and the C programming language are shown throughout this standard.
These examples aisformative—they are intended to illustrate the usage of Verilog HDL constructs and PLI func-
tions in a simple context and do not define the full syntax.

4 Copyright 2000 IEEE. All rights reserved. Section 1
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

1.7 Prerequisites

Sections 20 through 27 and annexes E through G presuppose a working knowledge of the C programming language.

Section 1 Copyright 2000 IEEE. All rights reserved. 5
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

6 Copyright 2000 IEEE. All rights reserved. Section 1
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 2

Lexical conventions

This section describes the lexical tokens used in Verilog HDL source text and their conventions.

2.1 Lexical tokens

Verilog HDL source text files shall be a stream of lexical tokengexdcal tokenshall consist of one or more charac-
ters. The layout of tokens in a source file shall be free format—that is, spaces and newlines shall not be syntactically
significant other than being token separators, except for escaped identifiers (see 2.7.1).

The types of lexical tokens in the language are as follows:

— White space
— Comment
— Operator

— Number

— String

— ldentifier

— Keyword

2.2 White space

White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall be ignored
except when they serve to separate other lexical tokens. However, blanks and tabs shall be considered significant
characters in strings (see 2.6).

2.3 Comments

The Verilog HDL has two forms to introduce commentsoAe-line commerghall start with the two characteffs
and end with a newline. Alock commenshall start with /* and end witht/ . Block comments shall not be nested.
The one-line comment tokéh shall not have any special meaning in a block comment.

2.4 Operators

Operators are single-, double-, or triple-character sequences and are used in expressions. Section 4 discusses the use
of operators in expressions.

Unary operatorsshall appear to the left of their operar@inary operatorsshall appear between their operands. A
conditional operatoishall have two operator characters that separate three operands.

2.5 Numbers

Constant numbersan be specified as integer constants or real constants.

Section 2 Copyright 2000 IEEE. All rights reserved. 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

number ::=(From Annex A - A.8.7)
decimal_number
| octal_number
| binary_number
| hex_number
| real_number

real_number::=
unsigned_numberunsigned_number

exp ::=e|E
decimal_number ::=
unsigned_number

| [size] decimal_base unsigned_number

| [size] decimal_base x_digit{ }

| [size] decimal_base z_digit { }
binary_number ::=

[size] binary_base binary_value

octal_number ::=
[size] octal_base octal_value

hex_number ::=
[size] hex_base hex_value

sign =+ |-
size ::= non_zero_unsigned_number

unsigned_numbér.:= decimal_digit { | decimal_digit }
binary_valué := binary_digit {_| binary_digit }
octal_valué ::= octal_digit { | octal_digit }
hex_valué ::= hex_digit {_ | hex_digit }
decimal_bask::="[s|S]d |'[s|S]D
binary_basg::="[gS]b | '[s|S]B
octal_bas:="'[s/S]o |'[s|S]O
hex_bas::="[s|S]h |'[sIS]H
non_zero_decimal_digit :£|2|3]|4]5|6|7|8]9
decimal_digit :=0|1]2|3]4|5]6|7]8|9
binary_digit ::= x_digit | z_digit} | 1
octal_digit ::= x_digit | z_digit® |1]2|3]|4|5|6|7
hex_digit ::=

x_digit | z_digit|0|1]2]3|4|5]6]7|8]9

lajblc|d]|e|f|A|B|C|DI|E|F

x_digit ::=x | X
z_digit:=z|Z|?

| unsigned_number.[unsigned_number] exp [sign] unsigned_number

non_zero_unsigned_numBer= non_zero_decimal_digit { _ | decimal_digit}

IEmbedded spaces are illegal.

Syntax 2-1—Syntax for integer and real numbers

2.5.1 Integer constants

Integer constantsan be specified in decimal, hexadecimal, octal, or binary format.

There are two forms to express integer constants. The first form is a simple decimal number, which shall be specified

Copyright 2000 IEEE. All rights reserved. Section 2

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

as a sequence of digisthrough9, optionally starting with a plus or minus unary operator. The second form speci-
fies asize constantwhich shall be composed of up to three tokens—an optional size constant, a single quote followed
by a base format character, and the digits representing the value of the number.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It shall be
specified as a non-zero unsigned decimal number. For example, the size specification for two hexadecimal digits is 8,
because one hexadecimal digit requires 4 bits. Unsized unsigned constants where the high order bit is dhdmnown (

X) or tri-state Z orz) are extended to the size of the expression containing the constant.

NOTE—In Verilog 1364-1995 unsized constants where the high order bit is unknown or tri-staxepttzewas only extended to
32 bits.

The second token, a base_format, shall consist of a letter specifying the base for the number, optionally preceded by
the single charactex (or S) to indicate a signed quantity, preceded by the single quote charagteefal base spec-
ifications ared, D, h, H, 0, O, b, or B, for the bases decimal, hexadecimal, octal, and binary respectively.

The use ok andz in defining the value of a number is case insensitive.
The single quote and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The unsigned
number token shall immediately follow the base format, optionally preceded by white space. The hexadecimal digits
a tof shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treatgdesintegersvhereas the numbers
specified with the base format shall be treated as signed integersiftbgignator is included or amsigned integers
if the base format only is used. Tealesignator does not affect the bit pattern specified, only its interpretation.

A plus or minus operator preceding the size constant is a unary plus or minus operator. A plus or minus operator
between the base format and the number is an illegal syntax.

Negative numbershall be represented in 2's complement form.

An x represents thanknown valuén hexadecimal, octal, and binary constanfs z represents thhigh-impedance
value See 3.1 for a discussion of the Verilog HDL value set.YAshall set 4 bits to unknown in the hexadecimal
base, 3 bits in the octal base, and 1 bit in the binary base. Similazlghall set 4 bits, 3 bits, and 1 bit, respectively,
to the high-impedance value.

If the size of the unsigned number is smaller than the size specified for the constant, the unsigned number shall be
padded to the left with zeros. If the leftmost bit in the unsigned number xsaraz, then anx or az shall be used
to pad to the left respectively.

When used in a number, the question-m@k character is a Verilog HDL alternative for tlzecharacter. It sets 4

bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary. The question mark can
be used to enhance readability in cases where the high-impedance value is a don’t-care condition. See the discussion
of casezandcasexin 9.5.1. The question-mark character is also used in user-defined primitive state table. See 8.1.6,
Table 8-1.

The underscore character (_) shall be legal anywhere in a number except as the first character. The underscore charac-
ter is ignored. This feature can be used to break up long numbers for readability purposes.

Section 2 Copyright 2000 IEEE. All rights reserved. 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Examples:

Example 1-Ynsized constant numbers

659 /l'is a decimal number

'h 837FF /I is a hexadecimal number

‘07460 /l'is an octal number

4af /l'is illegal (hexadecimal format requires 'h)

Example 2-Sized constant numbers

4'b1001 //'is a 4-bit binary number
5D3 /l'is a 5-bit decimal number
3'b01x /l'is a 3-bit number with the least
/I significant bit unknown
12’hx /I is a 12-bit unknown number
16’hz /l'is a 16-bit high-impedance number

Example 3-Ysing sign with constant numbers
8'd-6 /I this is illegal syntax

-8'd6 /I this defines the two’s complement of 6,
/I held in 8 bits—equivalent to -(8'd 6)
4 'shf /I this denotes the 4-bit number ‘1111, to

/I be interpreted as a 2's complement humber,
/l or *-1'. This is equivalent to -4’'h 1
-4 ’sd15 /I this is equivalent to -(-4'd 1), or ‘0001’

Example 4-Automatic left padding
reg[11:0] a, b, c, d;

initial begin
a="hx; I yields xxx
b ="h 3x; // yields 03x
c="hz3; [l yields zz3

d ='h 0z3; /I yields 0z3
end
reg[84:0] e, f, g;

e ='h5; Il yields {82{1'b0},3'b101}
f ="hx; Il yields {85{1'hx}}
g = 'hz; /I yields {85{1'hz}}

Example 5-Ysing underscore character in numbers

27_195_000
16'b0011_0101_0001_ 1111
32 'h 12ab_f001

NOTES

1—Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a reg data type,
regardless of whether the reg itself is signed or not.

10 Copyright 2000 IEEE. All rights reserved. Section 2
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

2—Each of the three tokens for specifying a number may be macro substituted.

3—The number of bits that make up an unsized number (which is a simple decimal number or a number without the size specifica-
tion) shall be at least 32.

2.5.2 Real constants

Thereal constant numbershall be represented as describedB¥E Std 754-198531],1 an IEEE standard for dou-
ble-precision floating-point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific notation (for example,
39e8, which indicates 39 multiplied by 10 to the eighth power). Real numbers expressed with a decimal point shall
have at least one digit on each side of the decimal point.

Examples

1.2

0.1

2394.26331

1.2E12 (the exponent symbol can be e or E)
1.30e-2

0.1e-0

23E10

29E-2

236.123 763 e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of the deci-
mal point:

12
9.
4.E3
.2e-7

2.5.3 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by truncat-
ing it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be rounded
away from zero.

For example:

— The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.
— Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

2.6 Strings

A string is a sequence of characters enclosed by double qu¥tdsafd contained on a single line. Strings used as
operands in expressions and assignments shall be treated as unsigned integer constants represented by a sequence of
8-bit ASCII values, with one 8-bit ASCII value representing one character.

1The numbers in brackets correspond to those of the bibliography in Annex H.

Section 2 Copyright 2000 IEEE. All rights reserved. 11
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

2.6.1 String variable declaration

String variables are variables of reg type (see 3.2) with width equal to the number of characters in the string multi-
plied by 8.

Example:

To store the twelve-character strifidello world!” requires areg 8 * 12, or 96 bits wide

reg [8*12:1] stringvar;
initial begin

stringvar = "Hello world!";
end

2.6.2 String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being manipulated by the operator is the
sequence of 8-bit ASCII values.

Example:

module string_test;
reg [8*14:1] stringvar;
initial begin
stringvar = "Hello world";
$display("%s is stored as %h", stringvar,stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar,stringvar);
end
endmodule

The output is:

Hello world is stored as 00000048656¢c6¢6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

NOTE—When a variable is larger than required to hold a value being assigned, the contents on the left are padded with zeros after
the assignment. This is consistent with the padding that occurs during assignment of nonstring values. If a string is larger than the
destination string variable, the string is truncated to the left, and the leftmost characters will be lost.

2.6.3 Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character estteg@character
Table 2-1 lists these characters in the right-hand column, with the escape sequence that represents the character in the
left-hand column.

Table 2-1—Specifying special characters in string

Esz_:ape Character prodl_Jced by
string escape string
\n New line character
\t Tab character
\\ \ character
12 Copyright 2000 IEEE. All rights reserved. Section 2

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 2-1—Specifying special characters in string (continued)

Escape Character produced by
string escape string
\" " character
\ddd A character specified in 1-3 octal digits
(0<sd<7)

2.7 ldentifiers, keywords, and system names

An identifieris used to give an object a unique name so it can be referenced. An identifier is ettmgl@identifier
or anescaped identifie(see 2.7.1). Asimple identifiershall be any sequence of letters, digits, dollar sigs &nd
underscore characters)(

The first character of a simple identifier shall not be a digisat can be a letter or an underscore. Identifiers shall be
case sensitive.

Example:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3

n$657

NOTE—Implementations may set a limit on the maximum length of identifiers, but they shall at least be 1024 characters. If an
identifier exceeds the implementation-specified length limit, an error shall be reported.

2.7.1 Escaped identifiers

Escaped identifiershall start with the backslash charactey &nd end with white space (space, tab, newline). They
provide a means of including any of the printable ASCII characters in an identifier (the decimal values 33 through
126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the identifier.
Therefore, an escaped identifiepu3 is treated the same as a nonescaped iderTjifies .

Example:

\busa+index

\-clock
error-condition
\netlA\net2

\{a,b}

\a*(b+c)

2.7.2 Generated identifiers

Generated identifiers are created by generate loops (see 12.1.3.2); and are a special case of identifiers in that they can
be used in hierarchical names (see 12.4). A generated identifier is the named generate block identifier terminated with
a ([digit(s)]) string. This identifier is used as a node name in hierarchical names (see 12.4).

Section 2 Copyright 2000 IEEE. All rights reserved. 13
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

2.7.3 Keywords

Keywordsare predefined nonescaped identifiers that are used to define the language constructs. A Verilog HDL key-
word preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B gives a list of all defined keywords.
2.7.4 System tasks and functions

The $ character introduces a language construct that enables development of user-defined tasks and functions. A
name following the is interpreted as system taskr asystem function

The syntax for a system task or function is given in Syntax 2-2.

system_task_enable :(Erom Annex A - A.6.9)
system_task_identifier(fexpression { expression }] ;
system_function_call ::f~rom Annex A - A.8.2)
system_function_identifier [expression { expression }]
system_function_identifiér:= (From Annex A - A.9.3)
$[a-zA-Z0-9_$){ [a-zA-Z0-9_%$]}
system_task_identifiér.:=
$[a-zA-Z0-9_$){ [a-zA-Z0-9_$]}

The$ character in system_function_identifier or system_task_identifier shalll
not be followed by white space. A system_function_identifier or
system_task_identifier shall not be escaped.

Syntax 2-2—Syntax for system tasks and functions

The S$identifier system task or function can be defined in three places

— A standard set of $identifier system tasks and functions, as defined in Sections 17 and 19.
— Additional $identifier system tasks and functions defined using the PLI, as described in Section 20.
— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a system
task or function name. The system tasks and functions described in Section 17 are part of this standard. Additional
system tasks and functions with the $identifier construct are not part of this standard.

Example:

$display ("display a message");
$finish;

2.7.5 Compiler directives

The * character (the ASCII value 60, called open quote or accent grave) introduces a language construct used to
implement compiler directives. The compiler behavior dictated by a compiler directive shall take effect as soon as the
compiler reads the directive. The directive shall remain in effect for the rest of the compilation unless a different com-
piler directive specifies otherwise. A compiler directive in one description file can therefore control compilation
behavior in multiple description files.

The “identifier compiler directive construct can be defined in two places

14 Copyright 2000 IEEE. All rights reserved. Section 2
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

— A standard set of “identifier compiler directives defined in Section 19.
— Additional “identifier compiler directives defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a compiler
directive name. The compiler directives described in Section 19 are part of this standard. Additional compiler direc-
tives with the “identifier construct are not part of this standard.

Example:

“define wordsize 8

2.8 Attributes

With the proliferation of tools other than simulators that use Verilog HDL as their source, a mechanism is included
for specifying properties about objects, statements and groups of statements in the HDL source that may be used by
various tools, including simulators, to control the operation or behavior of the tool. These properties shall be referred
to as "attributes”. This section specifies the syntactic mechanism that shall be used for specifying attributes, without
standardizing on any particular attributes.

The syntax for specifying an attribute is shown in Syntax 2-3.

attribute_instance ::From Annex A - A.9.1)
(* attr_spec { attr_spec }; *)
attr_spec ::=
attr_name= constant_expression
| attr_name
attr_name ::=
identifier

Syntax 2-3—Syntax for attributes

An attribute_instance can appear in the Verilog description as a prefix attached to a declaration, a module
item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog function name in an
expression.

If a value is not specifically assigned to the attribute or a non-zero value is assigned, then its valuetalall b#

0 is assigned, then the attributefédse . For attributes that can be attached to both module definitions and module
instantiations, the attribute value associated with the module instantiation shall override the attribute value associated
with the module definition.

Section 2 Copyright 2000 IEEE. All rights reserved. 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

2.8.1 Examples
Example 1-Fhe following example shows how to attach attributes to a case statement:
(* full_case, parallee_case *)

case(foo)
<rest_of case_statement>

or
(* full_case=1, parallee_case=1 *)
case(foo)
<rest_of case_statement>

or

(* full_case, // no value assigned
parallee_case=1 *)
case(foo)
<rest_of _case_statement>
Example 2—Fo attach théull_case attribute, but NOT thearallel_case attribute:
(* full_case *) // parallel_case not specified
case(foo)
<rest_of _case_statement>
or
(* full_case=1, parallel_case =0 *)
case(foo)
<rest_of case_statement>
Example 3—Fo attach an attribute to a module definition:

(* optimize_power *)
module mod1 (<port_list>);

or

(* optimize_power *)
module mod1 (<port_list>);

Example 4o attach an attribute to a module instantiation:

(* optimize_power=0 *)
mod1 synthl (<port_list>);

Example 5—Fo attach an attribute to a reg declaration:

(* fsm_state *) reg [7:0] statel;
(* fsm_state=1 *) reg [3:0] state2, state3;
reg [3:0] regl; // this reg does NOT have fsm_state set
(* fsm_state=0 *) reg [3:0] reg2; // nor does this one
16 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section 2

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 6—Fo attach an attribute to an operator:

a=b+ (* mode ="cla" *) c;

This sets the value for the attribute mode to be the atking

Example 7—Fo attach an attribute to a Verilog function call:

a = add (* mode ="cla" *) (b, c);

Example 8-Fo attach an attribute to a conditional operator:

a=b?(*no_glitch*) c:d;

2.8.2 Syntax

The syntax for legal statements with attributes is shown in Syntax-Zyintax 2-11.

The syntax for module declaration attributes is given in Syntax 2-4.

module_declaration ::6/rom Annex A - A.1.3)

{ attribute_instance } module_keyword module_identifier
[module_parameter_port_list] [list_of ports]
{ module_item }

endmodule

| { attribute_instance } module_keyword module_identifier

[module_parameter_port_list] [list_of port_declarations]
{ non_port_module_item }

endmodule

Syntax 2-4—Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 2-5.

port_declaration ::€From Annex A - A.1.4)
{attribute_instance} inout_declaration
| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

Syntax 2-5—Syntax for port declaration attributes

The syntax for module item attributes is given in Syntax 2-6.

Section 2 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

17

IEEE

Std P1364-2000 (Draft 5)

module_item ::5{From Annex A - A.1.5)
module_or_generate_item
| port_declaration
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
non_port_module_item ::=
{ attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration

Syntax 2-6—Syntax for module item attributes

The syntax for function port, task, and block attributes is given in Syntax 2-7.

18

function_port_list ::5(From Annex A - A.2.6)
{attribute_instance} input_declaration {attribute_instance } input_declaration
task_item_declaration ::From Annex A - A.2.7)
block_item_declaration
| { attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
task_port_item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

block_item_declaration ::fFrom Annex A - A.2.8)
{ attribute_instance } block reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

Syntax 2-7—Syntax for function port, task, and block attributes

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Section 2

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

The syntax for port connection attributes is given in Syntax 2-8.

ordered_port_connection :(Erom Annex A - A.4.1)

{ attribute_instance } [expression]
named_port_connection ::=

{ attribute_instance }port_identifier([expression)

Syntax 2-8—Syntax for port connection attributes

The syntax for udp attributes is given in Syntax 2-9.

udp_declaration ::fFrom Annex A - A.5.1)
{ attribute_instance }primitive udp_identifier udp_port_lis) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance primitive udp_identifie udp_declaration_port_li3t,
udp_body
endprimitive
udp_output_declaration :FFrom Annex A - A.5.2)
{ attribute_instance putput port_identifier;
| { attribute_instance gutput reg port_identifier [= constant_expression]
udp_input_declaration ::=
{ attribute_instance }nput list_of_port_identifiers
udp_reg_declaration ::=
{ attribute_instance }eg variable_identifier,

Syntax 2-9—Syntax for udp attributes

The syntax for function and statement attributes is given in Syntax 2-10.

Section 2

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

19

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

function_statement_or_null :@From Annex A - A.6.2)
function_statement
| { attribute_instance }
statement ::=(From Annex A - A.6.4)
{ attribute_instance } blocking_assignment
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } nonblocking_assignment
| { attribute_instance } par_block
| { attribute_instance } procedural_continuous_assignments
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement
statement_or_null ::=
statement
| { attribute_instance }

function_statement ::=
{ attribute_instance } function_blocking_assignment
| { attribute_instance } function_case_statement
| { attribute_instance } function_conditional_statement
| { attribute_instance } function_loop_statement
| { attribute_instance } function_seq_block
| { attribute_instance } disable_statement
| { attribute_instance } system_task_enable

Syntax 2-10—Syntax for function and statement attributes

The syntax for function call and expression attributes is given in Syntax 2-11.

20 Copyright 2000 IEEE. All rights reserved. Section 2
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

constant_function_call ::éFrom Annex A - A.8.2)
function_identifier { attribute_instance }
(constant_expression, £onstant_expression)}
function_call ::=
hierarchical_function_identifier{ attribute_instance }
(expression { expression }
genvar_function_call ::=
genvar_function_identifier { attribute_instance }
(constant_expression, {constant_expression)}

conditional_expression ::@From Annex A - A.8.3)
expression® { attribute_instance } expression2xpression3

constant_expression ::=
constant_primary
| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expregsion
| constant_expressidy attribute_instance }
constant_expressiarconstant_expression
| string
expression ::=
primary
| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string
module_path_conditional_expression ::=
module_path_expressiar{ attribute_instance }
| module_path_expressiomodule_path_expression
module_path_expression ::=
module_path_primary
| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path_operator { attribute_instance }
module_path_expression
| module_path_conditional _expression

Syntax 2-11—Syntax for function call and expression attributes

Section 2 Copyright 2000 IEEE. All rights reserved. 21
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

22 Copyright 2000 IEEE. All rights reserved. Section 2
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 3

Data types

The set of Verilog HDL data types is designed to represent the data storage and transmission elements found in digital
hardware.

3.1 Value set
The Verilog HDL value set consists of four basic values:

0 - represents a logic zero, or a false condition
1 - represents a logic one, or a true condition
X - represents an unknown logic value

Z - represents a high-impedance state

The value® and1l are logical complements of one another.

When thez value is present at the input of a gate, or when it is encountered in an expression, the effect is usually the
same as ar value. Notable exceptions are the metal-oxide semiconductor (MOS) primitives, which can pass the
value.

Almost all of the data types in the Verilog HDL store all four basic values. The exceptionésémttype (see 9.7.3),
which has no storage. All bits of vectors can be independently set to one of the four basic values.

The language includestrengthinformation in addition to the basic value information for net variables. This is
described in detail in Section 7.

3.2 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups differ in the
way that they are assigned and hold values. They also represent different hardware structures.

3.2.1 Net declarations

Thenetdata types shall represent physical connections between structural entities, such as gates. A net shall not store
a value (except for the trireg net). Instead, its value shall be determined by the values of its drivers, such as a continu-
ous assignment or a gate. See Section 6 and Section 7 for definitions of these constructs. If no driver is connected to a
net, its value shall be high-impedan@ (nless the net is a trireg, in which case it shall hold the previously driven
value. It is illegal to redeclare a name already declared by a net, parameter, or variable declaration.

The syntax for net declarations is given in Syntax 3-1.

Section 3 Copyright 2000 IEEE. All rights reserved. 23
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

24

net_declaration ::f~rom Annex A - A.2.1.3)
net_type [signed]
[delay3] list_of net_identifiers
| net_type [drive_strength Fjgned]
[delay3] list_of net_decl_assignments
| net_type vectored|scalared] [signed]
range [delay3] list_of net_identifiers
| net_type [drive_strength Vectored | scalared] [signed]
range [delay3] list_of net_decl_assignments
| trireg [charge_strength Jqigned]
[delay3] list_of _net_identifiers
| trireg [drive_strength] Bigned]
[delay3] list_of net_decl_assignments
| trireg [charge_strength)\ectored | scalared] [signed]
range [delay3] list_of net_identifiers
| trireg [drive_strength] ectored| scalared] [signed]
range [delay3] list_of net_decl_assignments
net_type ::5(From Annex A - A.2.2.1)
supplyO | supplyl
|tri |triand |trior |triO |tril
| wire |wand |wor
drive_strength ::%From Annex A - A.2.2.2)
(strengthQ strengthl)
| (strengthl, strengthQ
| (strengthQ highz1)
| (strengthl, highz0)
| (highz0 , strengthl)
| (highz1 , strengthQ
strengthO ::=supplyO0 | strongO | pull0 | weak0
strengthl ::=supplyl|strongl | pulll | weakl
charge_strength ::esmall) | (medium) | (large)
delay3 ::=(From Annex A - A.2.2.3)
#delay_value # (delay_value [delay_value [delay value]}
delay? ::=
delay_value # (delay_value [delay_value)
delay_value ::=
unsigned_number
| parameter_identifier
| specparam_identifier
| mintypmax_expression
list_of net decl_assignments (From Annex A - A.2.3)
net_decl_assignment,{net_decl_assignment }
list_of net_identifiers ::=
net_identifier [dimension { dimension }]
{ , net_identifier [dimension { dimension }] }
net_decl_assignment :(Erom Annex A - A.2.4)
net_identifier= expression
dimension ::5(From Annex A -A.2.5)
[dimension_constant_expressiodimension_constant_expression
range ::=
[msb_constant_expressiotsb_constant_expression

Syntax 3-1—Syntax for net declaration

Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Section 3

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The first two forms of net declaration are described in this section. The third form, called net assignment, is described
in Section 6.

3.2.2 Variable declarations

A variableis an abstraction of a data storage element. A variable shall store a value from one assignment to the next.
An assignment statement in a procedure acts as a trigger that changes the value in the data storage element. The ini-
tialization value forreg, time, andinteger data types shall be the unknown valse,The default initialization value

for real andrealtime variable datatypes shall 180 . If a variable declaration assignment is used (see 6.2.1), the
variable shall take this value as if the assignment occurred in a blocking assignment in an initial construct. Itisillegal

to redeclare a name already declared by a net, parameter, or variable declaration.

NOTE—In previous versions of the Verilog standard, the teggisterwas used to encompass both teg, integer, time, real
andrealtime types; but that the term is no longer used as a Verilog data type.

The syntax for variable declarations is given in Syntax 3-2.

integer_declaration ::fFrom Annex A - A.2.1.3)

integer list_of variable_identifiers
real_declaration ::=

real list_of real_identifiers
realtime_declaration ::=

realtime list_of real_identifiers
reg_declaration ::=

reg [signed] [range] list_of_variable_identifiers
time_declaration ::=

time list_of variable_identifiers
real_type ::5(From Annex A - A.2.2.1)

real_identifier [= constant_expression]

| real_identifier dimension { dimension }

variable_type ::=
variable_identifier E constant_expression]

| variable_identifier dimension { dimension }
list_of real_identifiers ::¥From Annex A - A.2.3)

real_type {, real_type }
list_of variable_identifiers ::=

variable_type { variable_type }
dimension ::5(From Annex A - A.2.5)

[dimension_constant_expressiodimension_constant_expression
range ::=

[msb_constant_expressiotsb_constant_expression

Syntax 3-2—Syntax for variable declaration

If a set of nets or variables share the same characteristics, they can be declared in the same declaration statement.

Section 3 Copyright 2000 IEEE. All rights reserved. 25
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

CAUTION

Variables can be assigned negative values, but only
signed regs, integer, real, and realtime variables
shall retain the significance of the sign. The
unsigned reg and time variables shall treat the value
assigned to them as an unsigned value. Refer to
4.1.6 for a description of how signed and unsigned
variables are treated by certain Verilog operators.

3.3 Vectors

A net or reg declaration without a range specification shall be considered 1 bit wide and is knoscaées: Multi-
ple bit net and reg data types shall be declared by specifying a range, which is knawnotas a

3.3.1 Specifying vectors

The range specification gives addresses to the individual bits in a multibit net or reg. The most significant bit specified
by themsbconstant expression is the left-hand value in the range and the least significant bit specifieldlbgahe
stant expression is the right-hand value in the range.

Both msb constant expression and Isb constant expression shall be constant expressions. The msb and Isb constant
expressions can be any value—positive, negative, or zero. The Isb constant expression can be a greater, equal, or
lesser value than msb constant expression.

Vector nets and regs shall obey laws of arithmetic modulo 2 to the po@}), wheren is the number of bits in the
vector. Vector nets and regs shall be treated as unsigned quantities, unless the net or reg is declared to be signed or is
connected to a port that is declared to be signed (see 12.2.3).

Examples:
wand w; /I a scalar net of type “wand”
tri [15:0] busa,; /I a tri-state 16-bit bus
trireg (small) storeit; /I a charge storage node of strength small
reg a; /I a scalar reg
reg[3:0] v; /[a 4-bit vector reg made up of (from most to

/I least significant) v[3], v[2], v[1], and v[0]
reg signed[3:0] signed_reg; // a 4-bit vector in range -8 to 7

reg[-1:4] b; /I a 6-bit vector reg

wire wil, w2; /I declares two wires

reg [4:0] x, Y, Z; /I declares three 5-bit regs
NOTES

1—Implementations may set a limit on the maximum length of a vector, but they will at least be 65pBis(2
2—Implementations do not have to detect overflow of integer operations.

3.3.2 Vector net accessibility

Vectoredandscalaredshall be optional advisory keywords to be used in vector net or reg declaration. If these key-
words are implemented, certain operations on vectors may be restricted. If the keypstoredis used, bit and part
selects and strength specifications may not be permitted, and the PLI may consider therebjpahdedf the key-

26 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

word scalaredis used, bit and part selects of the object shall be permitted, and the PLI shall consider the object
expanded

Examples:

tril scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that may or may not be expanded

3.4 Strengths
There are two types atrengthghat can be specified in a net declaration. They are as follows:

charge strength shall only be used when declaring a net of tyjpeg

drive strength shall only be used when placing a continuous assignment on a net in the same statement that
declares the net

Gate declarations can also specify a drive strength. See Section 7 for more information on gates and for information
on strengths.

3.4.1 Charge strength

The charge strength specification shall be used only with trireg nets. A trireg net shall be used to model charge stor-
age; charge strength shall specify the relative size of the capacitance indicated by one of the following keywords:

— small
— medium
— large

The default charge strength of a trireg net shathbdium.

A trireg net can model a charge storage node whose charge decays over time. The simulation time of a charge decay
shall be specified in the delay specification for the trireg net (see 7.13.2).

3.4.2 Drive strength

The drive strength specification allows a continuous assignment to be placed on a net in the same statement that
declares that net. See Section 6 for more details. Net strength properties are described in detail in Section 7.

3.5 Implicit declarations

The syntax shown in 3.2 shall be used to declare nets and variables explicitly. In the absence of an explicit declara-
tion, an implicit net of default net type shall be assumed in the following circumstances:

— Ifanidentifier is used in a port expression declaration, then an implicit net ofaypeshall be assumed, with
the vector width of the port expression declaration. See 12.3.3 for a discussion of port expression declara-
tions.

— If an identifier is used in the terminal list of a primitive instance or a module instance, and that identifier has
not been explicitly declared previously in one of the declaration statements of the instantiating module, then
an implicit scalar net of default net type shall be assumed. See Section 19 for a discussion of control of the
type for implicitly declared nets with thdefault_nettype compiler directive.

Section 3 Copyright 2000 IEEE. All rights reserved. 27
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

3.6 Net initialization

The default initialization value for a net shall be the vatuéNets with drivers shall assume the output value of their
drivers. The trireg net is an exception. The trireg net shall default to the xaléh the strength specified in the net
declaration gmall, medium, orlarge).

3.7 Net types

There are several distinct types of nets, as shown in Table 3-1.

Table 3-1—Net types

wire tri tri0 supplyO
wand triand tril supplyl
wor trior trireg

3.7.1 Wire and tri nets

Thewire andtri nets connect elements. The net types wire and tri shall be identical in their syntax and functions; two
names are provided so that the name of a net can indicate the purpose of the net in that model. A wire net can be used
for nets that are driven by a single gate or continuous assignment. The tri net type can be used where multiple drivers
drive a net.

Logical conflicts from multiple sources of the same strength on a wire or a tri net result in x (unknown) values.

Table 3-2 is a truth table for resolving multiple drivers on wire and tri nets. Note that it assumes equal strengths for
both drivers. Please refer to 7.9 for a discussion of logic strength modeling.

Table 3-2—Truth table for wire and tri nets

wtirrie/ Of1] x| z
0 O|x|[x]0O
1 X [1 [x|1
X X | x | x |x
z 0|1 (x| z

3.7.2 Wired nets

Wired nets are of typwor, wand trior, andtriand, and are used to model wired logic configurations. Wired nets use
different truth tables to resolve the conflicts that result when multiple drivers drive the same net. The wor and trior
nets shall createired or configurations, such that when any of the drivers,ithe resulting value of the netls The

wand and triand nets shall creatieed andconfigurations, such that if any driveiQisthe value of the net &.

The net types wor and trior shall be identical in their syntax and functionality. The net types wand and triand shall be
identical in their syntax and functionality. Table 3-3 and Table 3-4 give the truth tables for wired nets. Note that they
assume equal strengths for both drivers. See 7.9 for a discussion of logic strength modeling.

28 Copyright 2000 IEEE. All rights reserved. Section 3

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 3-3—Truth table for wand and triand nets

wand/ ol 1

triand o
0 o|lo|o]|oO
1 0|1 (x]1
X 0| x [x|Xx
z 0|1 (x| z

Table 3-4—Truth table for wor and trior nets

n/i(())rr/ Of1]| x| z
0 0|1 (x]O0
1 10111
X X [1 | x| X
z 0|1 (x| z

3.7.3 Trireg net
Thetrireg net stores a value and is used to model charge storage nodes. A trireg net can be in one of two states:

driven state When at least one driver of a trireg net has a valug,df, or x, the resolved value propagates into
the trireg net and is the driven value of the trireg net.

capacitive state When all the drivers of a trireg net are at the high-impedance valyehe trireg net retains its last
driven value; the high-impedance value does not propagate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state camak medium, or large, depending on the
size specified in the declaration of the trireg net. The strength of a trireg net in the driven statesoppligestrong,

pull, orweak, depending on the strength of the driver.

Examples:

Figure 3-1 shows a schematic that includes a trireg net whose sieéiism, its driver, and the simulation results.

Section 3 Copyright 2000 IEEE. All rights reserved. 29
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

wire a wire b

| |
N\ wire ¢
N) nmos1 nmos2

— — T trireg d
simulation time wire a wire b wire ¢ trireg d
0 1 1 strongl strong1l
10 0 1 Hiz medium 1

Figure 3-1—Simulation values of a trireg and its driver

a) Atsimulation time O, wirea and wireb have a value of. A value of1 with astrong strength propagates
from theand gate through themos switches connected to each other by wiiato trireg ned.

b) Atsimulation time 10, wir@ changes value t0, disconnecting wire from theand gate. When wire is no
longer connected to thend gate, the value of wire changes tdiZ . The value of wireb remainsl so wire
¢ remains connected to trireg retthrough thenmos?2 switch. TheHiZ value does not propagate from wire
c into trireg netd. Instead, trireg nedl enters the capacitive state, storing its last driven valuk. ¢f stores
thel with amedium strength.

3.7.3.1 Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a capacitive network whose trireg nets are in
the capacitive state, logic and strength values can propagate between trireg nets.

Examples:

Figure 3-2 shows a capacitive network in which the logic value of some trireg nets change the logic value of other
trireg nets of equal or smaller size.

30 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE

Std P1364-2000 (Draft 5)

wire a
wire b
wire ¢ _|—_| —
nmos_1 [tranifi_1]
” T ~— T
e d — 1 trirea_la triregT_sm
wire l_l l_l
nmos_2 [tanifi 2]
- T ~— T
triregimel trireg;_meZ
Simtiur:]a;ion wirea wireb wirec wired trireg_la trireg_sm trireg_mel trireg_me2
0 1 1 1 1 1 1 1 1
10 1 @ 1 1 1 1 1 1
20 1 0 [0 1 [0] 1 1 1
30 1 0 0 @ 0 1 @ 1
40 @ 0 0 0 0 1 0 1
50 0 0 0 0 @

Figure 3-2—Simulation results of a capacitive network

In Figure 3-2, the capacitive strengthtofeg_la net islarge, trireg_mel

andtrireg_sm

andtrireg_me2 aremedium,

is small. Simulation reports the following sequence of events:

a) Atsimulation time 0, wir@ and wireb have a value of. The wirec drives a value ol into trireg_la
andtrireg_sm

; wired drives a value of 1 intsireg_ mel andtrireg_me2

b) At simulation time 10, the value of wire changes td, disconnectingrireg_ sm andtrireg_me2
from their drivers. These trireg nets enter the capacitive state and store thk, vakielast driven value.

c) Atsimulation time 20, wire drives a value d® intotrireg_la

d) At simulation time 30, wire drives a value dd into trireg_me1

e) At simulation time 40, the value of wire changes td, disconnectingrireg_la

andtrireg_mel

from their drivers. These trireg nets enter the capacitive state and store the. value

Section 3

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

31

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

f) At simulation time 50, the value of wikechanges td.

This change of value in wirb connectdrireg_sm totrireg_la ; these trireg nets have different sizes
and stored different values. This connection causes the smaller trireg net to store the value of the larger trireg
net, andrireg_sm now stores a value Of.

This change of value in wire also connect¢rireg_mel to trireg_me2 ; these trireg nets have the
same size and stored different values. The connection causedribeth mel andtrireg_me2 to
change value tg.

In a capacitive network, charge strengths propagate from a larger trireg net to a smaller trireg net. Figure 3-3 shows a
capacitive network and its simulation results.

wire b wire ¢

| |

wiea [1

tranifl@l e tranile_z B
T trireg_la T trireg_sm
sin][:JrIna;ion wire a wire b wire c trireg_la trireg_sm

0 strong 1 1 1 strongl strong 1
10 strong 1 0 1 largel largel
20 strong 1 0 0 large 1 small 1
30 strong 1 0 1 large 1 large 1
40 strong 1 0 0 large 1 small 1

Figure 3-3—Simulation results of charge sharing

In Figure 3-3, the capacitive strengthtofeg_la is large and the capacitive strength ofreg_sm is small.
Simulation reports the following results:

a) At simulation time 0, the values of wiie wire b, and wirec arel, and wirea drives astrong 1 into
trireg_la andtrireg_sm

b) At simulation time 10, the value of wife changes t®, disconnectingrireg_la andtrireg_sm from
wire a. Thetrireg_la andtrireg_sm nets enter the capacitive state. Both trireg nets shardahge
charge otrireg_la because they remain connected throghifl_2

c) Atsimulation time 20, the value of wite changes t®, disconnectingrireg_sm fromtrireg_la . The
trireg_sm no longer shardarge charge otrireg_la and now stores small charge.

32 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

d) Atsimulation time 30, the value of wite@ changes td.,, connecting the two trireg nets. These trireg nets now
share the same charge.

e) At simulation time 40, the value of wire changes again t®, disconnectingtrireg_sm from

trireg_la . Once againtrireg_sm no longer shares tHarge charge oftrireg_la and now stores a
small charge.

3.7.3.2 Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time. The simulation time of charge decay is
specified in the delay specification of the trireg net. See 7.14.2 for charge decay explanation.

3.7.4 Tri0 and tril nets

ThetriO andtril nets model nets with resistiyailldownand resistivgoullup devices on them. When no driver drives
a tri0 net, its value i®. When no driver drives a tril net, its valuelisThe strength of this value full. See Section
7 for a description of strength modeling.

A tri0 net is equivalent to a wire net with a continuous 0 value of pull strength driving it. A tril net is equivalent to a
wire net with a continuous 1 value of pull strength driving it.

A truth table fortri0 is shown in Table 3-5. A truth table foil is shown in Table 3-6.

Table 3-5—Truth table for tri0 net

trio 0|1 |x]|z
0 Ol x|[x]0
1 x [1 |[x |1
X X | x | x |x
z 0|1 (x]O

Table 3-6—Truth table for tril net

tril 0|1 (x]z
0 0O|x|[x]0O
1 x |1 |[x |1
X X [x | x |Xx
z 01 |x]|1

3.7.5 Supply nets

The supplyOand supplylnets may be used to model the power supplies in a circuit. These nets shadiupgple
strengths.

Section 3 Copyright 2000 IEEE. All rights reserved. 33
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

3.8 regs

Assignments to a reg are made by procedural assignments (see 6.2 and 9.2). Since the reg holds a value between
assignments, it can be used to model hardware registers. Edge-sensitive (i.e., flip-flops) and level sensitive (i.e., RS
and transparent latches) storage elements can be modeled. A reg needs not represent a hardware storage element since
it can also be used to represent combinatorial logic.

3.9 Integers, reals, times, and realtimes

In addition to modeling hardware, there are other uses for variables in an HDL model. Although reg variables can be
used for general purposes such as counting the number of times a particular net changes \Jategetiamdtime
variable data types are provided for convenience and to make the description more self-documenting.

The syntax for declaringteger, time, real, andrealtime variables is given in Syntax 3-3 (from Syntax 3-2).

integer_declaration ::fFrom Annex A - A.2.1.3)

integer list_of_variable_identifiers
real_declaration ::=

real list_of_real_identifiers
realtime_declaration ::=

realtime list_of_real_identifiers
time_declaration ::=

time list_of_variable_identifiers
real_type ::5(From Annex A - A.2.2.1)

real_identifier [= constant_expression]

| real_identifier dimension { dimension }

variable_type ::=
variable_identifier E constant_expression]

| variable_identifier dimension { dimension }
list_of real_identifiers ::¥From Annex A- A.2.3)

real_type {, real_type }
list_of variable_identifiers ::=

variable_type { variable_type }
dimension ::5(From Annex A - A.2.5)

[dimension_constant_expressiodimension_constant_expression

Syntax 3-3—Syntax for integer, time, real, and realtime declarations

The syntax for list of reg variables is defined in 3.2.2.

An integer is a general-purpose variable used for manipulating quantities that are not regarded as hardware registers.
A time variable is used for storing and manipulating simulation time quantities in situations where timing checks are
required and for diagnostics and debugging purposes. This data type is typically used in conjunction $tithehe

system function (see Section 17).

The integer and time variables shall be assigned values in the same manner as reg. Procedural assignments shall be
used to trigger their value changes.

The time variables shall behave the same as a reg of at least 64 bits. They shall be unsigned quantities, and unsigned
arithmetic shall be performed on them. In contrast, integer variables shall be treated as signed quantities. Arithmetic

34 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

operations performed on integer variables shall produce 2's complement results.

The Verilog HDL supportseal number constants andal variable data types in addition to integer and time variable
data types. Except for the following restrictions, variables declared as real can be used in the same places that integer
and time variables are used:

— Notall Verilog HDL operators can be used with real number values. See Table 4-9 for lists of valid and invalid
operators for real numbers and real variables.

— Real variables shall not use range in the declaration
— Real variables shall default to an initial value of zero.

Therealtimedeclarations shall be treated synonymously v declarations and can be used interchangeably.

Examples:
integer a; Il integer value
time last_chng; /I time value
real float ; /I a variable to store real value
realtime rtime ; /I a variable to store time as a real value

NOTE—Implementations may limit the maximum size ofteger variable, but they shall at least be 32 bits.
3.9.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real variables is a single-bit scalar value. Not
all Verilog HDL operators can be used with expressions involving real numbers and real variables. Table 4-9 lists the
valid operators for use with real numbers and real variables. Real number constants and real variables are also prohib-
ited in the following cases:

— Edge descriptorgppsedge , negedge) applied to real variables

— Bit-select or part-select references of variables declarezhhs

— Real number index expressions of bit-select or part-select references of vectors
— Declaration of memories (arrays of real variables)

3.9.2 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by truncat-
ing it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be rounded
away from zero.

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that aran the net
or the variable shall be treated as zero upon conversion.

See Section 17 for a discussion of system tasks that perform explicit conversion.

3.10 Arrays

An array declaration for a net or a variable declares an element type which is either scalar or vector (see 3.3). For
example:

Section 3 Copyright 2000 IEEE. All rights reserved. 35
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
Declaration Element Type
reg x[11:0]; scalar reg
wire [0:7] y[5:0]; seven-bit-wide vector wire indexed from 0 to 7
reg [31:0] x [127:0]; thirty-two-bit-wide reg

NOTE—Array size does not affect the element size.

Arrays can be used to group elements of the declared element type into multi-dimensional objects. Arrays shall be
declared by specifying the element address range(s) after the declared identifier. Each dimension shall be represented
by an address range. See 3.2.1 and 3.2.2 for net and variable declarations. The expression(s) that specify the indices
of the array shall be constant expressions. The value of the constant expression can be a positive integer, a negative
integer, or zero.

One declaration statement can be used for declaring both arrays and elements of the declared data type. This ability
makes it convenient to declare both arrays and elements that match the element vector width in the same declaration
statement.

An element can be assigned a value in a single assignment, but complete or partial array dimensions cannot. Nor can
complete or partial array dimensions be used to provide a value to an expression. To assign a value to an element of
an array, an index for every dimension shall be specified. The index can be an expression. This option provides a
mechanism to reference different array elements depending on the value of other variables and nets in the circuit. For
example, a program counter reg can be used to index into a RAM.

3.10.1 Net arrays

Arrays of nets can be used to connect ports of generated instances. Each element of the array can be used in the same
fashion as a scalar or vector net.

3.10.2 reg and variable arrays
Arrays for all variables typesdg, integer, time, real, realtime) shall be possible.
3.10.3 Memories

A one dimensional array with elements of type reg is also called a memory. These memories can be used to model
read-only memories (ROMs), random access memories (RAMs), and reg files. Each reg in the array is known as an
elemenbrword and is addressed by a single array index.

An n-bit reg can be assigned a value in a single assignment, but a complete memory cannot. To assign a value to a
memory word, an index shall be specified. The index can be an expression. This option provides a mechanism to ref-

erence different memory words, depending on the value of other variables and nets in the circuit. For example, a pro-

gram counter reg could be used to index into a RAM.

36 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

3.10.3.1 Array examples

3.10.3.1.1 Array declarations

reg [7:0] mema[0:255]; // declares a memory mema of 256 8-bit
/I registers. The indices are 0 to 255

reg arrayb[7:0][0:255]; // declare a two dimensional array of
/I one bit registers

wire w_array[7:0][5:0]; // declare array of wires

integer inta[1:64]; /l an array of 64 integer values

time chng_hist[1:1000] /[an array of 1000 time values

integert_index;

3.10.3.1.2 Assignment to array elements

The assignment statements in this section assume the presence of the declarations in 3.10.3.1.1.

rega = 0; // Legal syntax
mema = 0; // lllegal syntax- Attempt to write to entire array
arrayb[1] = 0; // lllegal Syntax - Attempt to write to elements

/1 [1][0]..[1][255]
arrayb[1][12:31] = 0; // lllegal Syntax - Attempt to write to

/I elements [1][12]..[1][31]
mema[1] = 0; //Assigns 0 to the second element of mema
arrayb[1][0] = 0; // Assigns 0 to the bit referenced by indices
/1 11][0]
inta[4] = 33559; // Assign decimal number to integer in array
chng_hist[t_index] = $time; // Assign current simulation time to
/I element addressed by integer index

NOTE—Implementations may limit the maximum size of an array, but they shall at least be 167?"0216 (2
3.10.3.1.3 Memory differences
A memory ofn 1-bit regs is different from am-bit vector reg

reg [1:n] rega; // An n-bit register is not the same
reg mema [1:n]; // as a memory of n 1-bit registers

3.11 Parameters

Verilog HDL parameters do not belong to either the variable or the net group. Parameters are not variables, they are
constants. There are two types of parameters: module parameters and specify parameters. It is illegal to redeclare a
name already declared by a net, parameter or variable declaration.

Both types of parameters accept a range specification. By degbfamtmetersand specparamshall be as wide as

Section 3 Copyright 2000 IEEE. All rights reserved. 37
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

necessary to contain the value of the constant, except when a range specification is present.
3.11.1 Module parameters

The syntax for parameter declarations is given in Syntax 3-4.

local_parameter_declaration :From Annex A - A.2.2.1)
localparam [signed] [range] list_of_param_assignments
| localparam integer list_of_param_assignments
| localparam real list_of _param_assignments
| localparam realtime list_of param_assignments
| localparam time list_of_param_assignments
parameter_declaration ::=
parameter [signed] [range] list_of_param_assignments
| parameter integer list_of_param_assignments
| parameter real list_of param_assignments
| parameter realtime list_of_param_assignments
| parameter time list_of param_assignments

list_of param_assignments {Erom Annex A - A.2.3)
param_assignment,{param_assignment }

param_assignment :(EFrom Annex A - A.2.4)
parameter_identifier constant_expression

range ::=(From Annex A - A.2.5)
[msb_constant_expressiotsb_constant_expression

Syntax 3-4—Syntax for parameter declaration

The list_of param_assignmenghall be a comma-separated list of assignments, where the right hand side of the
assignment shall be a constant expression; that is, an expression containing only constant numbers and previously
defined parameters. (See Section 4.)

Thelist_of param_assignmentsn appear in a module as a sehafdule_itemsr in the module declaration in the
module_parameter_port_lis(See 12.1). If anyparam_assignment@ppear in anodule_parameter_port_listhen

any param_assignmenthat appear in the module become local parameters and shall not be overridden by any
method.

Parameters represent constants; hence, it is illegal to modify their value at runtime. However, module parameters can
be modified at compilation time to have values that are different from those specified in the declaration assignment.
This allows customization of module instances. A parameter can be modified witlefijreram statement or in the

module instance statement. Typical uses of parameters are to specify delays and width of variables. See Section 12 for
details on parameter value assignment.

A module parameter can haveypespecification and aangespecification. The type and range of module parame-
ters shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the final
value assigned to the parameter, after any value overrides have been applied.

— A parameter with a range specification, but with no type specification, shall be the range of the parameter dec-
laration and shall be unsigned. The sign and range shall not be affected by value overrides.

— A parameter with a type specification, but with no range specification, shall be of the type specified. A signed
parameter shall default to the range of the final value assigned to the parameter, after any value overrides have
been applied.

38 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

— A parameter with a signed type specification and with a range specification shall be signed, and shall be the
range of its declaration. The sign and range shall not be affected by value overrides.

— A parameter with no range specification, and with either a signed type specification or no type specification,
shall have an implied range with &b equal to0 and anmsbequal to one less than the size of the final value
assigned to the parameter.

— A parameter with no range specification, and with either a signed type specification or no type specification,
and for which the final value assigned to it is unsized, shall have an implied range vdhequal toO and
anmsbequal to an implementation-dependent value of at least 31.

Examples:
parameter msb = 7; /I defines msb as a constant value 7
parameter e =25,f=09; /I defines two constant numbers
parameter r=5.7; /[declares r as a real parameter

parameter byte size =8,
byte_mask = byte_size - 1;
parameter average_delay = (r +f)/ 2;

parameter signed[3:0] mux_selector = 0;

parameter real rl = 3.5e17;

parameter p1 = 13’'h7e;

parameter [31:0] dec_const = 1'b1; // value converted to 32 bits
parameter newconst = 3’h4; /I implied range of [2:0]
parameter newconst = 4; /I implied range of at least [31:0]

parameter signed[3:0] mux_selector = 0;
parameter real rl = 3.5e17;
parameter p1 = 13’'h7e;
parameter [31:0] dec_const = 1'b1; // valued converted to 32 bits
See 3.9.2 for conversion between parameter types.
3.11.2 Local parameters - localparam
Verilog HDL localparam - local parameter(s) are identical to parameters except that they can not directly be modi-
fied with thedefparam statement or by the ordered or named parameter value assignment. Local parameters can be
assigned to a constant expression containing a parameter which can be modified défpttam statement or by
the ordered or named parameter value assignment. See 12.1.3 for details.
The syntax for local parameter declarations is given in Syntax 3-4.

3.11.3 Specify parameters

The syntax for declaring specify parameters is shown in Syntax 3-5.

Section 3 Copyright 2000 IEEE. All rights reserved. 39
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

specparam_declaration {Erom Annex A - A.2.2.1)
specparam| range] list_of _specparam_assignments
list_of specparam_assignments(From Annex A- A.2.3)
specparam_assignment §pecparam_assignment }
specparam_assignment (From Annex A - A.2.4)
specparam_identifier constant_mintypmax_expression
| pulse_control_specparam
pulse_control_specparam ::=
PATHPULSES = (reject_limit_value [error_limit_value) ;
| PATHPULSES$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value [error_limit_value) ;
error_limit_value ::=
limit_value
reject_limit_value ::=
limit_value
limit_value ::=
constant_mintypmax_expression
range ::=(From Annex A - A.2.5)
[msb_constant_expressiotsb_constant_expression

Syntax 3-5—Syntax of the specparam declaration

The keywordspecparamdeclares a special type of parameter which is intended only for providing timing and delay
values, but can appear in any expression that is not assigned to a parameter and is not part of the range specification of
a declaration. Originally permitted only in specify blocks (see Sectionviit),this revisionspecify parameters (also
calledspecparamysare now permitted both within the specify block and in the main module body.

A specify parameter declared outside a specify block shall be declared before it is referenced. The value assigned to a
specify parameter can be any constant expression. A specify parameter can be used as part of a constant expression
for a subsequent specify parameter declaration. Unlike a module parameter, a specify parameter cannot be modified
from within the language, but it may be modified through SDF annotation (see Section 16).

The specify parameters and module parameters shall not be interchangeable. In addition, module parameters shall not
be assigned a constant expression that includes any specify parameters. Table 3-7 summarizes the differences
between the two types of parameter declarations.

Table 3-7—Differences between specparams and parameters

Specparams Parameters
(specify parameter) (module parameter)
Use keywordspecparam Use keyworcparameter

Shall be declarethsidea module or specify block Shall be declaoedsidespecify blocks

May only be used inside a module or specify block May not be used inside specify blocks
May be assigned specparams and parameters May not be assigned specparams
Use SDF annotation to override values dséparam or instance declaration parany-

eter value passing to override values

A specify parameter can have a range specification. The range of specify parameters shall be in accordance with the
following rules:

40 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

— A specparam declaration with no range specification shall default to the range of the final value assigned to
the parameter, after any value overrides have been applied.

— A specparam with a range specification shall be the range of the parameter declaration. The range shall not be
affected by value overrides.

Examples:

specify
specparamtRise_clk_q = 150, tFall_clk_q = 200;
specparamtRise_control = 40, tFall_control = 50;
endspecify

The lines between the keywordpecifyandendspecifydeclare four specify parameters. The first line declares spec-
ify parameters calletRise_clk_q andtFall_clk_q with values150 and200 respectively; the second line
declaredRise_control andtFall_control specify parameters with valué® and50 respectively.

Examples:

module RAM16GEN (DOUT, DIN, ADR, WE, CE)
specparamdhold = 1.0;
specparamddly = 1.0;
parameter width = 1;
parameter regsize = dhold + 1.0; // lllegal - can’t assign
/I specparams to parameters
endmodule

3.12 Name spaces

In Verilog HDL, there are six name spaces; two are global and four are local. The global name spdeéisitioans

andtext macros Thedefinitions name spaamifies all themodule (see 12.1)macromodule (see 12.1), angrimi-

tive (see 8.1) definitions. Once a name is used to define a module, macromodule, or primitive, the name shall not be
used again to declare another module, macromodule, or primitive.

Thetext macro name spadgglobal. Since text macro names are introduced and used with a leathiagacter, they

remain unambiguous with any other name space (see 19.3). The text macro names are defined in the linear order of
appearance in the set of input files that make up the description of the design unit. Subsequent definitions of the same
name override the previous definitions for the balance of the input files.

There are four local name spacétock module port, andspecify blockOnce a name is defined within one of the
four name spaces, it shall not be defined again with the same type or another type.

Theblock name spacis introduced by the named block (see 9.8), function (see 10.3), and task (see 10.2) constructs.
It unifies the definitions of the named blocks, functions, tasks, parameters, named events and the variable type of dec-
laration (see 3.2.2). The variable type of declaration includegghateger, time, real, andrealtime declarations.

The module nhame spads introduced by thenodule, macromodule, andprimitive constructs. It unifies the defini-

tion of functions, tasks, named blocks, instance names, parameters, named events, net type of declaration, and vari-
able type of declaration. The net type of declaration inclusies, wor, wand, tri, trior , triand, triO, tril, trireg,

supply0, andsupplyl (see 3.7).

The port name spaces introduced by thenodule, macromodule, primitive , function, andtask constructs. It pro-

vides a means of structurally defining connections between two objects that are in two different name spaces. The
connection can be unidirectional (eitheput or output) or bidirectional {(nout). The port name space overlaps the

module and the block name spaces. Essentially, the port name space specifies the type of connection between names
in different name spaces. The port type of declarations incioplet, output, andinout (see 12.3). A port name
introduced in the port name space may be reintroduced in the module name space by declaring a variable or a wire

Section 3 Copyright 2000 IEEE. All rights reserved. 41
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

with the same name as the port name.

The specify block name spad®introduced by thepecify construct (see 14.2). 8pecparamname can be defined
and used only in the specify block name space. Any other type of name cannot be defined in this name space.

42 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 4

Expressions

This section describes the operators and operands available in the Verilog HDL and how to use them to form expres-
sions.

An expressioris a construct that combinegperandswith operatorsto produce a result that is a function of the values

of the operands and the semantic meaning of the operator. Any legal operand, such as a net bit-select, without any
operator is considered an expression. Wherever a value is needed in a Verilog HDL statement, an expression can be
used.

Some statement constructs require an expression tacbastant expressioffhe operands of a constant expression
consist of constant numbers, parameter names, constant bit-selects of parameters, constant part-selects of parameters,
andconstant function callésee 10.3.5) only, but they can use any of the operators defined in Table 4-1.

A scalar expressiois an expression that evaluates to a scalar (single-bit) result. If the expression evaluates to a vector
(multibit) result, then the least significant bit of the result is used as the scalar result.

The data typeseg, integer, time, real, andrealtime are all variable data types. Descriptions pertaining to variable
usage apply to all of these data types.

An operandcan be one of the following:

— Constant number (including real)

— Net

— \Variables of type reg, integer, time, real, and realtime

— Net bit-select

— Bit-select of type reg, integer, and time

— Net part-select

— Part-select of type reg, integer, and time

— Array element

— A call to a user-defined function or system-defined function that returns any of the above

4.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C programming language. Table 4-1 lists these
operators.

Table 4-1—Operators in the Verilog HDL

Rt Concatenation, replication
+ - x [m Arithmetic

% Modulus

> >= < <= Relational

! Logical negation

Section 4 Copyright 2000 IEEE. All rights reserved. 43
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 4-1—Operators in the Verilog HDL (continued)

&& Logical and

Il Logical or

== Logical equality

1= Logical inequality

=== Case equality

I== Case inequality

~ Bit-wise negation

& Bit-wise and

| Bit-wise inclusive or

N Bit-wise exclusive or
A~or ~N Bit-wise equivalence
& Reduction and

~& Reduction nand

| Reduction or

~| Reduction nor

" Reduction xor

~Nor M~ Reduction xnor

<< Logical left shift

>> Logical right shift
<<< Arithmetic left shift
>>> Arithmetic right shift
?: Conditional

or Event or

4.1.1 Operators with real operands

The operators shown in Table 4-2 shall be legal when applied to real operands. All other operators shall be considered
illegal when used with real operands.

Table 4-2—Legal operators for use in real expressions

unary + unary -| Unary operators

+ - xR Arithmetic
> >= < <= Relational
I && || Logical

== 1= Logical equality

44 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 4-2—Legal operators for use in real expressions (continued)

?: Conditional

or Event or

The result of using logical or relational operators on real numbers is a single-bit scalar value.

Table 4-3 lists operators that shall not be used to operate on real numbers.

Table 4-3—Operators not allowed for real expressions

4 Concatenate, replicate

% Modulus

=== l== Case equality

~ & | Bit-wise
N N ~N

N A~ A Reduction
& ~& | ~|

<< >> << >>> Shift

See 3.9.1 for more information on use of real numbers.
4.1.2 Binary operator precedence

The precedence order binary operatorsand theconditional operatoi(?:) is shown in Table 4-4. The Verilog HDL
has two equality operators. They are discussed in 4.1.8.

Table 4-4—Precedence rules for operators

+ -1~ (unary) Highest precedence

K%

*| %

+ - (binary)

<< >> <KL >>>

< <= > >=

& ~&
AN Ao N v
|~
&&
Il

?: (conditional operator) Lowest precedence

Operators shown on the same row in Table 4-4 shall have the same precedence. Rows are arranged in order of

Section 4 Copyright 2000 IEEE. All rights reserved. 45
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

decreasing precedence for the operators. For exanipleand% all have the same precedence, which is higher than
that of the binary- and- operators.

All operators shall associate left to right with the exception of the conditional operator, which shall associate right to
left. Associativity refers to the order in which the operators having the same precedence are evaluated. Thus, in the
following exampleB is added t&\ and therCis subtracted from the result A#B.

A+B-C

When operators differ in precedence, the operators with higher precedence shall associate first. In the following
exampleB is divided byC (division has higher precedence than addition) and then the result is added to

A+B/C
Parentheses can be used to change the operator precedence.
(A+B)/C /I not the sameasA+B/C
4.1.3 Using integer numbers in expressions
Integer numbers can be used as operands in expressions. An integer number can be expressed as

— An unsized, unbased integer (e12)
— Anunsized, based integer (e’d12, 'sd12)
— A ssized, based integer (e.46'd12, 16'sd12)

A negative value for an integer with no base specifier shall be interpreted differently than for an integer with a base
specifier. An integer with no base specifier shall be interpreted as a signed value in 2's complement form. An integer
with an unsigned base specifier shall be interpreted as an unsigned value.

Example:

This example shows four ways to write the expression “minus 12 divided by 3.” Notelthe&ind-'d12 both eval-
uate to the same 2’s complement bit pattern, but, in an expressiofdiiZe loses its identity as a signed negative
number.

integer IntA;
INntA=-12/3; /I The result is -4.

IntA=-d12/3; /l The result is 1431655761.
IntA=-sd 12/ 3; [/l The resultis -4.

IntA = -4'sd 12/ 3; /] -4'sd12 is the negative of the 4-bit
/I quantity 1100, which is -4. -(-4) = 4.

4.1.4 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 4.1.2. However, if the
final result of an expression can be determined early, the entire expression need not be evaluated. Thishsxtalled
circuiting an expression evaluation.

46 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:

reg regA, regB, regC, result ;
result = regA & (regB | regC) ;

If regA is known to be zero, the result of the expression can be determined as zero without evaluating the sub-expres-
sionregB | regC

4.1.5 Arithmetic operators

The binary arithmetic operators are given in Table 4-5.

Table 4-5—Arithmetic operators defined

a+b aplusb

a-b aminus b

a*b a multiplied by b
(or atimes b)

alb a divided by b

a%b a modulo b

a*b a to the power of b

The integer division shall truncate any fractional part toward zero. For the division or modulus operators, if the sec-
ond operand is a zero, then the entire result value shail Gde modulus operator, for exampte % z, gives the
remainder when the first operand is divided by the second, and thus is zero when z divides y exactly. The result of a
modulus operation shall take the sign of the first operand.

The result of the power operator shall be real if either operand is a real, integer, or signed. If both operands are

unsigned then the result shall be unsigned. The result of the power operator is unspecified if the first operand is zero
and the second operand is non-positive, or if the first operand is negative and the second operand is not an integral
value.

The unary arithmetic operators shall take precedence over the binary operators. The unary operators are given in
Table 4-6.

Table 4-6—Unary operators defined

+m Unary plus m (same as m)

-m Unary minus m

For the arithmetic operators, if any operand bit value is the unknown xatwehe high-impedance valug then the
entire result value shall be

Example:

Table 4-7 gives examples of modulus operations.

Section 4 Copyright 2000 IEEE. All rights reserved. 47
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 4-7—Examples of modulus operators

Modulus expression Result Comments
10% 3 1 10/3 yields a remainder of 1
11%3 2 11/3 yields a remainder of 2
12% 3 0 12/3 yields no remainder
-10% 3 -1 The result takes the sign of the first operand
11 % -3 2 The result takes the sign of the first operand
-4'd12 % 3 1 -4'd12 is seen as a large, positive number that leavegs a
remainder of 1 when divided by 3

4.1.6 Arithmetic expressions with regs and integers

An arithmetic operation on a reg type variable shall be treated differently than an arithmetic operation on an integer
data type. A reg data type shall be treated as@signedvalue and an integer data type shall be treated sigreed

value. Thus, if a sized constant with a negative value is stored in a reg type variable, a positive constant, which is a 2's
complement of the sized constant, shall be the value stored in the reg type variable. When this reg is used in an arith-
metic expression, the positive constant shall be used as the value of the reg. In contrast, if a sized constant with a neg-
ative value is stored in an integer type variable and used in an arithmetic expression, the expression shall evaluate
using signed arithmetic.

Table 4-8 lists how arithmetic operators interpret each data type.

Table 4-8—Data type interpretation by arithmetic operators

Example:

Data type

Interpretation

unsigned net

Unsigned

signed net

Signed, 2’s complement

unsigned reg

Unsigned

signed reg Signed, 2’s complement
integer Signed, 2’s complement
time Unsigned

real, realtime

Signed, floating point

The following example shows various ways to divide “minus twelve by three’— usieger andreg data types in

expressions.

48 Copyright 2000 IEEE. All rights reserved. Section 4

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

integer intA,
reg [15:0] regA;
reg signed [15:0] regS;

intA =-4'd12;
regA =intA/3; [/l expression resultis -4,
/l'intA is an integer data type, regA is 65532
regA = -4'd12; /I regA is 65524
intA =regA/3; [/ expression resultis 21841,
/lregAis a reg data type

intA = -4'd12 / 3;// expression result is 1431655761.
/I -4'd12 is effectively a 32-bit reg data type

regA =-12/3; Il expression result is -4, -12 is effectively
/lan integer data type. regA is 65532

regS =-12/3; /I expression result is -4. regS is a signed
/I reg

regS = -4’sd12 / 3;// expression result is 1. -4’'sd12 is actually
/I 4. The rules for integer division yield 4/3==1

4.1.7 Relational operators

Table 4-9 lists and defines the relational operators.

Table 4-9—Definitions of the relational operators

a<b alessthanb

a>b a greaterthan b

a<=b aless than or equal to b
a>=bh a greater than or equalto b

An expression using thegelational operatorsshall yield the scalar valu@ if the specified relation ifalseor the
valuel if itis true. If either operand of a relational operator contains an unknowmi high impedancez() value,
then the result shall be a 1-bit unknown vakje .

When two operands of unequal bit lengths are used, the smaller operand shall be zero filled on the most significant bit
side to extend to the size of the larger operand.

All the relational operators shall have the same precedence. Relational operators shall have lower precedence than
arithmetic operators.

Examples

The following examples illustrate the implications of this precedence rule:

a < foo-1 /I this expression is the same as
a < (foo-1) /I this expression, but . . .
foo - (1 < a) /Il this one is not the same as
foo - 1 < a I this expression
Section 4 Copyright 2000 IEEE. All rights reserved. 49

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Whenfoo - (1 < a) evaluates, the relational expression evaluates first and then either zero or one is subtracted
fromfoo . Whenfoo-1<a evaluates, the value fifo operand is reduced by one and then comparedawith

When both operands of a relational expression are signed integral operands (an integer, or a unsized, unbased integer)
then the expression shall be interpreted as a comparison between signed values. When either operand of a relational
expression is a real operand then the other operand shall be converted to an equivalent real value, and the expression
shall be interpreted as a comparison between two real values.

Otherwise the expression shall be interpreted as a comparison between unsigned values.

4.1.8 Equality operators

The equality operatorsshall rank lower in precedence than the relational operators. Table 4-10 lists and defines the
equality operators.

Table 4-10—Definitions of the equality operators

a=== a equal to b, including x and z

al==b a not equal to b, including x and z

a == a equal to b, result may be unknown
al=b a not equal to b, result may be unknown

All four equality operators shall have the same precedence. These four operators compare operands bit for bit, with
zero filling if the two operands are of unequal bit length. As with the relational operators, the result shidltben-
parison fails1 if it succeeds.

For thelogical equalityandlogical inequalityoperators £= and!=), if, due to unknown or high-impedance bits in
the operands, the relation is ambiguous, then the result shall be a one bit unknows)value (

For thecase equalityand case inequalityoperatorsé== and!==), the comparison shall be done just as it is in the
procedural case statement (see 9.5). Bits thakarez shall be included in the comparison and shall match for the
result to be considered equal. The result of these operators shall always be a known valtiegrdither

4.1.9 Logical operators

The operatorsogical and (&&) andlogical or (||) are logical connectives. The result of the evaluation of a logical
comparison shall bé& (defined adrue), O (defined adalsé), or, if the result is ambiguous, the unknown valug. (
The precedence @&&is greater than that ¢if , and both are lower than relational and equality operators.

A third logical operator is the unaiggical negationoperator(!). The negation operator converts a nonzero or true
operand int® and a zero or false operand iitoAn ambiguous truth value remainsxas

Examples:

Example 1 reg alpha holds the integer value 237 abeta holds the value zero, then the following examples
perform as described:

regA = alpha && beta; /lregAissetto O
regB = alpha || beta; /lregBis setto 1

Example 2—Fhe following expression performs a logical and of three subexpressions without needing any parenthe-
ses:

a < size-1 && b !'= ¢ && index != lastone

50 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

However, it is recommended for readability purposes that parentheses be used to show very clearly the precedence
intended, as in the following rewrite of this example:

(a < size-1) && (b '= ¢) && (index != lastone)

Example 3-A common use of is in constructions like the following:
if (linword)

In some cases, the preceding construct makes more sense to someone reading the code than this equivalent construct:
if (inword == 0)

4.1.10 Bit-wise operators

The bit-wise operatorshall perform bit-wise manipulations on the operands—that is, the operator shall combine a

bit in one operand with its corresponding bit in the other operand to calculate one bit for the result. Logic Tables 4-11
through 4-15 show the results for each possible calculation.

Table 4-13—Bit-wise binary exclu-

Table 4-11—Bit-wise binary and
sive or operator

operator
& 0|1 |x |z " 0|1 |x]z
0 o|o0OfO0]O 0 0|1 |x]x
1 0|1]|x|x 1 110 | x|x
X 0O [x | x| X X X | X | X | X
z 0 | x | x [xX z X | X | X | X

Table 4-14—Bit-wise binary exclu-

Table 4-12—Bit-wise binary or
sive nor operator

operator
| 01| x|z oo 1] x|z
0 |1 (|x|x
0 0 1 10| x| X
1 1111
1 0|1 /|x]x
X X [1 |x|X
X X | X [x |X
z X [1 |x|X
7 X | X | x| X
Section 4 Copyright 2000 IEEE. All rights reserved. 51

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 4-15—Bit-wise unary negation operator

0 1
1 0
X X
z X

When the operands are of unequal bit length, the shorter operand is zero-filled in the most significant bit positions.
4.1.11 Reduction operators

Theunary reduction operatorshall perform a bit-wise operation on a single operand to produce a single bit result.

For reduction andreduction or andreduction xoroperators, the first step of the operation shall apply the operator
between the first bit of the operand and the second using logic Tables 4-16 through 4-18. The second and subsequent
steps shall apply the operator between the 1-bit result of the prior step and the next bit of the operand using the same
logic table. Foreduction nandreduction noy andreduction xnomperators, the result shall be computed by inverting

the result of the reduction and, reduction or, and reduction xor operation respectively.

Table 4-16—Reduction unary and Table 4-17—Reduction unary or
operator operator
& 0|1 |x]z | 0| 1| x| z
0 o|jofo]oO 0 0|1]|x]Xx
1 0|11 |x]x 1 1|11 |1(1
X 0| x [x|X X X |1 |x|X
z 0 [x [x| X z X |1 |x|X

Table 4-18—Reduction unary exclusive or operator

A 0|1]| x|z
0 0|1 |x]x
1 1[0]| x|Xx
X X | x | x |Xx
z X | x | x |x
52 Copyright 2000 IEEE. All rights reserved. Section 4

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:

Table 4-19 shows the results of applying reduction operators on different operands.

Table 4-19—Results of unary reduction operations

Operand || & | ~& | ~| n ~N Comments

4'b0000 0 1 0 1 0 1 Nobits set

4'b1111 1 0 1 0 0 1 All bits set

4’0110 0 1 1 0 0 1 Evemumber of bits
set

4’h1000 0 1 1 0 1 0 Odd number of bits se

4.1.12 Shift operators

There are two types ahift operatorsthe logical shift operators, << and >>, and the arithmetic shift operators, <<<

and >>>. The left shift operators, << and <<<, shall shift their left operand to the left by the number by the number of

bit positions given by the right operand. In both cases, the vacated bit positions shall be filled with zeroes. The right
shift operators, >> and >>>, shall shift their left operand to the right by the number of bit positions given by the right
operand. The logical right shift shall fill the vacated bit positions with zeroes. The arithmetic right shift shall fill the
vacated bit positions with zeroes if the result type is unsigned. It shall fill the vacated bit positions with the value of
the most-significant (i.esign) bit of the left operand if the result type is signed. If the right operand has an unknown

or high impedence value, then the result shall be unknown. The right operand is always treated as an unsigned num-
ber and has no effect on the signedness of the result. The result signedness is determined by the left-hand operand
and the remainder of the expression, as outlined in section 4.5.1.

Examples:

Example 1-n this example, the regesult is assigned the binary vald00, which is0001 shifted to the left
two positions and zero-filled.

module shift;
reg [3:0] start, result;
initial begin

start = 1,

result = (start << 2);
end
endmodule

Example 2—In this example, the regesult is assigned the binary valdd 10, which is1000 shifted to the right
two positions and sign-filled.

module ashift;
reg [3:0] start, result;
initial begin
start = 4’'b1000;
result = (start >>> 2);
end
endmodule

Section 4 Copyright 2000 IEEE. All rights reserved. 53
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

4.1.13 Conditional operator

The conditional operatoralso known agernary operatoy shall be right associative and shall be constructed using
three operands separated by two operators in the format given in Syntax 4-1.

conditional_expression ::From Annex A - A.8.3)
expression® { attribute_instance } expression2xpression3
expressionl ::=
expression
expression2 ::=
expression
expression3d ::=
expression

Syntax 4-1—Syntax for conditional operator

The evaluation of a conditional operator shall begin with the evaluation of expressionl. If expressionl evaluates to
false (0), then expression3 shall be evaluated and used as the result of the conditional expression. If expressionl eval-
uates to true (known value other than 0), then expression2 is evaluated and used as the result. If expressionl evaluates
to ambiguous valuex(or z), then both expression2 and expression3 shall be evaluated and their results shall be com-
bined, bit by bit, using Table 4-20 to calculate the final result unless expression2 or expression3 is real, in which case
the result shall b@. If the lengths of expression2 and expression3 are different, the shorter operand shall be length-
ened to match the longer and zero-filled from the left (the high-order end).

Table 4-20—Ambiguous condition results for conditional operator

?: 0| 1| x| z
0 0 [x | x |X
1 X |1 |x |X
X X | x [x | X
z X | x [x | X

Example:
The following example of a tri-state output bus illustrates a common use of the conditional operator.
wire [15:0] busa = drive_busa ? data : 16'bz,

The bus callediata is driven ontdbusa whendrive_busa is1. If drive_busa is unknown, then an unknown
value is driven ontbusa . Otherwisepusa is not driven.

4.1.14 Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The concatenation shall be
expressed using the brace charadtensd}, with commas separating the expressions within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in the con-
catenation is needed to calculate the complete size of the concatenation.

54 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Examples:
This example concatenates four expressions:
{a, b[3:0], w, 3'b101}
and it is equivalent to the following example:
{a, b[3], b[2], b[1], b[O], w, 1'bl, 1'b0, 1'b1}

Another form of concatenation is the replication operation. The first expression shall be a non-zero, non-X and non-Z
constant expression, the second expression follows the rules for concatenations. This example replicates "w" 4 times.

{4{w}} // This is equivalent to {w, w, w, w}

a[31:0] = {1'b1, {0{1'b0}} }; /lillegal. RHS becomes {1'b1,;
a[31:0] = {1'b1, {I'bz{1'b0}} }; //illegal. RHS becomes {1'bl,;
a[31:0] = {1'b1, {T'bx{1'b0}} }; /lillegal. RHS becomes {1'bl,;

If the replication operator is used on a function call operand, the function need not be evaluated multiple times. For
example:

result = {4{func(w)}}
may be computed as

result = {func(w), func(w), func(w), func(w)}
or

y = func(w) ;
result ={y, v, v, Y}

This is another form of expression evaluation short-circuiting.
The next example illustrates nested concatenations:

{b, {3{a, b}}} // Thisis equivalentto{b, a, b, a, b, a, b}
4.1.15 Event or

The evenbr operator shall perform an or of events. Tloperator does the same thing. See 9.7 for events and trigger-
ing of events.

Example:

The following example shows both ways to make an assignment to rega when an event (change) occurs on trig or
enable.

@(trig or enable) rega =regb ;
@(trig , enable) rega =regb ;

4.2 Operands
There are several types of operands that can be specified in expressions. The simplest type is a reference to a net or

variable in its complete form—that is, just the name of the net or variable is given. In this case, all of the bits making

Section 4 Copyright 2000 IEEE. All rights reserved. 55
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

up the net or variable value shall be used as the operand.

If a single bit of a vector net, reg variable, integer variable, or time variable is required, then a bit-select operand shall
be used. A part-select operand shall be used to reference a group of adjacent bits in a vector net, vector reg, integer
variable, or time variable.

A memory word can be referenced as an operand. A concatenation of other operands (including nested concatena-
tions) can be specified as an operand. A function call is an operand.

4.2.1 Vector bit-select and part-select addressing

Bit-selectsextract a particular bit from a vector net, vector reg, integer variable, or time variable. The bit can be
addressed using an expression. If the bit-select is out of the address bounds or the bit-salezt ien the value
returned by the reference shall keThe bit-select or part-select of a variable declaredeas or realtime shall be
considered illegal.

Several contiguous bits in a vector net, vector reg, integer variable, or time variable can be addressed and are known
aspart-selectsThere are two types of part-selects, a constant part-select and an indexed part-select. A constant part-
select of a vector reg or net is given with the following syntax.:

vect[msb_expr:Isb_expr]

Both expressions shall be constant expressions. The first expression has to address a more significant bit than the sec-
ond expression. If the part-select is out of the address bounds or the part-sglectzisthen the value returned by
the reference shall be

An indexed part select of a vector net, vector reg, integer variable, or time variable is given with the following syntax:

reg [15:0] big_vect;
reg [0:15] little_vect;

big_vect[lsb_base expr +: width_expr]
little_vect[msb_base_expr +: width_expr]

big_vect[msb_base_expr -: width_expr]
little_vect[Ilsb_base_expr -: width_expr]

Thewidth_expr shall be a constant expression. It also shall not be affected by run-time parameter assignments.
Thelsb_base _expr andmsb_base_expr can vary at run-time. The first two examples select bits starting at the

base and ascending the bit range. The number of bits selected is equal to the width expression. The second two exam-
ples select bits starting at the base and descending the bit range. Part-selects that address a range of bits that are com-
pletely out of the address bounds of thet , reg , integer , ortime , or when the part-selectisor z, shall yield

the valuex when read, and shall have no effect on the data stored when written. Part-selects that are partially out of
range shall when read retuxnfor the bits that are out of range, and when written shall only affect the bits that are in
range.

Examples:

reg [31:0] big_vect;
reg [0:31] little_vect;
reg [63:0] dword;
integer sel;

The first fourif statements show the identity between the two part select constructs. The last one shows an indexable
nature.

56 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
initial begin
if (big_vect[0 +:8] == big_vect[7 :0]) begin end
if (little_vect[0 +:8] == little_vect[0 : 7]) begin end
if (big_vect[15 -:8] == big_vect[15 : 8]) begin end
if (little_vect[15 -:8] == little_vect[8 :15]) begin end

if (sel >0 && sel < 8)
dword[8*sel +:8] = big_vect[7:0]; // Replace the byte selected.

Examples:

Example 1-Fhe following example specifies the single biot vector that is addressed by the operiadéx .
acc[index]

The actual bit that is accessed by an address is, in part, determined by the declaration Bér instance, each of
the declarations afcc shown in the next example causes a particular valurglek to access differentbit:

reg [15:0] acc;
reg [2:17] acc

Example 2—Fhe next example and the bullet items that follow it illustrate the principles of bit addressing. The code
declares an 8-bit reg callegct and initializes it to a value of 4. The list describes how the separate bits of that vec-
tor can be addressed.

reg [7:0] vect;
vect = 4;// fills vect with the pattern 00000100
/I'msbis bit 7, Isb is bit O

— If the value ofaddr is 2, thervect[addr] returnsl.

— If the value ofaddr is out of bounds, thevect[addr] returnsx.
— If addr is O, 1, or 3 through Tect[addr] returns0.

— vect[3:0] returns the bit®100.

— vect[5:1] returns the bit0010.

— vect][expression that returng xreturnsx.

— vect][expression that returng zeturnsx.

— If any bit ofaddr isx orz, then the value cdddr isx.

NOTES

1—Part-select indices that evaluate to x or z may be flagged as a compile time error.

2—Bit-select or part-select indices that are outside of the declared range may be flagged as a compile time error.
4.2.2 Array and memory addressing

Declaration of arrays and memories (one dimensional arrays of reg) are discussed in 3.10. This subclause discusses
array addressing.

Examples:
The next example declares a memory of 1024 8-bit words:
reg [7:0] mem_name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address, specified
with the following format:

Section 4 Copyright 2000 IEEE. All rights reserved. 57
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

mem_name[addr_expr]

Theaddr_expr can be any expression; therefore, memory indirections can be specified in a single expression. The
next example illustrates memory indirection:

mem_name[mem_name|[3]]

In this examplemem_name[3] addresses word three of the memory calleein_nameThe value at word three is

the index intomem_namethat is used by the memory addreeem_name[mem_name[3]] . As with bit-selects,

the address bounds given in the declaration of the memory determine the effect of the address expression. If the index
is out of the address bounds or if any bit in the addressiiz, then the value of the reference shalkbe

Examples:
The next example declares an array of 256 by 256 8-bit elements and an array 256 by 256 by 8 1-bit elements:

reg [7:0] twod_array[0:255][0:255];
wire threed_array[0:255][0:255][0:7];

The syntax for access to the array shall consist of the name of the memory or array and an expression for each
addressed dimension:

twod_array[addr_expr][addr_expr]
threed_array[addr_expr][addr_expr][addr_expr]

As before, theaddr_expr can be any expression. The artayd_array accesses a whole 8-bit vector, while the
arraythreed_array accesses a single bit of the three dimensional array.

To express hit selects or part selects of array elements, the desired word shall first be selected by supplying an address
for each dimension. Once selected, bit and part selects shall be addressed in the same manner as net and reg bit and
part selects (see 4.2.1).

Examples:

twod_array[14][1][3:0] // access lower 4 bits of word
twod_array[1][3][6] /I access bit 6 of word
twod_array[1][3][sel] /I use variable bit select
threed_array[14][1][3:0] // lllegal

4.2.3 Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per character.
Any Verilog HDL operator can manipulate string operands. The operator shall behave as though the entire string were
a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment shall be
padded on the left with zeros. This is consistent with the padding that occurs during assignment of nonstring values.

Example:

The following example declares a string variable large enough to hold 14 characters and assigns a value to it. The
example then manipulates the string using the concatenation operator.

58 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module string_test;
reg [8*14:1] stringvar;

initial begin
stringvar = "Hello world";
$display("%s is stored as %h", stringvar, stringvar);
stringvar = {stringvar,"!!I"};
$display("%s is stored as %h", stringvar, stringvar);
end
endmodule

The result of simulating the above description is

Hello world is stored as 00000048656¢c6¢c6f20776f726c64
Hello world!!! is stored as 48656¢c6¢6f20776f726c64212121

4.2.3.1 String operations

The common string operatiogspy concatenateandcompareare supported by Verilog HDL operators. Copy is pro-
vided by simple assignment. Concatenation is provided by the concatenation operator. Comparison is provided by the
equality operators.

When manipulating string values in vector regs, the regs should be a8teadlits (wheren is the number of ASCII
characters) in order to preserve the 8-bit ASCII code.

4.2.3.2 String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can affect the
results of comparison and concatenation operations. The comparison and concatenation operators shall not distin-
guish between zeros resulting from padding and the original string chars&t&S¢CII NULL).

Examples:

The following example illustrates the potential problem.

reg [8*10:1] s1, s2;
initial begin
sl = "Hello";
s2 = " world!";
if ({s1,s2} == "Hello world!")
$display("strings are equal");
end

The comparison in this example fails because during the assignment the string variables are padded as illustrated in
the next example:

sl = 000000000048656c6¢6f
s2 = 00000020776f726c6421
Section 4 Copyright 2000 IEEE. All rights reserved. 59

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The concatenation &fl ands2 includes the zero padding, resulting in the following value:
000000000048656c6¢c6f00000020776f726c6421

Since the string “Hello world!” contains no zero padding, the comparison fails, as shown in the following example:

- sl Y s2 N
000000000048656¢6¢6f00000020776726c6421

48656¢6c6f207761726c6421

%/—JL

"Hello" " world!"

This comparison yields a result of zero, which is equivalent to false.

4.2.3.3 Null string handling

The null string {”) shall be considered equivalent to the ASCII NULAO{) which has a value zero (0), which is
different from a string0” .

4.3 Minimum, typical, and maximum delay expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons and enclosed by parenthe-
ses. This is intended to represent minimum, typical, and maximum values—in that order. The syntax is given in
Syntax 4-2.

60 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

constant_expression :(Erom Annex A - A.8.3)
constant_primary
| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_exprgssion
| constant_expressi&if attribute_instance } constant_expression
constant_expression
| string
constant_mintypmax_expression ::=
constant_expression
| constant_expressiorconstant_expressiarconstant_expression
expression ::=
primary
| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string
mintypmax_expression ::=
expression
| expression expression expression

constant_primary ::from Annex A - A.8.4)
constant_concatenation
| constant_function_call
| (constant_mintypmax_expressipn
| constant_multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier
primary ::=
number
| hierarchical_identifier
| hierarchical_identifief expression { [expression }
| hierarchical_identifief expression { [expression} } [range_expression
| hierarchical_identifief range_expression
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| (mintypmax_expression

Syntax 4-2—Syntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values allow a design to be tested
with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max format can be used wherever
expressions can appear.

Examples

Example 1-Fhis example shows an expression that defines a single triplet of delay values. The minimum value is the
sum ofa+d; the typical value ip+e; the maximum value is+f , as follows:

Section 4 Copyright 2000 IEEE. All rights reserved. 61
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

(a:b:c) + (d:e:f)

Example 2—Fhe next example shows some typical expressions that are used to spactiypp:max format val-
ues:

val - (32'd 50: 32'd 75: 32'd 100)

4.4 Expression bit lengths

Controlling the number of bits that are used in expression evaluations is important if consistent results are to be
achieved. Some situations have a simple solution; for example, if a bit-wise and operation is specified on two 16-bit
regs, then the result is a 16-bit value. However, in some situations it is not obvious how many bits are used to evaluate
an expression, or what size the result should be.

For example, should an arithmetic add of two 16-bit values perform the evaluation using 16 bits, or should the evalu-
ation use 17 bits in order to allow for a possible carry overflow? The answer depends on the type of device being
modeled, and whether that device handles carry overflow. The Verilog HDL uses the bit length of the operands to
determine how many bits to use while evaluating an expression. The bit length rules are given in 4.4.1. In the case of
the addition operator, the bit length of the largest operand, including the left-hand side of an assignment, shall be
used.

Examples:

reg [15:0] a, b; // 16-bit regs
reg [15:0] sumA; // 16-bit reg
reg [16:0] sumB; // 17-bit reg

sSumA = a + b; // expression evaluates using 16 bits
sumB = a + b; // expression evaluates using 17 bits

4.4.1 Rules for expression bit lengths

The rules governing the expression bit lengths have been formulated so that most practical situations have a natural
solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the operands
involved in the expression and the context in which the expression is given.

A self-determined expressias one where the bit length of the expression is solely determined by the expression
itself—for example, an expression representing a delay value.

A context-determined expressi@none where the bit length of the expression is determined by the bit length of the
expressiorandby the fact that it is part of another expression. For example, the bit size of the right-hand side expres-
sion of an assignment depends on itself and the size of the left-hand side.

Table 4-21 shows how the form of an expression shall determine the bit lengths of the results of the expression. In
Table 4-21j ,j , andk represent expressions of an operand,lafild represents the bit length of the operand repre-
sented by .

62 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 4-21—Bit lengths resulting from self-determined expressions

Expression Bit length Comments
Unsized constant number Same as integer
Sized constant number As given
i op j, where op is: max(L(i),L())
+-F1 % & | NN~ N
op i, where op is: L(i)
+ - ~
iopj, where opis: 1 bit Operands are sized to max(L(i),L(j))
z== l== == 1= && || > >= < <=
op i, where op is: 1 bit All operands are self-determined
& ~& | ~| N~ A~
iopj, where op is: L(i) j is self-determined
>> << **
i?j:k max(L(j),L(k)) i is self-determined
{i,-j} L(i)+..+L(j) All operands are self-determined
{i{j,-..k}} i * (L()+..+L(K) All operands are self-determined

Lif an unsized constant is part of an expression that is longer than 32 bits, then if the most significant bit
is unknown K or x) or tri-state Z or z) the most significant bit is extended up to the size of the expres-
sion, otherwise signed constants are sign extended and unsigned constants are zero extended.

NOTE—Multiplication without losing any overflow bits is still possible simply by assigning the result to
something wide enough to hold it.

4.4.2 An example of an expression bit-length problem
During the evaluation of an expression, interim results shall take the size of the largest operand (in case of an assign-
ment, this also includes the left-hand side). Care has to be taken to prevent loss of a significant bit during expression
evaluation. The example below describes how the bit lengths of the operands could result in the loss of a significant
bit.
Given the following declarations

reg [15:0] a, b, answer; // 16-bit regs
The intent is to evaluate the expression

answer = (a + b) >> 1; //will not work properly

wherea andb are to be added, which may result in an overflow, and then shifted right by 1 bit to preserve the carry
bit in the 16-bitanswer .

A problem arises, however, because all operands in the expression are of a 16-bit width. Therefore, the expression
(a + b) produces an interim result that is only 16 bits wide, thus losing the carry bit before the evaluation performs
the 1-bit right shift operation.

The solution is to force the expressiam (+ b) to evaluate using at least 17 bits. For example, adding an integer

Section 4 Copyright 2000 IEEE. All rights reserved. 63
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

value of O to the expression will cause the evaluation to be performed using the bit size of integers. The following
example will produce the intended result:

answer = (a + b + 0) >> 1; //will work correctly
In the following example:

module bitlength();
reg [3:0] a,b,c;

reg[4:0] d;
initial begin
a=09;
b=8;
c=1,
$display("answer = %b", ¢ ? (a&b) : d);
end
endmodule

the$display statement will display:
answer = 01000

By itself, the expression&b would have the bit length 4, but since it is in the context of the conditional expression,
which uses the maximum bit-length, the expresai®h actually has length 5, the lengthcf

4.4.3 Example of self-determined expressions

reg[3:0] a;
reg [5:0] b;
reg [15:0] c;
initial begin
a=4'hF;
b = 6’ha;
$display("a*b=%x",
a*b); /I expression size is self determined
¢ = {a**b}; /I expression a**b is self determined
$display("a**b=%x", c); // due to {}
C = a**b; Il expression size is determined by ¢
$display("c=%x", c);
end

Simulator output for this example:

a*b=16 // 96 was truncated since expression size is 6
a**b=1 /I expression size is 4 bits (size of a)
c=21 /I expression size is 6 bits (size of c)

4.5 Signed expressions

Controlling the sign of an expression is important if consistent results are to be achieved. In addition to the rules out-
lined in the following sections, two system functions shall be used to handle type casting on expressions: $signed()
and $unsigned(). These functions shall evaluate the input expression and return a value with the same size and value
of the input expression and the type defined by the function:

64 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

$signed- returned value is signed
$unsigned- returned value is unsigned
Example:

reg [7:0] regA,;

reg signed[7:0] regS;

regA = $unsigned-4); // regA = 4'b1100
regS = $signed4'b1100); // regS = -4

4.5.1 Rules for expression types
The following are the rules for determining the resulting type of an expression:

— Expression type depends only on the operands. It does not depend on the LHS (if any).
— Decimal numbers are signed.

— Based_numbers are unsigned, except where tiwation is used in the base specifier (aglisd12 ").
— Bit-select results are unsigned, regardless of the operands.
— Part-select results are unsigned, regardless of the operands.

NOTE—This is true even if the part-select specifies the entire vector.

reg[15:0] a;
reg signed[7:0] b;

initial
a = b[7:0]; // b[7:0] is unsigned and therefore zero-extended
— Concatenate results are unsigned, regardless of the operands.

— Comparison results (1, 0) are unsigned, regardless of the operands.
— Reals converted to integers by type coercion are signed

— The sign and size of any self-determined operand is determined by the operand itself and independent of the

remainder of the expression.
— For non-self-determined operands the following rules apply:
if any operand is real, the result is real;
if any operand is unsigned, the result is unsigned, regardless of the operator;
if all operands are signed, the result will be signed, regardless of operator, except as noted.

4.5.2 Steps for evaluating an expression

— Determine the expression size based upon the standard rules of expression size determination.
— Determine the sign of the expression using the rules outlined in 4.5.1.

— Coerce the type of each operand of the expression (excepting those which are self-determined) to the type of

the expression.

— Extend the size of each operand (excepting those which are self-determined) to the size of the expression. Per-

form sign extension if and only if the operand type (after type coercion) is signed.

4.5.3 Steps for evaluating an assignment

— Determine the size of the RHS by the standard assignment size determination rules (see 4.4)

— If needed, extend the size of the RHS, performing sign extension if and only if the type of the RHS is signed.

Section 4 Copyright 2000 IEEE. All rights reserved. 65
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

4.5.4 Handling X and Z in signed expressions

If a signed operand is to be resized to a larger signed width and the value of the sig¥, bitegesulting value shall

be bit-filled with Xs. If the sign bit of the value i&, then the resulting value shall be bit-filled wills. If any bit of a
signed value isX or Z, then any non logical operation involving the value shall result in the entire resultant value
being anX and the type consistent with the expression's type.

66 Copyright 2000 IEEE. All rights reserved. Section 4
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 5

Scheduling semantics

5.1 Execution of a model

The balance of the sections of this standard describe the behavior of each of the elements of the language. This sec-
tion gives an overview of the interactions between these elements, especially with respect to the scheduling and exe-
cution of events.

The elements that make up the Verilog HDL can be used to describe the behavior, at varying levels of abstraction, of
electronic hardware. An HDL has to be a parallel programming language. The execution of certain language con-
structs is defined by parallel execution of blocks or processes. It is important to understand what execution order is
guaranteed to the user, and what execution order is indeterminate.

Although the Verilog HDL is used for more than simulation, the semantics of the language are defined for simulation,
and everything else is abstracted from this base definition.

5.2 Event simulation

The Verilog HDL is defined in terms of a discrete event execution model. The discrete event simulation is described
in more detail in this section to provide a context to describe the meaning and valid interpretation of Verilog HDL
constructs. These resulting definitions provide the standard Verilog reference model for simulation, which all compli-
ant simulators shall implement. Note, though, that there is a great deal of choice in the definitions that follow, and dif-
ferences in some details of execution are to be expected between different simulators. In addition, Verilog HDL
simulators are free to use different algorithms than those described in this section, provided the user-visible effect is
consistent with the reference model.

A design consists of connected threads of execution or processes. Processes are objects that can be evaluated, that
may have state, and that can respond to changes on their inputs to produce outputs. Processes include primitives,
modules, initial and always procedural blocks, continuous assignments, asynchronous tasks, and procedural assign-
ment statements.

Every change in value of a net or variable in the circuit being simulated, as well as the named event, is considered an
update event

Processes are sensitive to update events. When an update event is executed, all the processes that are sensitive to that
event are evaluated in an arbitrary order. The evaluation of a process is also an event, knewalaatam event

In addition to events, another key aspect of a simulator is time. Thedianulation times used to refer to the time
value maintained by the simulator to model the actual time it would take for the circuit being simulated. The term
timeis used interchangeably with simulation time in this section.

Events can occur at different times. In order to keep track of the events and to make sure they are processed in the cor-
rect order, the events are kept oneuent queueordered by simulation time. Putting an event on the queue is called
scheduling an event

5.3 The stratified event queue

The Verilog event queue is logically segmented into five different regions. Events are added to any of the five regions
but are only removed from tteetiveregion.

Section 5 Copyright 2000 IEEE. All rights reserved. 67
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

1) Events that occur at the current simulation time and can be processed in any order. Theseaetigethe
events.

2) Events that occur at the current simulation time, but that shall be processed after all the active events are
processed. These are thactiveevents.

3) Events that have been evaluated during some previous simulation time, but that shall be assigned at this
simulation time after all the active and inactive events are processed. Theseroaltacking assign update
events.

4) Events that shall be processed after all the active, inactive, and nonblocking assign update events are
processed. These are thenitorevents.

5) Events that occur at some future simulation time. These arfuthe events. Future events are divided into
future inactive eventandfuture nonblocking assignment update events

The processing of all the active events is callsraulation cycle

The freedom to choose any active event forimmediate processing is an essential source of nondeterminism in the Ver-
ilog HDL.

An explicit zero delay#0) requires that the process be suspended and added as an inactive event for the current time
so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2) creates a nonblocking assign update event, scheduled for current or a later sim-
ulation time.

The $monitor and$strobe system tasks (see 17.1) create monitor events for their arguments. These events are con-
tinuously re-enabled in every successive time step. The monitor events are unique in that they cannot create any other
events.

The call back procedures scheduled with PLI routines suchtfasynchronize() (see 25.58) or
vpi_register_cb(cb_readwrite) (see 27.33) shall be treated as inactive events.

5.4 The Verilog simulation reference model

In all the examples that follow, T refers to the current simulation time, and all events are held in the event queue,
ordered by simulation time.

while (there are events) {
if (no active events) {
if (there are inactive events) {
activate all inactive events;
} else if (there are nonblocking assign update events) {
activate all nonblocking assign update events;
} else if (there are monitor events) {
activate all monitor events;
}else {
advance T to the next event time;
activate all inactive events for time T;
}
}
E = any active event;
if (E is an update event) {
update the modified object;
add evaluation events for sensitive processes to event queue;

68 Copyright 2000 IEEE. All rights reserved. Section 5
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

} else { /* shall be an evaluation event */
evaluate the process;
add update events to the event queue;

}

5.4.1 Determinism
This standard guarantees a certain scheduling order.

1) Statements within begin-end block shall be executed in the order in which they appear inlibgin-
end block. Execution of statements in a particuteagin-end block can be suspended in favor of other
processes in the model; however, in no case shall the statementegiraend block be executed in any
order other than that in which they appear in the source.

2) Nonblocking assignments shall be performed in the order the statements were executed. Consider the
following example:

initial begin
a<=0;
a<=1;
end

When this block is executed, there will be two events added to the nonblocking assign update queue. The
previous rule requires that they be entered on the queue in source order; this rule requires that they be taken
from the queue and performed in source order as well. Hence, at the end of tinie tteariablea will be
assigned and thert.

5.4.2 Nondeterminism

One source of nondeterminism is the fact that active events can be taken off the queue and processed in any order.
Another source of nondeterminism is that statements without time-control constructs in behavioral blocks do not have

to be executed as one event. Time control statements are the # expression and @ expression constructs (see 9.7). At
any time while evaluating a behavioral statement, the simulator may suspend execution and place the partially com-
pleted event as a pending active event on the event queue. The effect of this is to allow the interleaving of process exe-
cution. Note that the order of interleaved execution is nondeterministic and not under control of the user.

5.5 Race conditions

Because the execution of expression evaluation and net update events may be intermingled, race conditions are
possible:

assignp = q;
initial begin
q=1
#1q=0;
$display(p);
end

The simulator is correct in displaying eitheflaor a0. The assignment df to g enables an update event forThe
simulator may either continue and execute the $display task or execute the updatéoimwed by the $display
task.

Section 5 Copyright 2000 IEEE. All rights reserved. 69
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

5.6 Scheduling implication of assignments
Assignments are translated into processes and events as follows.
5.6.1 Continuous assignment

A continuous assignment statement (Section 6) corresponds to a process, sensitive to the source elements in the
expression. When the value of the expression changes, it causes an active update event to be added to the event queue,
using current values to determine the target.

5.6.2 Procedural continuous assignment

A procedural continuous assignment (which areabsignor force statement; see 9.3) corresponds to a process that
is sensitive to the source elements in the expression. When the value of the expression changes, it causes an active
update event to be added to the event queue, using current values to determine the target.

A deassignor areleasestatement deactivates any correspondsgjgnor force statement(s).
5.6.3 Blocking assignment

A blocking assignment statement with a delay computes the right-hand side value using the current values, then
causes the executing process to be suspended and scheduled as a future event. If the delay is O, the process is sched-
uled as an inactive event for the current time.

When the process is returned (or if it returns immediately if no delay is specified), the process performs the assign-
ment to the left-hand side and enables any events based upon the update of the left-hand side. The values at the time
the process resumes are used to determine the target(s). Execution may then continue with the next sequential state-
ment or with other active events.

5.6.4 Nonblocking assignment

A nonblocking assignment statement always computes the updated value and schedules the update as a nonblocking
assign update event, either in this time step if the delay is zero or as a future event if the delay is nonzero. The values
in effect when the update is placed on the event queue are used to compute both the right-hand value and the left-hand
target.

5.6.5 Switch (transistor) processing

The event-driven simulation algorithm described in 5.4 depends on unidirectional signal flow and can process each
event independently. The inputs are read, the result is computed, and the update is scheduled.

The Verilog HDL provides switch-level modeling in addition to behavioral and gate-level modeling. Switches pro-
vide bi-directional signal flow and require coordinated processing of nodes connected by switches.

The Verilog HDL source elements that model switches are various forms of transistors ticailganifO , tranifl ,
rtran , rtranifO , andrtranifl .

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can determine the
appropriate value for any node on the net, because the inputs and outputs interact. A simulator can do this using a
relaxation technique. The simulator can process tran at any time. It can process a subset of tran-connected events at a
particular time, intermingled with the execution of other active events.

Further refinement is required when some transistors have gatexiadueonceptually simple technique is to solve

the network repeatedly with these transistors set to all possible combinations of fully conducting and nonconducting
transistors. Any node that has a unique logic level in all cases has steady-state response equal to this level. All other
nodes have steady-state response

70 Copyright 2000 IEEE. All rights reserved. Section 5
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

5.6.6 Port connections
Ports connect processes through implicit continuous assignment statements or implicit bidirectional connections.
Bidirectional connections are analogous to an always-enabled tran connection between the two nets, but without any
strength reduction. Port connection rules require that a value receiver be a net or a structural net expression.
Ports can always be represented as declared objects connected as follows:

— If aninput port, then a continuous assignment from an outside expression to a local (input) net

— If an output port, then a continuous assignment from a local output expression to an outside net

— If an inout, then a nonstrength-reducing transistor connecting the local net to an outside net

5.6.7 Functions and tasks

Task and function parameter passing is by value, and it copies in on invocation and copies out on return. The copy out
on the return function behaves in the same manner as does any blocking assignment.

Section 5 Copyright 2000 IEEE. All rights reserved. 71
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

72 Copyright 2000 IEEE. All rights reserved. Section 5
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 6

Assignments

The assignment is the basic mechanism for placing values into nets and variables. There are two basic forms of
assignments:

— Thecontinuous assignmenhich assigns values t®@ts
— Theprocedural assignmentvhich assigns values variables

There are two additional forms of assignments, assign / deassign and force / release which goeocaltkeatal con-
tinuous assignmentdescribed in 9.3.

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the=dqradsacter; or,

in the case of nonblocking procedural assignment, the less-than-equa)scharacter pair. The right-hand side can

be any expression that evaluates to a value. The left-hand side indicates the variable to which the right-hand side
value is to be assigned. The left-hand side can take one of the forms given in Table 6-1, depending on whether the
assignment is a continuous assignment or a procedural assignment.

Table 6-1—Legal left-hand side forms in assignment statements

Statement type Left-hand side (LHS)

Continuous assignment Net (vector or scalar)

Constant bit select of a vector net

Constant part select of a vector net
Constant indexed part select of a vector net
Concatenation of any of the above four LHS

Procedural assignment Variables (vector or scalar)

Bit-select of a vector reg, integer, or time variable
Constant part select of a vector reg, integer, or time
variable
Memory word
Indexed part select of a vector reg, integer, or time
variable

Concatenation of regs; bit or part selects of regs

6.1 Continuous assignments

Continuous assignments shall drive values onto nets, both vector and scalar. This assignment shall occur whenever
the value of the right-hand side changes. Continuous assignments provide a way to model combinational logic with-
out specifying an interconnection of gates. Instead, the model specifies the logical expression that drives the net.

The syntax for continuous assignments is given in Syntax 6-1.

Section 6 Copyright 2000 IEEE. All rights reserved. 73
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

net_declaration ::f~rom Annex A - A.2.1.3)
net_type [signed]
[delay3] list_of net_identifiers
| net_type [drive_strength Ejgned]
[delay3] list_of net_decl_assignments
| net_type [vectored| scalared] [signed]
range [delay3] list_of net_identifiers
| net_type [drive_strength Vectored | scalared] [signed]
range [delay3] list_of_net_decl_assignments
| trireg [charge_strength]qigned]
[delay3] list_of _net_identifiers
| trireg [drive_strength] Bigned]
[delay3] list_of net decl_assignments
| trireg [charge_strength \ectored | scalared] [signed]
range [delay3] list_of _net_identifiers
| trireg [drive_strength] ectored | scalared] [signed]
range [delay3] list_of net_decl_assignments
list_of net_decl_assignments (From Annex A - A.2.3)
net_decl_assignment, {net_decl_assignment }
net_decl_assignment :(Erom Annex A - A.2.4)
net_identifier= expression
continuous_assign ::From Annex A - A.6.1)
assign[drive_strength] [delay3] list_of net_assignments
list_of net_assignments ::=
net_assignment {net_assignment }
net_assignment ::=
net_lvalue= expression

Syntax 6-1—Syntax for continuous assignment

6.1.1 The net declaration assignment

The first two alternatives in the net declaration are discussed in see 3.2. The third alternative, the net declaration
assignment, allows a continuous assignment to be placed on a net in the same statement that declares the net.

Example:
The following is an example of the net declaration form of a continuous assignment:
wire (strongl, pull0) mynet = enable ;

NOTE—Because a net can be declared only once, only one net declaration assignment can be made for a particular net. This con-
trasts with the continuous assignment statement; one net can receive multiple assignments of the continuous assignment form.

6.1.2 The continuous assignment statement

The continuous assignment statement shall place a continuous assignment on a net data type. The net may be explic-
itly declared, or may inherit an implicit declaration in accordance with the implicit declarations rules defined in 3.5.

Assignments on nets shall be continuous and automatic. This means that whenever an operand in the right-hand side
expression changes value, the whole right-hand side shall be evaluated and if the new value is different from the pre-
vious value, then the new value shall be assigned to the left-hand side.

74 Copyright 2000 IEEE. All rights reserved. Section 6
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Examples:
Example 1-Fhe following is an example of a continuous assignment to a net that has been previously declared:

wire mynet ;
assign(strongl, pull0) mynet = enable ;

Example 2—Fhe following is an example of the use of a continuous assignment to model a 4-bit adder with carry. The
assignment could not be specified directly in the declaration of the nets because it requires a concatenation on the left-
hand side.

module adder (sum_out, carry_out, carry_in, ina, inb);
output [3:0] sum_out;

output carry_out;

input [3:0] ina, inb;

input carry_in;

wire carry_out, carry_in;

wire [3:0] sum_out, ina, inb;

assign{carry_out, sum_out} = ina + inb + carry_in;
endmodule

Example 3—Fhe following example describes a module with one 16-bit output bus. It selects between one of four
input busses and connects the selected bus to the output bus.

module select_bus(busout, bus0, busl, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16'bz;
output [1:n] busout;
input [1:n] bus0, bus1, bus2, bus3;
input enable;
input [1:2] s;
tri [1:n] data; /I net declaration
/I net declaration with continuous assignment
tri [1:n] busout = enable ? data : Zee;
/[assignment statement with four continuous assignments
assign
data = (s == 0) ? busO : Zee,
data=(s==1) ? busl : Zee,
data = (s ==2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;
endmodule

The following sequence of events is experienced during simulation of this example:

a) The value ok, a bus selector input variable, is checked in the assign statement. Based on the salilee of
netdata receives the data from one of the four input buses.

b) The setting oflata net triggers the continuous assignment in the net declaratidsuwut . If enable is
set, the contents alata are assigned tbusout ; if enable is 0, the contents oZee are assigned to
busout .

Section 6 Copyright 2000 IEEE. All rights reserved. 75
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

6.1.3 Delays

A delay given to a continuous assignment shall specify the time duration between a right-hand side operand value
change and the assignment made to the left-hand side. If the left-hand side references a scalar net, then the delay shall
be treated in the same way as for gate delays—that is, different delays can be given for the output rising, falling, and
changing to high impedance (see Section 7).

If the left-hand side references a vector net, then up to three delays can be applied. The following rules determine
which delay controls the assignment:

— If the right-hand side makes a transition from nonzero to zero, then the falling delay shall be used.
— If the right-hand side makes a transitiorztdhen the turn-off delay shall be used.
— For all other cases, the rising delay shall be used.

Specifying the delay in a continuous assignment that is part of the net declaration shall be treated differently from
specifying a net delay and then making a continuous assignment to the net. A delay value can be applied to a netin a
net declaration, as in the following example:

wire #10 wireA;

This syntax, called aet delaymeans that any value change that is to be appliedri®A by some other statement

shall be delayed for ten time units before it takes effect. When there is a continuous assignment in a declaration, the
delay is part of the continuous assignment amibisa net delay. Thus, it shall not be added to the delay of other driv-

ers on the net. Furthermore, if the assignment is to a vector net, then the rising and falling delays shall not be applied
to the individual bits if the assignment is included in the declaration.

In situations where a right-hand side operand changes before a previous change has had time to propagate to the left-
hand side, then the following steps are taken:

a) The value of the right-hand side expression is evaluated.

b) If this RHS value differs from the value currently scheduled to propagate to the left-hand side, then the
currently scheduled propagation event is descheduled.

c) If the new RHS value equals the current left-hand side value, no event is scheduled.

d) If the new RHS value differs from the current LHS value, a delay is calculated in the standard way using the
current value of the left-hand side, the newly calculated value of the right-hand side, and the delays indicated
on the statement; a new propagation event is then scheduled to occur delay time units in the future.

6.1.4 Strength

The driving strength of a continuous assignment can be specified by the user. This applies only to assignments to sca-
lar nets of the following types:

wire tri trireg
wand triand trio
wor trior tril

Continuous assignments driving strengths can be specified in either a net declaration or in a stand-alone assignment,
using theassignkeyword. The strength specification, if provided, shall immediately follow the keyword (either the
keyword for the net type aassigr) and precede any delay specified. Whenever the continuous assignment drives the
net, the strength of the value shall be simulated as specified.

76 Copyright 2000 IEEE. All rights reserved. Section 6
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

A drive strength specification shall contain one strength value that applies when the value being assigned to the net is
1 and a second strength value that applies when the assigned vélug&hs following keywords shall specify the
strength value for an assignmentlof

supplyl strongl pulll weakl highz1
The following keywords shall specify the strength value for an assignment of

supply0 strong0 pullo weak0 highz0

The order of the two strength specifications shall be arbitrary. The following two rules shall constrain the use of drive
strength specifications:

— The strength specificationkighzl, highz0) and fighz0, highz1) shall be treated as illegal constructs.

— If drive strength is not specified, it shall defaulf &irong1, strong0).

6.2 Procedural assignments

The primary discussion of procedural assignments is in 9.2. However, a description of the basic ideas in this clause
highlights the differences between continuous assignments and procedural assignments.

As stated in 6.1, continuous assignments drive nets in a manner similar to the way gates drive nets. The expression on
the right-hand side can be thought of as a combinatorial circuit that drives the net continuously. In contrast, proce-
dural assignments put values in variables. The assignment does not have duration; instead, the variable holds the
value of the assignment until the next procedural assignment to that variable.

Procedural assignments occur within procedures sualvasys initial (see Section 9)ask, andfunction (see Sec-

tion 10) and can be thought of as “triggered” assignments. The trigger occurs when the flow of execution in the simu-
lation reaches an assignment within a procedure. Reaching the assignment can be controlled by conditional
statements. Event controls, delay contrdistatementscasestatements, and looping statements can all be used to
control whether assignments are evaluated. Section 9 gives details and examples.

6.2.1 Variable declaration assignment

The variable declaration assignment is a special case of procedural assignment as it assigns a value to a variable. It
allows an initial value to be placed in a variable in the same statement that declares the variable. The assignment shall
be to a constant expression. The assignment does not have duration; instead, the variable holds the value until the next
assignment to that variable. Variable declaration assignments to an array are not allowed. Variable declaration assign-
ments are only allowed at the module level.
Examples:
Example 1-Beclare a 4 bit reg and assign it the value 4.

reg[3:0] a = 4'h4;
This is equivalent to writing:

reg[3:0] a;
initial a = 4'h4;

Example 2—Fhe following example is not legal.

reg [3:0] array [3:0] = 0;

Section 6 Copyright 2000 IEEE. All rights reserved. 77
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Example 3-Beclare two integers, the first is assigned the value of 0.
integeri=0, j;

Example 4-Beclare two real variables, assigned to the values 2.5 and 300,000.
real r1 = 2.5, n300k = 3ES6;

Example 5-Beclare a time variable and realtime variable with initial values.

time t1 = 25;
realtime rtl = 2.5;

NOTE—If the same variable is assigned different values both in an initial block and in a variable declaration assignment, the order
of the evaluation is undefined.

6.2.2 Variable declaration syntax

The syntax for variable declaration assignments is given in Syntax 6-2.

integer_declaration ::fFrom Annex A - A.2.1.3)

integer list_of variable_identifiers
real_declaration ::=

real list_of real_identifiers
realtime_declaration ::=

realtime list_of real_identifiers
reg_declaration ::=

reg [signed] [range] list_of variable_identifiers
time_declaration ::=

time list_of variable_identifiers
real_type ::5From Annex A - A.2.2.1)

real_identifier [= constant_expression]

| real_identifier dimension { dimension }

variable_type ::=
variable_identifier F constant_expression]

| variable_identifier dimension { dimension }
list_of real_identifiers ::4From Annex A - A.2.3)

real_type {, real_type }
list_of variable_identifiers ::=

variable_type { variable_type }

Syntax 6-2—Syntax for reg declaration assignment

78 Copyright 2000 IEEE. All rights reserved. Section 6
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 7

Gate and switch level modeling

This section describes the syntax and semantics of these built-in primitives and how a hardware design can be
described using these primitives.

There are 14 logic gates and 12 switches predefined in the Verilog HDL to providatdendswitchlevel modeling
facility. Modeling with logic gates and switches has the following advantages:

— Gates provide a much closer one-to-one mapping between the actual circuit and the model.
— There is no continuous assignment equivalent to the bidirectional transfer gate.

7.1 Gate and switch declaration syntax
Syntax 7-1 shows the gate and switch declaration syntax.
A gate or a switch instance declaration shall have the following specifications:

— The keyword that names the type of gate or switch primitive
— An optionaldrive strength

— An optionalpropagation delay

— An optional identifier that names each gate or switch instance
— An optional range foarray of instances

— The terminal connection list

Multiple instances of the one type of gate or switch primitive can be declared as a comma-separated list. All such
instances shall have the same drive strength and delay specification.

Section 7 Copyright 2000 IEEE. All rights reserved. 79
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

gate_instantiation ::#From Annex A - A.3.1)
cmos_switchtype [delay3] cmos_switch_instancefos_switch_instance;}
| enable_gatetype [drive_strength] [delay3] enable_gate instamceble gate instance }
| mos_switchtype [delay3] mos_switch_instancenfos_switch_instance;}
| n_input_gatetype [drive_strength] [delay2] n_input_gate_instancedput_gate_instance }
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance
{, n_output_gate_instance }
| pass_en_switchtype [delay2] pass_enable_switch_instapasq enable_switch_instance]
| pass_switchtype pass_switch_instancpdss_switch_instance }
| pulldown [pulldown_strength] pull_gate_instance gull_gate instance }
| pullup [pullup_strength] pull_gate_instance gull_gate_instance }

cmos_switch_instance ::= [name_of_gate_instance]

(‘output_terminal input_terminal ncontrol_terminal pcontrol_terminaj
enable_gate_instance ::= [name_of_gate_instance]

(‘output_terminal input_terminal enable_terminal
mos_switch_instance ::= [name_of_gate_instance]

(‘output_terminal input_terminal enable_terminal
n_input_gate_instance ::= [name_of_gate_instance]

(‘output_terminal input_terminal {, input_terminal })
n_output_gate_instance ::= [name_of_gate_instance]

(‘output_terminal { output_terminal }, input_terminal)
pass_switch_instance ::= [name_of_gate_instafi@gojt_terminal inout_terminal
pass_enable_switch_instance ::= [name_of_gate_instance]

(inout_terminal inout_terminal enable_terminal
pull_gate_instance ::= [name_of_gate_instanoeufput_termina)
name_of gate_instance ::= gate_instance_identifier [range]
pulldown_strength ::€From Annex A - A.3.2)

(strengthQ strengthl)
| (strengthl, strengthQ
| (strengthQ

pullup_strength ::£ strengthQ strength?)
| (strengthl, strengthQ
| (strengthl)

enable_terminal ::fFrom Annex A - A.3.3)
expression

inout_terminal ::= net_Ivalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression

cmos_switchtype ::€From Annex A - A.3.4)
cmos|rcmos

enable_gatetype :bufifO | bufifl | notifO | notifl
mos_switchtype ::amos| pmos|rnmos | rpmos
n_input_gatetype ::and | nand |or | nor | xor | xnor
n_output_gatetype ::buf | not

pass_en_switchtype :t=anif0 |tranifl |rtranifl |rtranifO
pass_switchtype ::tran |rtran

Syntax 7-1—Syntax for gate instantiation

80 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

7.1.1 The gate type specification

A gate or switch instance declaration shall begin with the keyword that specifies the gate or switch primitive being
used by the instances that follow in the declaration. Table 7-1 lists the keywords that shall begin a gate or a switch
instance declaration.

Table 7-1—Built-in gates and switches

n_input gates n_output gates tristate gates pull gates MOS switche biiﬁfctihoensal
and buf bufif0 pulldown cmos rtran
nand not bufifl pullup nmos rtranifO
nor notif0 pmos rtranifl
or notifl rcmos tran
xnor rnmos tranifo
xor rpmos tranifl

Explanations of the built-in gates and switches shown in Table 7-1 begin in 7.2.
7.1.2 The drive strength specification

An optional drive strength specification shall specify sieengthof the logic values on the output terminals of the
gate instance. Only the instances of the gate primitives shown in Table 7-2 can have the drive strength specification.

Table 7-2—Valid gate types for strength specifications

and nand buf not pulldown
or nor bufifo notifo pullup
xor xnor bufifl notifl

The drive strength specification for a gate instance, with the exceptigrulaip and pulldown, shall have a
strengthlspecification and atrengthGOspecification. The strengthl specification shall specify the strength of signals
with a logic value 1, and thetrengthOspecification shall specify the strength of signals with a logic value 0. The
strength specification shall follow the gate type keyword and precede any delay specificatistieimpthOspecifica-

tion can precede or follow thetrengthlspecification. The strengthl asttengthOspecifications shall be separated
by a comma and enclosed within a pair of parentheses.

Thepullup gate can have onlgtrengthlspecificationstrengthOspecification shall be optional. Thrilldown gate
can have onlgtrengthOspecificationstrengthlspecification shall be optional.

The strengthl specification shall be one of the following keywords:

strongl pulll weakl

supplyl
The strengthO specification shall be one of the following keywords:

strong0 pull0 weak0

supplyO

Specifyinghighzl as strengthl shall cause the gate or switch to output a logic zainglace of al. Specifying
highz0 shall cause the gate to output a logic vatuia place of &. The strength specificatiorfsighz0, highz1)and
(highz1, highz0)shall be considered invalid.

Copyright 2000 IEEE. All rights reserved. 81
This is an unapproved IEEE Standards Draft, subject to change.

Section 7

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

In the absence of a strength specification, the instances shall have the default stremgthandstrongO.
Example:
The following example shows a drive strength specification in a declaration of an open cotiecfate:
nor (highz1,strong0)nl(outl,inl,in2);
In this example, thaor gate outputs a in place of al.
Logic strength modeling is discussed in more detail in 7.9 through 7.13.
7.1.3 The delay specification
An optional delay specification shall specify the propagation delay through the gates and switches in a declaration.
Gates and switches in declarations with no delay specification shall have no propagation delay. A delay specification
can contain up to three delay values, depending on the gate typepullbp and pulldown instance declarations
shall not include delay specifications. Delays are discussed in more detail in 7.14.

7.1.4 The primitive instance identifier

An optional name can be given to a gate or switch instance. If multiple instances are declared as an array of instances,
an identifier shall be used to name the instances.

7.1.5 The range specification

There are many situations when repetitive instances are required. These instances shall differ from each other only by
the index of the vector to which they are connected.

In order to specify an array of instances, the instance name shall be followed by the range specification. The range
shall be specified by two constant expressions, left-hand intiex)(and right-hand indexrfi), separated by a

colon and enclosed within a pair of square bracketfihiArhi] range specification shall represent an array of
abs(lhi-rhi)+1 instances. Neither of the two constant expressions are required to be zerbj and not

required to be larger thahi . If both constant expressions are equal, only one instance shall be generated.

An array of instances shall have a continuous range. One instance identifier shall be associated with only one range to
declare an array of instances.

The range specification shall be optional. If no range specification is given, a single instance shall be created.
Example:
A declaration shown below is illegal:
nand #2 t_nand[0:3] (...), t_nand[4:7] (...);
It could be declared correctly as one array of eight instances, or two arrays with unique names of four elements each:

nand #2 t_nand[0:7](...);
nand #2 x_nand[0:3] (...), y_nand[4:7] (...);

7.1.6 Primitive instance connection list

The terminal list describes how the gate or switch connects to the rest of the model. The gate or switch type can limit
these expressions. The connection list shall be enclosed in a pair of parentheses, and the terminals shall be separated
by commas. The output or bidirectional terminals shall always come first in the terminal list, followed by the input

82 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

terminals.
The terminal connections for an array of instances shall follow these rules:

— The bit length of each port expression in the declared instance-array shall be compared with the bit length of
each single-instance port or terminal in the instantiated module or primitive.

— For each port or terminal where the bit length of the instance-array port expression is the same as the bit
length of the single-instance port, the instance-array port expression shall be connected to each single-
instance port.

— If bit lengths are different, each instance shall get a part-select of the port expression as specified in the range,
starting with the right-hand index.

— Too many or too few bits to connect to all the instances shall be considered an error.

An individual instance from an array of instances shall be referenced in the same manner as referencing an element of
an array of regs.

Examples:

Example 1-Fhe following declaration ofnand_array declares four instances that can be referenced by
nand_array[l] ,nand_array[2] ,nand_array[3] , andnand_array[4] respectively.

nand #2 nand_array[1:4](...) ;

Example 2—Fhe two module descriptions that follow are equivalent except for indexed instance names, and they
demonstrate the range specification and connection rules for declaring an array of instances:

module driver (in, out, en);
input [3:0] in;

output [3:0] out;

input en;

bufif0 ar[3:0] (out, in, en); // array of tri-state buffers
endmodule

module driver_equiv (in, out, en);
input [3:0] in;

output [3:0] out;

input en;

bufif0 ar3 (out[3], in[3], en); // each buffer declared separately
bufif0 ar2 (out[2], in[2], en);
bufif0 arl (out[1], in[1], en);
bufif0 arO (out[0], in[0], en);

endmodule

Example 3—Fhe two module descriptions that follow are equivalent except for indexed instance names, and they
demonstrate how different instances within an array of instances are connected when the port sizes do not match.

Section 7 Copyright 2000 IEEE. All rights reserved. 83
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module busdriver (busin, bushigh, buslow, enh, enl);
input [15:0]in;

output [7:0] bushigh, buslow;

input enh, enl;

driver busar3 (busin[15:12], bushigh[7:4], enh);
driver busar2 (busin[11:8], bushigh[3:0], enh);
driver busarl (busin[7:4], buslow[7:4], enl);
driver busar0 (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver_equiv (busin, bushigh, buslow, enh, enl);
input [15:0] busin;

output [7:0] bushigh, buslow;

input enh, enl;

driver busar[3:0] (.out({bushigh, buslow?}), .in(busin),
.en({enh, enh, enl, enl}));
endmodule

Example 4—Fhis example demonstrates how a series of modules can be chained together. Figure 7-1 shows an equiv-
alent schematic interconnection of DFF instances.

module dffn (q, d, clk);
parameter bits = 1;
input [bits-1:0] d;
output [bits-1:0] q;
input clk ;

DFF dff[bits-1:0] (q, d, clk); // create a row of D flip-flops
endmodule

module MxN_pipeline (in, out, clk);

parameter M = 3, N = 4; /I M=width,N=depth
input [M-1:0] in;

output [M-1:0] out;

input clk;

wire [M*(N-1):1] t;

Il #(M) redefines the bits parameter for dffn
/I create p[1:N] columns of dffn rows (pipeline)

dffn #(M) p[L1:N] ({out, t}, {t, in}, cIK);

endmodule

84 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

L S Pzl Pl

i 3] 1] | TON outl2]
02 | g [e || ey |1 |
niodot | L - Lo I

M. 2] : Et[S] : Et[S] : E out[2:0]

. Iln[t] || i) E |) E | g Eout 1
RN O N 1 R S

In{O] Ly L it[4] ! i = Fout[0]
| dff[o] E ' dff{o] | | dffo] | dfffo] |

Figure 7-1—Schematic diagram of interconnections in array of instances

7.2 and, nand, nor, or, xor, and xnor gates
The instance declaration of a multiple input logic gate shall begin with one of the following keywords:

and nand nor or xor xnor
The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first delay shall
determine the output rise delay, the second delay shall determine the output fall delay, and the smaller of the two
delays shall apply to output transitionsxolf only one delay is specified, it shall specify both the rise delay and the

fall delay. If there is no delay specification, there shall be no propagation delay through the gate.

These six logic gates shall have one output and one or more inputs. The first terminal in the terminal list shall connect
to the output of the gate and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 7-3.

Section 7 Copyright 2000 IEEE. All rights reserved. 85
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 7-3—Truth tables for multiple input logic gates

and || 0| 1| x| z or 0|1]|x]| z xor [O | 1| x| z
0 00|00 0 0] 1] x| x 0 01| x| x
1 0O|l1 (x| X 1 11|11 1 1 (0] x| x
X 0| x| x|Xx X X |1]x]|X X X | X [x[x
z O x| x|X z X |1]x]|X z X | X [x|x

nand [0| 1| x| z nor [0 | 1] x| z xnor [|O | 1| x| z

0 1)11)11]1 0 1 (0] x| x 0 1 (0| x|X
1 1 (0] x| x 1 0|j0)0|O 1 Ol 1 (x| X
X 1| x| x|X X X |0 | x|x X X | X | X | X
z 1| x| Xx|X z X |0 | x|x z X | X [x [x

Versions of these six logic gates having more than two inputs shall have a natural extension, but the number of inputs
shall not alter propagation delays.

Example:
The following example declares a two inpuid gate:
and al (out, inl, in2);

The inputs arénl andin2 . The output i®ut . The instance name éd..

7.3 buf and not gates

The instance declaration of a multiple output logic gate shall begin with one of the following keywords:

buf not

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first delay shall
determine the output rise delay, the second delay shall determine the output fall delay, and the smaller of the two
delays shall apply to output transitionsxolf only one delay is specified, it shall specify both the rise delay and the

fall delay. If there is no delay specification, there shall be no propagation delay through the gate.

These two logic gates shall have one input and one or more outputs. The last terminal in the terminal list shall connect
to the input of the logic gate, and the other terminals shall connect to the outputs of the logic gate.

86 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Truth tables for these logic gates with one input and one output are shown in Table 7-4.

Table 7-4—Truth tables for multiple output logic gates

buf not
input output input output
0 0 0 1
1 1 1 0
X X X X
z X z X

Example:
The following example declares a two outpuf:
buf bl (outl, out2, in);

The input isin. The outputs areutl andout2 . The instance nameli..

7.4 bufifl, bufif0, notifl, and notifO gates

The instance declaration of a tri-state logic gate shall begin with one of the following keywords:
bufifo bufifl notifl notifo

These four logic gates model three-state drivers. In addition to logic Vahred0, these gates can output

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three delays, the
first delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shall deter-
mine the delay of transitions to, and the smallest of the three delays shall determine the delay of transitionk to

the specification contains two delays, the first delay shall determine the output rise delay, the second delay shall deter-
mine the output fall delay, and the smaller of the two delays shall apply to output transitiorentiz . If only one

delay is specified, it shall specify the delay for all output transitions. If there is no delay specification, there shall be
no propagation delay through the gate.

Some combinations of data input values and control input values can cause these gates to output either of two values,
without a preference for either value (see 7.10.2). These logic tables for these gates include two symbols representing
such unknown results. The symhokhall represent a result that has a valuer z. The symboH shall represent a
result that has a valdeor z. Delays on transitions td or L shall be treated the same as delays on transitions to

These four logic gates shall have one output, one data input, and one control input. The first terminal in the terminal
list shall connect to the output, the second terminal shall connect to the data input, and the third terminal shall connect
to the control input.

Section 7 Copyright 2000 IEEE. All rights reserved. 87
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 7-5 presents the logic tables for these gates.

Table 7-5—Truth tables for tristate logic gates

CONTROL CONTROL
bufifo bufifl
O 1| x| z O 1| x| z
D ojlofz|L|L D Ollz|{OoOf|L|L
A 112z |H|H A 11|lz|1|H|H
T X||x |z | x]|x T x|z | x| x| x
A zZ|Ix |z |x]|X A zllz | x| x| X
CONTROL CONTROL
notif0 notifl
O 1| x| z O 1 x| z
D O|l1|z | H|H D O|lz| 1| H|H
A 110z | L|L A 1|lz|{O0|L|L
T X|Ix |z | x|x T x|z | x| x| x
A zZ x|z |x]|X A z|lz | X | x| X

Example:
The following example declares an instanceufffl:
bufifl bfl (outw, inw, controlw);

The output ioutw , the input isnw , and the control isontrolw . The instance nameligl .

7.5 MOS switches
The instance declaration of a MOS switch shall begin with one of the following keywords:

cmos nmos pmos rcmos rmnmos rpmos

Thecmosandrcmos switches are described in 7.7.

The pmos keyword stands for the P-type metal-oxide semiconductor (PMOS) transistor amntigekeyword

stands for the N-type metal-oxide semiconductor (NMOS) transistor. PMOS and NMOS transistors have relatively
low impedance between their sources and drains when they conduaiprfibs keyword stands for resistive PMOS
transistor and thenmos keyword stands for resistive NMOS transistor. Resistive PMOS and resistive NMOS transis-
tors have significantly higher impedance between their sources and drains when they conduct than PMOS and NMOS
transistors have. The load devices in static MOS networks are examplama$ andrnmos transistors. These four
switches areinidirectional channel$or data similar to theufif gates.

88 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three delays, the
first delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shall deter-

mine the delay of transitions to, and the smallest of the three delays shall determine the delay of transitionk to

the specification contains two delays, the first delay shall determine the output rise delay, the second delay shall deter-

mine the output fall delay, and the smaller of the two delays shall apply to output transitiorentiz . If only one

delay is specified, it shall specify the delay for all output transitions. If there is no delay specification, there shall be

no propagation delay through the switch.

Some combinations of data input values and control input values can cause these switches to output either of two val-
ues, without a preference for either value. The logic tables for these switches include two symbols representing such

unknown results. The symbblrepresents a result that has a valuer z. The symboH represents a result that has a
valuel orz. Delays on transitions td andL shall be the same as delays on transitionxs to

These four switches shall have one output, one data input, and one control input. The first terminal in the terminal list
shall connect to the output, the second terminal shall connect to the data input, and the third terminal shall connect to

the control input.
The nmos and pmos switches shall pass signals from their inputs and through their outputs with a change in the
strength of the signal in only one case, as discussed in 7.1Inhies andrpmos switches shall reduce the strength
of signals that propagate through them, as discussed in 7.12

Table 7-6 presents the logic tables for these switches.

Table 7-6—Truth tables for MOS switches

pmos CONTROL AMOS CONTROL

rpmos ol 11«1, rnmos ol 1l <!
D offofz]| L|L D Olfz|O]L|L
A 11 |z|H|H A 1{lz|1|H|H
T X|Ix |z |x]|X T Xz | x|Xx]|X
A z|lz|z|z|z A zllz|z)|z]|z

Example:
The following example declarespanos switch:
pmospl (out, data, control);

The output iut , the data input idata , and the control input isontrol . The instance name ..

7.6 Bidirectional pass switches
The instance declaration of a bidirectional pass switch shall begin with one of the following keywords:

tran tranifl tranifO
rtran rtranifl rtranifO

The bidirectional pass switches shall not delay signals propagating through themtréfiith, tranifl , rtranifO , or
rtranifl devices are turned off they shall block signals, and when they are turned on they shall pass sigiiga. The

Section 7 Copyright 2000 IEEE. All rights reserved. 89
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

andrtran devices cannot be turned off, and they shall always pass signals.

The delay specifications fdranifl, tranifO, rtranifl , andrtranif0 devices shall be zero, one, or two delays. If the
specification contains two delays, the first delay shall determin&utheon delayand the second delay shall deter-
mine theturn-off delay and the smaller of the two delays shall apply to output transitionsaadz. If only one

delay is specified, it shall specify both the turn-on and the turn-off delays. If there is no delay specification, there shall
be no turn-on or turn-off delay for the bidirectional pass switch.

The bidirectional pass switchgan andrtran shall not accept delay specification.

Thetranifl, tranifO, rtranifl , andrtranif0 devices shall have three items in their terminal lists. The first two shall

be bidirectional terminals that conduct signals to and from the devices, and the third terminal shall connect to a con-
trol input. Thetran andrtran devices shall have terminal lists containing two bidirectional terminals. Both bidirec-
tional terminals shall unconditionally conduct signals to and from the devices, allowing signals to pass in either
direction through the devices. The bidirectional terminals of all six devices shall be connected only to scalar nets or
bit-selects of vector nets.

Thetran, tranif0, andtranifl devices shall pass signals with an alteration in their strength in only one case, as dis-
cussed in 7.11. Thdran, rtranifO , andrtranifl devices shall reduce the strength of the signals passing through
them according to rules discussed in 7.12.

Example:
The following example declares an instancéranifl :
tranifl t1 (inoutl,inout2,control);

The bidirectional terminals areoutl andinout2 . The control input isontrol . The instance namefts .

7.7 CMOS switches

The instance declaration of a CMOS switch shall begin with one of the following keywords:
cmos rcmos

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three delays, the
first delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shall deter-
mine the delay of transitions to, and the smallest of the three delays shall determine the delay of transitinns to
Delays in transitions téi or L are the same as delays in transitiong tdf the specification contains two delays, the

first delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the smaller
of the two delays shall apply to output transitionsctandz. If only one delay is specified, it shall specify the delay

for all output transitions. If there is no delay specification, there shall be no propagation delay through the switch.

Thecmosandrcmos switches shall have a data input, a data output, and two control inputs. In the terminal list, the
first terminal shall connect to the data output, the second terminal shall connect to the data input, the third terminal
shall connect to the n-channel control input, and the last terminal shall connect to the p-channel control input.

Thecmosgate shall pass signals with an alteration in their strength in only one case, as discussed in #drho$he
gate shall reduce the strength of signals passing through it according to rules described in 7.12.

Thecmosswitch shall be treated as the combination giaos switch and ammos switch. Thercmos switch shall
be treated as the combination of gmmos switch and amnmos switch. The combined switches in these configura-
tions shall share data input and data output terminals, but they shall have separate control inputs.

90 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:

The equivalence of themosgate to the pairing of anmosgate and gmosgate is shown in the following example:

cmos(w, datain, ncontrol, pcontrol);

J— nmos
is equivalent to: W | | .
—| —— datain
L pmos
nmos (w, datain, ncontrol);
pmos (w, datain, pcontrol); pcontrol

7.8 pullup and pulldown sources

The instance declaration of a pullup or a pulldown source shall begin with one of the following keywords:

pullup pulldown

A pullup source shall place a logic valdeon the nets connected in its terminal listpélldown source shall place a

logic valueO on the nets connected in its terminal list. The signals that these sources place on nets shmlllhave
strength in the absence of a strength specification. If conflicting strength specification is declared, it shall be ignored.
There shall be no delay specifications for these sources.

Example:
The following example declares twallup instances:
pullup (strongl) pl (neta), p2 (netb);

In this example, thpl instance drivegeta and thep2 instance drivegetb .

7.9 Logic strength modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, resistive MOS
devices, dynamic MOS, charge sharing, and other technology-dependent network configurations by allowing scalar
net signal values to have a full range of unknown values and different levels of strength or combinations of levels of
strength. This multiple-level logic strength modeling resolves combinations of signals into known or unknown values
to represent the behavior of hardware with improved accuracy.

A strength specification shall have two components

a) The strength of the 0 portion of the net value, called strength0, designated as one of the following:
supplyO strong0 pull0 weak0 highz0
b) The strength of the 1 portion of the net value, called strengthl, designated as one of the following:

supplyl strongl pulll weakl highz1

Section 7 Copyright 2000 IEEE. All rights reserved. 91
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The combinationghighz0, highz1l)and(highzl1, highz0)shall be considered illegal.

Despite this division of the strength specification, it is helpful to consider strength as a property occupying regions of
a continuum in order to predict the results of combinations of signals.

Table 7-7 demonstrates the continuum of strengths. The left column lists the keywords used in specifying strengths.
The right column gives correlated strength levels.

Table 7-7—Strength levels for scalar net signal values

Strength name | Strength level
supply0 7
strong0 6
pullo 5
large0 4
weak0 3
medium0 2
small0 1
highz0 0
highz1 0
smalll 1
mediuml1 2
weakl 3
largel 4
pulll 5
strongl 6
supplyl 7

In Table 7-7, there are fodriving strengths

supply strong pull weak
Signals with driving strengths shall propagate from gate outputs and continuous assignment outputs.
In Table 7-7, there are threbarge storage strengths

large medium small

Signals with the charge storage strengths shall originate trirdg net type.

92 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

It is possible to think of the strengths of signals in the preceding table as locations on the scale in Figure 7-2.

strengthO strengthl

7/6|5|4)|3|2|1|(0(0}|1|2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO| Me0| SmO|HiZ0 |Hiz1|Sm1| Mel| Wel Lal] Pul| Stl|Sul

Figure 7-2—Scale of strengths
Discussions of signal combinations later in this section employs graphics similar to those used in Figure 7-2.

If the signal value of a net is known, all of its strength levels shall be in either the strengthO part of the scale repre-
sented by Figure 7-2, or all strength levels shall be in its strength1 part. If the signal value of a net is unknown, it shall
have strength levels in both the strengthO and the strengthl parts. A net with a signa ¢hlak have a strength

level only in one of the 0 subdivisions of the parts of the scale.

7.10 Strengths and values of combined signals

In addition to a signal value, a net shall have either a single unambiguous strength level or an ambiguous strength
consisting of more than one level. When signals combine, their strengths and values shall determine the strength and
value of the resulting signal in accordance with the principles in 7.10.1 through 7.10.4.

7.10.1 Combined signals of unambiguous strength
This subclause deals with combinations of signals in which each signal has a known value and a single strength level.

If two or more signals of unequal strength combine in a wired net configuration, the stronger signal shall dominate all
the weaker drivers and determine the result. The combination of two or more signals of like value shall result in the
same value with the greater of all the strengths. The combination of signals identical in strength and value shall result
in the same signal.

The combination of signals with unlike values and the same strength can have three possible results. Two of the
results occur in the presence of wired logic and the third occurs in its absence. Wired logic is discussed in 7.10.4. The
result in the absence of wired logic is the subject of Figure 7-4.

Example:
Pul(b)
St0(6)
St0(6)
Sul(7)
Sul(7)
Lal(4)

Figure 7-3—Combining unequal strengths

In Figure 7-3, the numbers in parentheses indicate the relative strengths of the signals. The combinatidhbf a
and astrong O results in atrong 0, which is the stronger of the two signals.

7.10.2 Ambiguous strengths: sources and combinations

There are several classifications of signals possessing ambiguous strengths

Section 7 Copyright 2000 IEEE. All rights reserved. 93
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

— Signals with known values and multiple strength levels
— Signals with a value, which have strength levels consisting of subdivisions of both the stréragit the
strengtl® parts of the scale of strengths in Figure 7-2
— Signals with a valueL, which have strength levels that consist of high impedance joined with strength levels
in the strengthO part of the scale of strengths in Figure 7-2
— Signals with a valuéd, which have strength levels that consist of high impedance joined with strength levels
in the strengthl part of the scale of strengths in Figure 7-2

Many configurations can produce signals of ambiguous strength. When two signals of equal strength and opposite
value combine, the result shall be a valyealong with the strength levels of both signals and all the smaller strength

levels.

Examples:

Figure 7-4 shows the combination ofhweeak signal with a valuel and aweak signal with a valué® yielding a signal
with weak strength and a value

Wel

WeO

WeX

Figure 7-4—Combination of signals of equal strength and opposite values

This output signal is described in Figure 7-5.

Figure 7-5—Weak x signal strength

strengthO strengthl
7/6|5|4|3|2(1|0|0|1|2|3|4|5|6]|7
Su0 | Sto | PuO | La0 | We0| MeO | SmO[HiZO0 |Hiz1[Sm1| Mel| Wel Lal| Pul| Sti|Sul
- >

An ambiguous signal strength can be a range of possible values. An example is the strength of the output from the tri-

state drivers with unknown control inputs as shown in Figure 7-6.

94

This is an unapproved IEEE Standards Draft, subject to change.

Copyright 2000 IEEE. All rights reserved.

Section 7

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
X
bufifl
Stl StH
X
bufifO
WeO StL

Figure 7-6—Bufifs with control inputs of x

The output of théufifl in Figure 7-6— is &trong H, composed of the range of values described in Figure 7-7.

strengthO strengthl

7165|432 |1]0|0|1|2|3|4|5]|6]|7
Su0 [St0 | PuO | La0 | WeO| Me0| SmO|HiZ0 |Hiz1|Sm1 | Mel| Wel Lal| Pul| Stl|Sul

Figure 7-7—Strong H range of values

The output of théufifO in Figure 7-6 is @trong L, composed of the range of values described in Figure 7-8.

strengthO strengthl

716514132100 |1}|2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO[HiZ0 |HiZ1|Sm1| Mel| Wel Lal| Pul|l Stl1|Sul

- -

Figure 7-8—Strong L range of values

The combination of two signals of ambiguous strength shall result in a signal of ambiguous strength. The resulting
signal shall have a range of strength levels that includes the strength levels in its component signals. The combination
of outputs from two tri-state drivers with unknown control inputs, shown in Figure 7-9, is an example.

Section 7 Copyright 2000 IEEE. All rights reserved. 95
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
X
PuH
Pul
X
35X

Weo %
e

Figure 7-9—Combined signals of ambiguous strength

In Figure 7-9, the combination of signals of ambiguous strengths produces a range that includes the extremes of the
signals and all the strengths between them, as described in Figure 7-10.

strength0O strengthl

716543210101 }2|3|4|5]|6]|7
Su0 | St0 | Pu0 | La0 | WeO| Me0 | SmO|HiZ0 [Hiz1|Sm1 | Mel| Wel Lal] Pul] Stl|Sul

- L

Figure 7-10—Range of strengths for an unknown signal

The result is a valug because its range includes the vallieend0. The numbeB5, which precedes the, is a con-
catenation of two digits. The first is the digit 3, which corresponds to the highest strength0 level for the result. The
second digit, 5, corresponds to the highest strengthl level for the result.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the upper and lower
configurations in Figure 7-11.

96 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

reg b =x Vce pullup

J_ Pul (5)
rega =1 (6) J

reg g =x Iy
o

651

Pu0 (5) 1

530

regd =0 [

and

W
rege =0 [€0 (3)

pulldown ground

Figure 7-11—Ambiguous strengths from switch networks

In Figure 7-11, the upper combination of a reg, a gate controlled by a reg of unspecified value, and a pullup produces
a signal with a value of 1 and a range of strendif& (described in Figure 7-12.

strengthO strengthl

7/6|5|4(3|2|1|0|0|1}2|3|4|5]|6]|7
Su0 | St0 | Pu0 | La0 | WeO| MeO| SmO|HiZ0 |Hiz1|Sm1 | Mel| Wel Lal] Pul| Stl|Sul

Figure 7-12—Range of two strengths of a defined value

In Figure 7-11, the lower combination ofalldown, a gate controlled by a reg of unspecified value, andrahgate
produces a signal with a val@eand a range of strengths3Q) described in Figure 7-13.

strengthO strengthl

7/6|5|4|3|2(1|0|0|1}2|3|4|5]|6]7
Su0 | St0 | Pu0 | La0 | WeO| Me0 | SmO|HiZ0 |HiZ1|Sm1 | Mel| Wel Lall Pul] Stl|Sul

Figure 7-13—Range of three strengths of a defined value

When the signals from the upper and lower configurations in Figure 7-11 combine, the result is an unknown with a
range 66x) determined by the extremes of the two signals shown in Figure 7-14.

Section 7 Copyright 2000 IEEE. All rights reserved. 97
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

strengthO strengthl

716543210012 |3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO[HiZ0 |Hiz1|Sm1| Mel| Wel Lall Pull Stl|Sul

Figure 7-14—Unknown value with a range of strengths

In Figure 7-11, replacing thpulldown in the lower configuration with supplyO would change the range of the
result to the ranges¢X) described in Figure 7-15.

The range in Figure 7-15 &rong x, because it is unknown and the extremes of both its componerdsrang. The
extreme of the output of the lower configurationsisong because the lowepmos reduces the strength of the
supply0 signal. This modeling feature is discussed in 7.11.

strengthO strengthl

716541321 |]0|0|1|2|3|4|5|6]|7
Su0 | St0 | PuO | LaO | WeO| Me0O| SmO|HiZ0 [HiZ1|Sm1| Mel| Wel Lall Pul| Stl1]|Sul

Figure 7-15—Strong X range

Logic gates produce results with ambiguous strengths as well as tri-state drivers. Such a case appears in Figure 7-16.
Theand gateN1 is declared withhighz0 strength, an®N2 is declared withweakO strength.

=] — StH and (strong1,highz0) N1(a,b);
N1 and (strongl, weak0) N2(c,d);
b=X —
36X
c=0 —
N2
d=0 — WeO

Figure 7-16—Ambiguous strength from gates

In Figure 7-16, red has an unspecified value, so input to the ugpet gate isstrong x. The uppeand gate has a
strength specification includintgghz0. The signal from the uppemnd gate is astrong H composed of the values as
described in Figure 7-17.

98 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

strengthO strengthl

7/16|5]4(3|2|1]0|0(1|2|3|4|5]|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO|HiZO0 |Hiz1|{Sm1| Mel| Wel Lal| Pul| Stl|Sul

Figure 7-17—Ambiguous strength signal from a gate

HiZO0 is part of the result, because the strength specification for the gate in question specified that strength for an out-
put with a valueD. A strength specification other than high impedance foiQtvalue output results in a gate output
valuex. The output of the loweand gate is aveak 0 as described in Figure 7-18.

strengthO strengthl

7|16 |54 (3|211]0|0j1|2|3|4|5]|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO[HizO0 |Hiz1|Sm1|Mel| Wel Lall Pul| Stl|Sul

-

Figure 7-18—Weak O

When the signals combine, the result is the raBgr X as described in Figure 7-19.

strengthO strengthl

7116|5432 |1]0|0j1|2|3|4|5]|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO|HiZO0 |Hiz1|Sm1|Mel| Wel Lal| Pul| Stl|Sul

Figure 7-19—Ambiguous strength in combined gate signals

Figure 7-19 presents the combination of an ambiguous signal and an unambiguous signal. Such combinations are the
topic of 7.10.3.

7.10.3 Ambiguous strength signals and unambiguous signals

The combination of a signal with unambiguous strength and known value with another signal of ambiguous strength
presents several possible cases. To understand a set of rules governing this type of combination, it is necessary to con-
sider the strength levels of the ambiguous strength signal separately from each other and relative to the unambiguous
strength signal. When a signal of known value and unambiguous strength combines with a component of a signal of
ambiguous strength, these shall be the effects

Section 7 Copyright 2000 IEEE. All rights reserved. 99
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

a) The strength levels of the ambiguous strength signal that are greater than the strength level of the
unambiguous signal shall remain in the result.

b) The strength levels of the ambiguous strength signal that are smaller than or equal to the strength level of the
unambiguous signal shall disappear from the result, subject to rule c.

c) Ifthe operation of rule a and rule b results in a gap in strength levels because the signals are of opposite value,
the signals in the gap shall be part of the result.

The following figures show some applications of the rules.

strengthO strengthl

7165143 (2|1(0|0|1]|2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO[HiZO0 |Hiz1|Sm1| Mel| Wel Lal] Pul] Stl|Sul

strengthO strengthl

7|6|5(4(3|2|1|]010(1]|2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO|HiZ0 |Hiz1|Sm1 | Mel| Wel Lal Pul| Sti|Sul

||

Combining the two signals above results in the following signal:

strengthO strengthl

716|514 |13|2|1|]0|0|1|2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO|HiZ0 [HiZ1|Sm1| Mel| Wel Lal{ Pul| Stl1|Sul

||

Figure 7-20—Elimination of strength levels

In Figure 7-20, the strength levels in the ambiguous strength signal that are smaller than or equal to the strength level
of the unambiguous strength signal disappear from the result, demonstrating rule b.

100 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE

Std P1364-2000 (Draft 5)

strengthO strengthl
716|514 (3[2|1}j0]0|1|2|3[4|5]|6]|7
Su0 | St0 | Pu0| La0 | WeQ MeO| SmO[HiZO0 |HiZ1|Sm1| Mel| Wel Lal| Pul] St1|Sul
| -
strengthO strengthl
716|514 (3[2|1(0]0|212|2(3[4|5|6]|7
Su0 | St0 | PuO | La0O | WeQ| MeO| SmO[HizZ0 |HiZz1|Sm1| Mel| Wel Lall Pul| St1|Sul
]
Combining the two signals above results in the following signal:
strengthO strengthl
716|5(4(3|2|1(0]0|1(2|3|4|5|6]|7
Su0 | St0 | PuO | La0 | We0| MeO| SmO[HiZ0 |HiZ1|Sm1| Mel| Wel Lal| Pul| Stl|Sul
|«—>

Figure 7-21—Result demonstrating a range and the elimination of strength levels of two values

In Figure 7-21, rules a, b, and ¢ apply. The strength levels of the ambiguous strength signal that are of opposite value
and lesser strength than the unambiguous strength signal disappear from the result. The strength levels in the ambigu-
ous strength signal that are less than the strength level of the unambiguous strength signal, and of the same value, dis-
appear from the result. The strength level of the unambiguous strength signal and the greater extreme of the

ambiguous strength signal define a range in the result.

Section 7

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

101

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

strengthO strengthl

716|514 (3210|012 |3|4|5|6]|7
SuO || St0 |PuO| La0 | WeQ| Me0O| SmO|HiZ0 [HiZz1|Sm1| Mel| Wel Lal{ Pul] Stl1|Sul

strengthO strengthl

716|514 |13]2|1|0]|]0|1}2|3|4|5|6]|7
Su0| Sto | Pu0| La0 | WeO| MeO| SmO|HiZO0 |Hiz1|Sm1| Mel| We] Lal] Pul] Stl|Sul

]

Combining the two signals above results in the following signal:

strengthO strengthl

716|514 |3]2|1|0]|]0|1}2|3|4|5|6]|7
Su0| St0 | Pu0| La0 | WeO| MeO| SmO|HiZO0 |Hiz1|Sm1| Mel| We] Lal] Pul] Stl1|Sul

D ——

Figure 7-22—Result demonstrating a range and the elimination of strength levels of one value

In Figure 7-22, rules a and b apply. The strength levels in the ambiguous strength signal that are less than the strength
level of the unambiguous strength signal disappear from the result. The strength level of the unambiguous strength
signal and the strength level at the greater extreme of the ambiguous strength signal define a range in the result.

102 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE

Std P1364-2000 (Draft 5)

strengthO strengthl
7/6(5|14|3|2|1|0|0|1|2|3(4|5|6]|7
Su0 | St0 | PuO | LaO | WeO| Me0O| SmO|HiZ0 |HiZz1|Sm1| Mel| Wel Lalf Pul{ Stl|Sul
| -
strengthO strengthl
7/6(5|14|3|2|1|0|0|1|2|3(4|5|6]|7
Su0 | St0 | PuO | LaO | WeO| Me0O| SmO|HiZ0 |HiZz1|Sm1| Mel| Wel Lalf Pul{ Stl|Sul
=
Combining the two signals above results in the following signal:
strengthO strengthl
716|514 (3|2|1(0|0|1(2|3|4|5|6]7
Su0 | St0 | PuO [LaO | WeO[MeO| SmO|HiZ0 |HiZ1{Sm1| Mel| Wel Lal] Pull Stl1|Sul
|- |

Figure 7-23—A range of both values

In Figure 7-23, rules a, b, and c apply. The greater extreme of the range of strengths for the ambiguous strength signal
is larger than the strength level of the unambiguous strength signal. The result is a range defined by the greatest
strength in the range of the ambiguous strength signal and by the strength level of the unambiguous strength signal.

7.10.4 Wired logic net types

The net typedriand, wand, trior , andwor shall resolve conflicts when multiple drivers have the same strength.
These net types shall resolve signal values by treating signals as inputs of logic functions.

Examples:

Consider the combination of two signals of unambiguous strength in Figure 7-24.

Section 7

Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

103

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

strengthO strengthl

716|514 |3]2|1|0]|0|1}2|3|4|5]6/|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO|HiZO0 |Hiz1|Sm1| Mel| We] Lal] Pul Stl|Sul

strengthO strengthl

716|514 |3]2|1|0]|0|1}2|3|4|5]6/|7
Su0 | St0 | PuO | La0 | WeO| MeO| SmO|HiZO0 |Hiz1|Sm1| Mel| We] Lal] Pul Stl|Sul

wired AND logic value result: 0
wired OR logic value result: 1

Figure 7-24—Wired logic with unambiguous strength signals

The combination of the signals in Figure 7-24, uswiged andlogic, produces a result with the same value as the
result produced by aand gate with the value of the two signals as its inputs. The combination of signalswiséat)

or logic produces a result with the same value as the result produceddyygate with the values of the two signals

as its inputs. The strength of the result is the same as the strength of the combined signals in both cases. If the value of
the upper signal changes so that both signals in Figure 7-24 possess & v#leie the results of both types of logic

have a valuéd.

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of all combinations of
each of the strength levels in the first signal with each of the strength levels in the second signal, as shown in
Figure 7-25.

104 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE

Std P1364-2000 (Draft 5)

strengthO strengthl
312 010 2131415
Su0 | St0 | PuO| LaO | WeQ] MeO| SmO|HiZ0 [HiZ1|Sm1| Mel| Wel Lal] Pul] Stl| Sul
¢ » Signal 1
strengthO strengthl
71 6| 51 41 3] 2] 11 0| 0| 1 2| 3] 4] 5| 6| 7
Su0 | St0 | PuO| LaO | WeQ| MeO| SmO|HiZ0 [HiZ1|Sm1| Mel| Wel Lal] Pul] Stl| Sul
Signal 2
The combinations of strength levels for and logic appear in the
following chart:
signall signal2 result
strength | value | strength | value strength value
5 0 5 1 5 0
6 0 5 1 6 0
The result is the following signal:
strengthO strengthl
6 3 010 2131 4|5
Su0 | St0 | PuO| LaO | WeO] MeO| SmO|HiZ0 [HiZ1|Sm1| Mel| Wel Lal{ Pulj Stl| Sul
||
The combinations of strength levels for or logic appear in the
following chart:
signall signal2 result
strength | value | strength | value strength value
5 0 5 1 5 1
6 0 5 1 6 0
The result is the following signal:
strengthO strengthl
716|514 (3]2|1]1]0|0|1}2[3]4|5]|6]7
Su0 | St0 | PuO | La0 | WeQ| MeO| SmOJHiZ0 [HiZ1|{Sm1| Mel| Wel Lal| Pul] Stl|Sul
|

Section 7

Figure 7-25—Wired logic and ambiguous strengths

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

105

IEEE
Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
7.11 Strength reduction by nonresistive devices

The nmos pmos andcmosswitches shall pass the strength from the data input to the output, exceptsilnaplg
strength shall be reduced tetaong strength.

Thetran, tranifO, andtranifl switches shall not affect signal strength across the bidirectional terminals, except that
asupply strength shall be reduced tstaong strength.

7.12 Strength reduction by resistive devices

The rnmos, rpmos, rcmos, rtran, rtranifl , andrtranif0 devices shall reduce the strength of signals that pass
through them according to Table 7-8.

Table 7-8—Strength reduction rules

Large capacitor
Weak drive
Medium capacitor
Small capacitor

High impedance

Input strength Reduced strength
Supply drive Pull drive
Strong drive Pull drive
Pull drive Weak drive

Medium capacitor
Medium capacitor
Small capacitor
Small capacitor

High impedance

7.13 Strengths of net types

ThetriO, tril, supplyO, andsupplyl net types shall generate signals with specific strength levelstrifbég declara-
tion can specify either of two signal strength levels other than a default strength level.

7.13.1 tri0 and tril net strengths

Thetri0O net type models a net connected to a resigivikdown device. In the absence of an overriding source, such
a signal shall have a valieand apull strength. Theril net type models a net connected to a resigiiviup device.
In the absence of an overriding source, such a signal shall have & \aldexpull strength.

7.13.2 trireg strength

Thetrireg net type models charge storage nodes. The strength of the drive resulting frineganet that is in the
charge storage state (that is, a driver charged the net and then went to high impedance) shall be one of these three
strengthslarge, medium, or small. The specific strength associated with a partictriaeg net shall be specified by
the user in the net declaration. The default shathedium. The syntax of this specification is described in 3.4.1.

7.13.3 supply0 and supplyl net strengths

The supplyO net type models ground connections. Bupplyl net type models connections to power supplies. The
supplyO andsupplyl net types shall hawpply driving strengths.

106 Copyright 2000 IEEE. All rights reserved. Section 7

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

7.14 Gate and net delays

Gate and net delays provide a means of more accurately describing delays through a cirgateTdedayspecify
the signal propagation delay from any gate input to the gate output. Up to three values per output representing rise,
fall, and turn-off delays can be specified (see 7.2 through 7.8).

Net delaysrefer to the time it takes from any driver on the net changing value to the time when the net value is
updated and propagated further. Up to three delay values per net can be specified.

For both gates and nets, thefault delayshall be zero when no delay specification is given. When one delay value is
given, then this value shall be used for all propagation delays associated with the gate or the net. When two delays are
given, the first delay shall specify the rise delay and the second delay shall specify the fall delay. The delay when the
signal changes to high impedance or to unknown shall be the lesser of the two delay values.

For a three-delay specification

— The first delay refers to the transition to the 1 value (rise delay).
— The second delay refers to the transition to the 0 value (fall delay).
— The third delay refers to the transition to the high-impedance value.

When a value changes to the unknowh ¢alue, the delay is the smallest of the three delays. The strength of the input
signal shall not affect the propagation delay from an input to an output.

Table 7-9 summarizes the from-to propagation delay choice for the two- and three-delay specifications.

Table 7-9—Rules for propagation delays

Delay used if there are
From value: To value: 2 delays 3 delays
0 1 dl d1
0 X min(d1, d2) min(d1, d2, d3)
0 z min(d1, d2) d3
1 0 d2 d2
1 X min(d1, d2) min(d1, d2, d3)
1 z min(d1, d2) d3
X 0 d2 d2
X 1 di dl
X z min(d1, d2) d3
z 0 d2 d2
z 1 di di
z X min(d1, d2) min(d1, d2, d3)

Examples:

Example 1-Fhe following is an example of a delay specification with one, two, and three delays:

Section 7 Copyright 2000 IEEE. All rights reserved. 107
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
and #(10) al (out, inl, in2); /I only one delay
and #(10,12) a2 (out, in1, in2); /I rise and fall delays

bufif0 #(10,12,11) b3 (out, in, ctrl);// rise, fall, and turn-off delays

Example 2—Fhe following example specifies a simple latch module with tri-state outputs, where individual delays
are given to the gates. The propagation delay from the primary inputs to the outputs of the module will be cumulative,
and it depends on the signal path through the network.

module tri_latch (gout, nqout, clock, data, enable);
output qout, ngout;

input clock, data, enable;

tri qout, ngout;

not #5 nl (ndata, data);

nand #(3,5) n2 (wa, data, clock),
n3 (wb, ndata, clock);

nand #(12,15) n4 (g, ng, wa),
n5 (ng, q, wb);

bufifl #(3,7,13) g_drive (qout, g, enable),
ng_drive (nqout, ng, enable);

endmodule

7.14.1 min:typ:max delays

The syntax for delays on gate primitives (including user-defined primitives; see Section 8), nets, and continuous
assignments shall allow three values each for the rising, falling, and turn-off delays. The minimum, typical, and max-
imum values for each delay shall be specified as constant expressions separated by colons. There shall be no required
relation (e.g., mirg typ < max) between the expressions for minimum, typical, and maximum delays. These can be
any three constant expressions.

Examples

The following example showsin:typ:max values for rising, falling, and turn-off delays:

module iobuf (io1, i02, dir);

bufif0 #(5:7:9, 8:10:12, 15:18:21) bl (o1, 02, dir):
bufifl #(6:8:10, 5:7:9, 13:17:19) b2 (02, iol, dir);

endmodule

The syntax for delay controls in procedural statements (see 9.7) also allows minimum, typical, and maximum values.
These are specified by expressions separated by colons. The following example illustrates this concept.

108 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

parameter min_hi = 97, typ_hi = 100, max_hi = 107;
reg clk;

always begin
#(95:100:105) clk = 1;

#(min_hi:typ_hi:max_hi) clk = 0;
end

7.14.2 trireg net charge decay

Like all nets, the delay specification intdreg net declaration can contain up to three delays. The first two delays
shall specify the delay for transition to theandO logic states when thigireg net is driven to these states by a driver.
The third delay shall specify thgharge decay timanstead of the delay in a transition to thdogic state. The charge
decay time specifies the delay between when the driverstrifegy net turn off and when its stored charge can no
longer be determined.

A trireg net does not need a turn-off delay specification becauseeg net never makes a transition to thdogic
state. When the drivers oftareg net make transitions from thk, O, or x logic states to off, thérireg net shall
retain the previoug, 0, or x logic state that was on its drivers. Thevalue shall not propagate from the drivers of a
trireg net to atrireg net. Atrireg net can only hold @ logic state whez is the initial logic state of th&ireg net or
when thetrireg net is forced to the state with dorce statement (see 9.3.2).

A delay specification for charge decay models a charge storage node that is not ideal—a charge storage node whose
charge leaks out through its surrounding devices and connections.

The following subclauses describe the charge decay process and the delay specification for charge decay.
7.14.2.1 The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is storettie@ net to an unknown value{ after a speci-
fied delay. The charge decay process shall begin when the driverstaféigenet turn off and thérireg net starts to
hold charge. The charge decay process shall end under the following two conditions:

a) The delay specified by charge decay time elapses atritélgenet makes a transition froinor O to x.

b) The drivers ofrireg net turn on and propagatd g0, orx into thetrireg net.
7.14.2.2 The delay specification for charge decay time

The third delay in d@rireg net declaration shall specify the charge decay time. A three-valued delay specification in a
trireg net declaration shall have the following form:

#(d1, d2, d3) /I (rise_delay, fall_delay, charge_decay_time)

The charge decay time specification itrigeg net declaration shall be preceded by a rise and a fall delay specifica-
tion.

Examples:
Example 1-Fhe following example shows a specification of the charge decay tintereganet declaration:
trireg (large) #(0,0,50) capl;

This example declarestdreg net namedtapl . Thistrireg net stores darge charge. The delay specifications for
the rise delay is 0, the fall delay is 0, and the charge decay time specification is 50 time units.

Section 7 Copyright 2000 IEEE. All rights reserved. 109
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Example 2—Fhe next example presents a source description file that contaimeg net declaration with a charge
decay time specification. Figure 7-26 shows an equivalent schematic for the source description.

gate

data

nmosl |

T trireg

Figure 7-26—Trireg net with capacitance

module capacitor;
reg data, gate;

/I trireg declaration with a charge decay time of 50 time units
trireg (large) #(0,0,50) capl;

nmosnmos1 (capl, data, gate); // nmos that drives the trireg

initial begin
$monitor("%0d data=%v gate=%v capl=%v", $time, data, gate, capl);
data = 1;
I/l Toggle the driver of the control input to the nmos switch

gate = 1;

#10 gate = 0;
#30 gate = 1;
#10 gate = 0;
#100 $finish;

end

endmodule

110 Copyright 2000 IEEE. All rights reserved. Section 7

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 8

User-defined primitives (UDPS)

This section describes a modeling technique to augment the set of predefined gate primitives by designing and speci-
fying new primitive elements called user-defined primitives (UDPs). Instances of these new UDPs can be used in
exactly the same manner as the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a user-defined primitive:

a) Combinational—modeled by a combinational UDP
b) Sequential—modeled by a sequential UDP

A combinational UDP uses the value of its inputs to determine the next value of its output. A sequential UDP uses the
value of its inputs and the current value of its output to determine the value of its output. Sequential UDPs provide a
way to model sequential circuits such as flip-flops and latches. A sequential UDP can model both level-sensitive and
edge-sensitive behavior.

Each UDP has exactly one output, which can be in one of three s@atésor x. The tri-state value is not sup-
ported. In sequential UDPs, the output always has the same value as the internal state.

Thez values passed to UDP inputs shall be treated the saxeafiges.

8.1 UDP definition

UDP definitions are independent of modules; they are at the same level as module definitions in the syntax hierarchy.
They can appear anywhere in the source text, either before or after they are instantiated inside a module. They shall
not appear between the keywordsedule andendmodule

NOTE—Implementations may limit the maximum number of UDP definitions in a model, but they shall allow at least 256.

The formal syntax of the UDP definition is given in Syntax 8-1.

Section 8 Copyright 2000 IEEE. All rights reserved. 111
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

udp_declaration ::€rom Annex A - A.5.1)
{ attribute_instance }primitive udp_identifie udp_port_lis) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive
| { attribute_instance primitive udp_identifier udp_declaration_port_list;
udp_body
endprimitive
udp_port_list ::5(From Annex A - A.5.2)
output_port_identifier input_port_identifier {, input_port_identifier }
udp_declaration_port_list ::=
udp_output_declarationudp_input_declaration {udp_input_declaration }
udp_port_declaration ::=
udp_output_declaration
| udp_input_declaration
| udp_reg_declaration
udp_output_declaration ::=
{ attribute_instance putput port_identifier;
| { attribute_instance gutput reg port_identifier [= constant_expression]
udp_input_declaration ::=
{ attribute_instance }nput list_of_port_identifiers
udp_reg_declaration ::=
{ attribute_instance }eg variable_identifier,
udp_body ::5From Annex A - A.5.3)
combinational_body | sequential_body
combinational_body ::=
table combinational_entry { combinational_entryehdtable
combinational_entry ::=
level_input_list: output_symbol
sequential_body ::=
[udp_initial_statementthble sequential_entry { sequential_entrgidtable
udp_initial_statement ::=
initial output_port_identifier init_val ;
init_val :=1'b0 |1'b1 |1'bx |1'bX |1'BO|[1'B1|1Bx |1'BX [1]0
sequential_entry ::=
seq_input_list current_state next_state
seq_input_list ::=
level_input_list | edge_input_list
level_input_list ::=
level_symbol { level_symbol }
edge_input_list ::=
{'level_symbol } edge_indicator { level_symbol }
edge_indicator ::=
(level_symbol level_symbol| edge_symbol
current_state ::= level_symbol
next_state ::=output_symbol |
output_symbol ::H |1 |x | X
level_symbol ::=0 |1 |x | X |?|b|B
edge_symbol = |[R|f|F|[p|P|n|N|*

112

Syntax 8-1—Syntax for user-defined primitives

Copyright 2000 IEEE. All rights reserved. Section 8

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

8.1.1 UDP header

A UDP definition shall have one of two alternate forms. The first form shall begin with the keywinitive , fol-

lowed by an identifier, which is the name of the UDP. This in turn is followed by a comma-separated list of ports
enclosed in parentheses, which is followed by a semicolon. The UDP definition header is followed by port declara-
tions and a state table. The UDP definition shall be terminated by the kesmemdmitive.

The second form shall begin with the keywgrdmitive , followed by an identifier, which is the name of the UDP.

This in turn is followed by a comma separated list of ports declarations enclosed in parenthesis, followed by a semi-
colon. The UDP definition header is followed by a state table. The UDP definition shall be terminated by the keyword
endprimitive.

UDPs have multiple input ports and exactly one output port; bidirectional inout ports are not permitted on UDPs. All
ports of a UDP shall be scalar; vector ports are not permitted.

The output port shall be the first port in the port list.
8.1.2 UDP port declarations

UDPs shall contain input and output port declarations. The output port declaration begins with the keyipatd
followed by one output port name. The input port declaration begins with the keyiwoud, followed by one or
more input port names.

Sequential UDPs shall containreg declaration for the output port, either in addition to the output declaration, when
the UDP is declared using the first form of a UDP Header, or as part of the output_declaration, in either case. Combi-
national UDPs cannot containeg declaration. The initial value of the output port can be specified iniéial state-

ment in a sequential UDP (see 8.1.3).

NOTE—Implementations may limit the maximum number of inputs to a UDP, but they shall allow at least 9 inputs for sequential
UDPs and 10 inputs for combinational UDPs.

8.1.3 Sequential UDP initial statement

The sequential UDP initial statement specifies the value of the output port when simulation begins. This statement
begins with the keyworthitial . The statement that follows shall be an assignment statement that assigns a single-bit
literal value to the output port.

8.1.4 UDP state table

The state table defines the behavior of a UDP. It begins with the keytabld and is terminated with the keyword
endtable Each row of the table is terminated by a semicolon.

Each row of the table is created using a variety of characters (see Table 8-1), which indicate input values and output
state. Three states8+-1, andx—are supported. The state is explicitly excluded from consideration in user-defined
primitives. A number of special characters are defined to represent certain combinations of state possibilities. These
are described in Table 8-1.

The order of the input state fields of each row of the state table is taken directly from the port list in the UDP defini-
tion header. It is not related to the order of the input port declarations.

Combinational UDPs have one field per input and one field for the output. The input fields are separated from the out-
put field by a colon (). Each row defines the output for a particular combination of the input values (see 8.2).

Sequential UDPs have an additional field inserted between the input fields and the output field. This additional field
represents the current state of the UDP and is considered equivalent to the current output value. It is delimited by
colons. Each row defines the output based on the current state, particular combinations of input values, and at most
one input transition (see 8.4). A row such as the one shown below is illegal:

Section 8 Copyright 2000 IEEE. All rights reserved. 113
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

(01) (10)0:0:1;
If all input values are specified asthen the output state shall be specified.as

It is not necessary to explicitly specify every possible input combination. All combinations of input values that are not
explicitly specified result in a default output statex of

It is illegal to have the same combination of inputs, including edges, specified for different outputs.
8.1.5 Z values in UDP

Thez value in a table entry is not supported and it is considered illegalzTWadues passed to UDP inputs shall be
treated the same asvalues.

8.1.6 Summary of symbols

To improve the readability and to ease writing of the state table, several special symbols are provided. Table 8-1 sum-
marizes the meaning of all the value symbols that are valid in the table part of a UDP definition.

Table 8-1—UDP table symbols

Symbol Interpretation Comments
0 Logic O
1 Logic 1
X Unknown Permitted in the input fields of all

UDPs and in the current state field
of sequential UDPs. Not permitted
in the output field.

? Iteration of 0, 1, and x Not permitted in output field.

b Iteration of 0 and 1 Permitted in the input fields of all
UDPs and in the current state field
of sequential UDPs. Not permitted
in the output field.

=

- No change Permitted only in the output field ¢
a sequential UDP.

(vw) Value change from vtow v and w can be any one of 0,
1, x, ?, or b, and are only permitted
in the input field.

* Same as (??) Any value change on input.
r Same as (01) Rising edge on input.
f Same as (10) Falling edge on input.
p Iteration of (01), (0 x) and (x1) Potential positive edge on the ingut.
n Iteration of (10), (1x)and (x0 Potential negative edge on the input.
114 Copyright 2000 IEEE. All rights reserved. Section 8

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

8.2 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input states. Whenever an
input state changes, the UDP is evaluated and the output state is set to the value indicated by the row in the state table
that matches all the input states. All combinations of the inputs that are not explicitly specified will drive the output
state to the unknown valuxe

Examples:

The following example defines a multiplexer with two data inputs and a control input.

primitive multiplexer (mux, control, dataA, dataB);
output mux;

input control, dataA, dataB;

table

/I control dataA dataB mux

XX PRPRPRRRPRRPPRPROOOOOO
POXPOXPFPOOOORRE
RPOOOORRRELRXRERLROXEFRO
POOOOFR,RPFRPROOOR R

endtable
endprimitive

The first entry in this example can be explained as follows: weantrol equalsO, anddataA equalsl, and
dataB equal9, then outpumux equalsl.

The input combinatio®xx (control=0, dataA=x, dataB=Xx) is not specified. If this combination occurs
during simulation, the value of output partix will becomex.

Using?, the description of a multiplexer can be abbreviated as

Section 8 Copyright 2000 IEEE. All rights reserved. 115
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

primitive multiplexer (mux, control, dataA, dataB);

output mux;

input control, dataA, dataB;

table

/I control dataA dataB mux
0 1 ? 1; I1?7=01x
0 0 ? 0;
1 ? 1 1;
1 ? 0 0;
X 0 0 0;
X 1 1 1,

endtable

endprimitive

8.3 Level-sensitive sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except that the output is
declared to be of typeeg, and there is an additional field in each table entry. This new field represents the current
state of the UDP. The output field in a sequential UDP represents the next state.

Example:
Consider the example of a latch:
primitive latch (q, clock, data);

output q; regq;
input clock, data;

table
/I clock data ¢ g+
0 1:?2: 1,
0 0:?: 0;
1 2?0 - I/l - = no change
endtable
endprimitive

This description differs from a combinational UDP model in two ways. First, the output ideutifias an additional

reg declaration to indicate that there is an internal stat&he output value of the UDP is always the same as the
internal state. Second, a field for the current state, which is separated by colons from the inputs and the output, has
been added.

8.4 Edge-sensitive sequential UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine the output value.
Edge-sensitive behavior differs in that changes in the output are triggered by specific transitions of the inputs. This
makes the state table a transition table.

Each table entry can have a transition specification on at most one input. A transition is specified by a pair of values in

parenthesis such &1) or a transition symbol such asEntries such as the following are illegal:

116 Copyright 2000 IEEE. All rights reserved. Section 8
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

(0101 O0:0: 1;

All transitions that do not affect the output shall be explicitly specified. Otherwise, such transitions cause the value of
the output to change ta All unspecified transitions default to the output vatue

If the behavior of the UDP is sensitive to edges of any input, the desired output state shall be spedafieztifyers of
all inputs.

Example:
The following example describes a rising edge D flip-flop:
primitive d_edge_ff (q, clock, data);

output g; regq;
input clock, data;

table
/I clock data q q+
// obtain output on rising edge of clock
(01) O ? ;
01) 1 0?1
0?) 1 1 1
0? O 0 : 0 ;
/I ignore negative edge of clock
(?0) 2 7 -
/I ignore data changes on steady clock
? @ : ? - ;
endtable
endprimitive

The terms such g91) represent transitions of the input values. Specificéll¥) represents a transition frothto
1. Thefirst line in the table of the preceding UDP definition is interpreted as follows: when clock changes value from
0 to 1, and data equals the output goes 1 no matter what the current state

The transition of clock fron® to x with data equal t@ and current state equal 1owill result in the outputy going to
X.

8.5 Sequential UDP initialization

The initial value on the output port of a sequential UDP can be specified with an initial statement that provides a pro-
cedural assignment. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begin with the keyiwitiad . The valid contents of

initial statements in UDPs and the valid left-hand and right-hand sides of their procedural assignment statements dif-
fer from initial statements in modules. A partial list of differences between these two types of initial statements is
described in Table 8-2.

Table 8-2—Initial statements in UDPs and modules

Initial statements in UDPs Initial statements in modules

Contents limited to one procedural assignmgn€ontents can be one procedural statement pf
statement any type or a block statement that contains
more than one procedural statement

Section 8 Copyright 2000 IEEE. All rights reserved. 117
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 8-2—lInitial statements in UDPs and modules (continued)

Initial statements in UDPs Initial statements in modules

The procedural assignment statement shall| Procedural assignment statements in initial
assign a value to a reg whose identifier statements can assign values to a reg whose
matches the identifier of an output terminal | identifier does not match the identifier of an
output terminal

The procedural assignment statement shall| Procedural assignment statements can assign
assign one of the following values: 1'b1, 1'bQ, values of any size, radix, and value
1'bx, 1,0

Examples:

Example 1-Fhe following example shows a sequential UDP that contains an initial statement.

primitive srff (q, s, r);
output q; reggq;
input s, r;

initial q = 1'b1;

table

endprimitive

The outputy has an initial value of 1 at the start of the simulation; a delay specification on an instantiated UDP does
not delay the simulation time of the assignment of this initial value to the output. When simulation starts, this value is
the current state in the state table. Delays are not permitted in a UDP initial statement.

Example 2—Fhe following example and figure show how values are applied in a module that instantiates a sequential
UDP with an initial statement.

118 Copyright 2000 IEEE. All rights reserved. Section 8
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

primitive dffl (g, clk, d);

input clk, d;

output gq; regq;

initial g = 1'b1;

table

Il clk d q g+
r o : ? : 0 ;
r 1 ? 1
f ? ? -
? * ? -

endtable

endprimitive

module dff (q, gb, clk, d);
input clk, d;
output q, gb;
dffl g1 (qi, clk, d);
buf #3 g2 (q, qi);
not #5 g3 (gb, qi);
endmodule

The UDPdff1 contains an initial statement that sets the initial value of its output to 1. The mdfiuleontains an
instance of UDRIff1 .

Figure 8-1 shows the schematic of the preceding module and the simulation propagation times of the initial value of
the UDP output.

Section 8 Copyright 2000 IEEE. All rights reserved. 119
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
module dff
buf g2
d | q
UDP dff1 g1 | #3
] not g3
clk {>c gb
#5
. 1
qi
I T H— .
q 1
Lk L O
gb —] 1
0
0 3 5
simulation time

Figure 8-1—Module schematic and simulation times of initial value propagation
In Figure 8-1, the fanout from the UDP outmit includes netg] andgb. At simulation time 0gi changes value to

1. That initial value ofgi does not propagate to ngtuntil simulation time 3, and it does not propagate to giet
until simulation time 5.

8.6 UDP instances

The syntax for creating a UDP instance is shown in Syntax 8-2.

udp_instantiation ::=From Annex A- A.5.4)
udp_identifier [drive_strength] [delay?2]
[attribute_instance] udp_instance §idp_instance }
udp_instance ::=
[name_of udp_instancg putput_terminal input_terminal
{ , input_terminal })
name_of udp_instance ::=
udp_instance_identifier [range]

Syntax 8-2—Syntax for UDP instances

Instances of user-defined primitives are specified inside modules in the same manner as gates (see 7.1). The instance
name is optional, just as for gates. The port connection order is as specified in the UDP definition. Only two delays

120 Copyright 2000 IEEE. All rights reserved. Section 8
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

can be specified becaugeis not supported for UDPs. An optional range may be specified for an array of UDP
instances. The port connection rules remain the same as outlined in 7.1.

Example:

The following example creates an instance of the D-type flipefl@uige _ff (defined in 8.4).

module flip;

reg clock, data;
parameter pl = 10;
parameter p2 = 33;
parameter p3 = 12;

d_edge_ff #p3 d_inst (g, clock, data);

initial begin

data = 1;

clock = 1;

#(20 * pl) $finish;
end
always#pl clock = ~clock;
always#p2 data = ~data;
endmodule

8.7 Mixing level-sensitive and edge-sensitive descriptions

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same table. When the
input changes, the edge-sensitive cases are processed first, followed by level-sensitive cases. Thus, when level-sensi-
tive and edge-sensitive cases specify different output values, the result is specified by the level-sensitive case.

Example:
primitive jk_edge_ff (q, clock, j, k, preset, clear);
output g; regg;
input clock, j, k, preset, clear;

table

/[clock jk pc state output/next state
? ?? 01 :7?:1;/ presetlogic
? ?? *1 :1:1;
? ?? 10 :?:0;// clearlogic
? ?? 1* :0:0;
r 00 00 :0:1;//normal clocking cases
r 00 11 :?:-;
r 01 11 :?:0;
r 10 11 :?:1;
r 11 11 :0:1;
r 11 11 :1:0;
f ?? 0?7
b *? ?? :?:.-;/ljand k transition cases
b >R -

endtable

endprimitive

Section 8 Copyright 2000 IEEE. All rights reserved. 121

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear combifatiches
output has valué. Similarly, whenever the preset and clear combination has Y8lue output has valu

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is sensitive to the ris-
ing clock edge, as indicated by anin the clock field in those entries. The insensitivity to the falling edge of clock is
indicated by a hyphen (-) in the output field (see Table 8-1) for the entry withasthe value of clock. Remember

that the desired output for this input transition shall be specified to avoid unwanteldies at the output. The last

two entries show that the transitiong imndk inputs do not change the output on a steady low ordiagtk.

8.8 Level-sensitive dominance

Table 8-3 shows level-sensitive and edge-sensitive entries in the example from 8.7, their level-sensitive or edge-sensi-
tive behavior, and a case of input values that each includes.

Table 8-3—Mixing of level-sensitive and edge-sensitive entries

Entry Included case Behavior
? ?2?201:?7: 1; 0 0001:0:1; Level-sensitive
f ?2?272?2:?2:-; f 00 01: 0: O; Edge-sensitive

The included cases specify opposite next state values for the same input and current state combination. The level-sen-
sitive included case specifies that when the inpldsk, jk , andpc values ard, 00, and01 and the current state

is 0, the output changes th The edge-sensitive included case specifies that wloek falls from 1 to 0, the other

inputsjk andpc are00 andO1, and the current state@s then the output changes@o

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output dhanges to

122 Copyright 2000 IEEE. All rights reserved. Section 8
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 9

Behavioral modeling

The language constructs introduced so far allow hardware to be described at a relatively detailed level. Modeling a
circuit with logic gates and continuous assignments reflects quite closely the logic structure of the circuit being mod-
eled; however, these constructs do not provide the power of abstraction necessary for describing complex high-level
aspects of a system. The procedural constructs described in this section are well suited to tackling problems such as
describing a microprocessor or implementing complex timing checks.

This section starts with a brief overview of a behavioral model to provide a context for many types of behavioral
statements in the Verilog HDL.

9.1 Behavioral model overview

Verilog behavioral modelsontainprocedural statementhat control the simulation and manipulate variables of the
data types previously described. These statements are contained within procedures. Each procedure has an activity
flow associated with it.

The activity starts at the control construatgial andalways Eachinitial construct and eachlwaysconstruct starts
a separate activity flow. All of the activity flows are concurrent to model the inherent concurrence of hardware. These
constructs are formally described in 9.9.

The following example shows a complete Verilog behavioral model.

module behave;
reg[1:0] a, b;

initial begin
a="bl;
b ="b0;

end

always begin
#50 a = ~a;

end

always begin
#100 b = ~b;

end

endmodule

During simulation of this model, all of the flows defined by the initial and always constructs start together at simula-
tion time zero. The initial constructs execute once, and the always constructs execute repetitively.

In this model, the reg variablesandb initialize to 1 and 0 respectively at simulation time zero. The initial construct
is then complete and does not execute again during this simulation run. This initial construct coragns-end
block (also called aequential blockof statements. In this begin-end blacks initialized first, followed byp.

The always constructs also start at time zero, but the values of the variables do not change until the times specified by
the delay controls (introduced i) have elapsed. Thus, reginverts after 50 time units and rdginverts after 100

Section 9 Copyright 2000 IEEE. All rights reserved. 123
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

time units. Since the always constructs repeat, this model will produce two square waves. aheggtes with a
period of 100 time units, and rdgtoggles with a period of 200 time units. The two always constructs proceed con-
currently throughout the entire simulation run.

9.2 Procedural assignments

As described in Section 6, procedural assignments are used for updagjmgeger, time, real, realtime, and mem-
ory data types. There is a significant difference between procedural assignments and continuous assignments:

— Continuous assignmendisive nets and are evaluated and updated whenever an input operand changes value.

— Procedural assignmentgpdate the value of variables under the control of the procedural flow constructs that
surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value. The left-hand side
shall be a variable that receives the assignment from the right-hand side. The left-hand side of a procedural assign-
ment can take one of the following forms:

— reg, integer, real, realtime,or time data type: an assignment to the name reference of one of these data types.

— Bit-select of areg, integer, or time data type: an assignment to a single bit that leaves the other bits
untouched.

— Part-select of aeg, integer, or time data type: a part-select of one or more contiguous bits that leaves the rest
of the bits untouched.

— Memory word: a single word of a memory.

— Concatenation of any of the above: a concatenation of any of the previous four forms can be specified, which
effectively partitions the result of the right-hand side expression and assigns the partition parts, in order, to the
various parts of the concatenation.

NOTE—When the right-hand side evaluates to fewer bits than the left-hand side, then if the right-hand side is signed (see 4.5), it
shall be sign-extended to the size of the left-hand side.

The Verilog HDL contains two types of procedural assignment statements:

— Blocking procedural assignment statements

— Nonblocking procedural assignment statements
Blocking and nonblocking procedural assignment statements specify different procedural flows in sequential blocks.
9.2.1 Blocking procedural assignments

A blocking procedural assignmestatement shall be executed before the execution of the statements that follow it in
a sequential block (see 9.8.1). A blocking procedural assignment statement shall not prevent the execution of state-
ments that follow it in a parallel block (see 9.8.2).

The syntax for a blocking procedural assignment is given in Syntax 9-1.

124 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

blocking_assignment ::6From Annex A - A.6.2)
variable_Ivalue= [delay_or_event_control] expression
delay_control ::5From Annex A - A.6.5)
delay_value
| # (mintypmax_expression
delay_or_event_control ::=
delay_control
| event_control
| repeat (expressior) event_control

event_control ::=
@ event_identifier
| @ (event_expression
| @*
|@ (%)
event_expression ::=
expression
| hierarchical_identifier
| posedgeexpression
| negedgeexpression
| event_expressiamr event_expression
| event_expressigrevent_expression

variable_Ivalue ::¥From Annex A - A.8.5)
hierarchical_variable_identifier
| hierarchical_variable_identifi€rexpression { [expression }
| hierarchical_variable_identifi€¢rexpression { [expression }
[range_expression
| hierarchical_variable_identifi€¢range_expression
| variable_concatenation

Syntax 9-1—Syntax for blocking assignments

In this syntaxreg_Ivalue s a data type that is valid for a procedural assignment statemésthe assignment
operator, and delay_or_event_control is the optional intra-assignment timing control. The control can be either a
delay control (e.g.#6) or an event_control (e.g@(posedge clk)). The expression is the right-hand side value

that shall be assigned to the left-hand sideetf Ilvalue requires an evaluation, it shall be evaluated at the time
specified by the intra-assignment timing control.

The = assignment operator used by blocking procedural assignments is also used by procedural continuous assign-
ments and continuous assignments.

Example:

The following examples show blocking procedural assignments.

rega =0;
regal3] = 1; /I a bit-select
rega[3:5] = 7; /Il a part-select

memaladdress] = 8'hff; // assignment to a mem element
{carry, acc} = rega + regb; // a concatenation

Section 9 Copyright 2000 IEEE. All rights reserved. 125
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

9.2.2 The nonblocking procedural assignment

The nonblocking procedural assignmealiows assignment scheduling without blocking the procedural flow. The
nonblocking procedural assignment statement can be used whenever several variable assignments within the same
time step can be made without regard to order or dependence upon each other.

The syntax for a nonblocking procedural assignment is given in Syntax 9-2.

nonblocking_assignment :([Fom Annex A - A.6.2)
variable_Ivalue<=[delay_or_event_control] expression
delay_control ::From Annex A - A.6.5)
delay_value
| # (mintypmax_expression
delay or_event_control ::=
delay_control
| event_control
| repeat (expressior) event_control

event_control ::=
@ event_identifier
| @ (event_expression
| @*
|@ (%)
event_expression ::=
expression
| hierarchical_identifier
| posedgeexpression
| negedgeexpression
| event_expressiamr event_expression
| event_expressigrevent_expression

variable_Ivalue ::¥From Annex A - A.8.5)
hierarchical_variable_identifier
| hierarchical_variable_identifi€rexpression { [expression }
| hierarchical_variable_identifi€¢rexpression { [expression }
[range_expression
| hierarchical_variable_identifi¢range_expression
| variable_concatenation

Syntax 9-2—Syntax for nonblocking assignments

In this syntaxyeg_lvalue is a data type that is valid for a procedural assignment staterveig,the nonblocking
assignment operator, andelay_or_event_control is the optional intra-assignment timing control. If
reg_lvalue requires an evaluation, it shall be evaluated at the same time as the expression on the right-hand side.
The order of evaluation of theeg_Ivalue and the expression on the right-hand side is undefined if timing control

is not specified.

The nonblocking assignment operator is the same operator as the less-than-or-equal-to relational operator. The inter-
pretation shall be decided from the context in whiGhappears. Wher= is used in an expression, it shall be inter-

preted as a relational operator, and when it is used in a nonblocking procedural assignment, it shall be interpreted as
an assignment operator.

The nonblocking procedural assignments shall be evaluated in two steps as discussed in Section 5. These two steps
are shown in the following example.

126 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

Example 1:
module evaluates?2 (out);
output out;
rega, b, c;
initial begin
a=0;

alwaysc = #5 ~c;

always @(posedgec) begin

At posedge c, the simulator
evaluates the right-hand sides
of the nonblocking assign-
ments and schedules the
assignments of the new values
at the end of thenonblocking
assign updatevents (see 5.4).

Step 1:

When the simulator activates
the nonblocking assign update
events, the simulator updates
the left-hand side of each non-
blocking assignment statement.

Step 2:

a <= b; // evaluates, schedules,
b <= a; // and executes in two steps

end
endmodule

IEEE
Std P1364-2000 (Draft 5)

Nonblocking
assignment
schedules
changes al
time 5

a=0
b=1

Assignment
values are:

a=1
b=0

At the end of the time stepeans that the nonblocking assignments are the last assignments executed in a time step—
with one exception. Nonblocking assignment events can create blocking assignment events. These blocking assign-
ment events shall be processed after the scheduled nonblocking events.

Unlike an event or delay control for blocking assignments, the nonblocking assignment does not block the procedural
flow. The nonblocking assignment evaluates and schedules the assignment, but it does not block the execution of sub-
sequent statements irbagin-endblock.

Example 2:
/Inon_blockl.v

module non_block1; scheduled
rega, b, c, d, e, f changes at
time 2

/Iblocking assignments

initialbegin
a=#10 1, // awill be assigned 1 at time 10 scheduled
b=#20; //bwill be assigned 0 at time 12 changes at
c=#41; [/l cwill be assigned 1 at time 16 .

end time 4

/Inon-blocking assignments —

initial begin f=1
d <=#10 1; // d will be assigned 1 at time 10 scheduled
e <=#20; [/l ewill be assigned 0 at time 2 changes at
f<=#41; /I fwill be assigned 1 at time 4 time 10

end

endmodule d=1

As shown in the previous example, the simulator evaluates and schedules assignments for the end of the current time
step and can perform swapping operations with the nonblocking procedural assignments.

Section 9

Copyright 2000 IEEE. All rights reserved.

127

This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
Example 3:
/Inon_blockl.v Step 1: The simulator evaluates the right-
module non_block1; hand side of the nonblocking
reg a, b; assignments and schedules the
initial begin assignments for the end of the cur-
a =0; rent time step.
b =1;
a <= b; // evaluates, schedules, and Step 2:
b <= a; // executes in two steps
_er}c_i _ At the end of the current time step,
initial begin the simulator updates the left-hand
$monitor ($time, ,"a = %b b = %b", a, b); side of each nonblocking assign-
#100 $finish; ment statement.
end
endmodule assignment values are: a=1
=0

When multiple nonblocking assignments are scheduled to occur in the same variable in a particular time slot, the
order in which the assignments are evaluated is not guaranteed—the final value of the variable is indeterminate. As
shown in the following example, the value of eegs not known until the end of time step 4.

Example 4:

module multiple2 (out);
output out;
reg a;

initial a=1;
/I The assigned value of the reg is indeterminate
initial begin
a<=#40; [//schedulesa=0 attime4
a<=#41; [//schedulesa=1attime4
end /I Attime 4, a=7??
endmodule

If the simulator executes two procedural blocks concurrently, and if these procedural blocks contain nonblocking
assignment operators to the same variable, the final value of that variable is indeterminate. For example, the value of
rega is indeterminate in the following example.

Example 5:
module multiple3 ;
reg a;
initial a =1,

initial a <=#4 0; /l schedules 0 at time 4
initial a<=#41; /I schedules 1 at time 4

/I At time 4, a=??
endmodule

128 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

When multiple nonblocking assignments with timing controls are made to the same variable, the assignments are
made without cancelling nonblocking assignments scheduled at other times. Scheduling an assignment to a variable
at the same time as a previously scheduled assignment to the same variable shall result in an arbitrary order of assign-
ment to that variable, and, hence, the final value of that variable cannot be predicted.

The following example shows how the valueifff] is assigned tol and how the assignments are scheduled to
occur after each time delay.

Example 6:

module multiple;
regri;
reg[2:0] i;

initial begin
// starts at time 0, does not hold the block
r1=0;
/I makes assignments to rl without cancelling previous assignments
for (i=0;i<=5;i=i+l)
rl <= # (i*10) i[0];

end
endmodule
rl |
0 10 20 30 40 50

9.3 Procedural continuous assignments

The procedural continuous assignmer(issing keywordsassignand force) are procedural statements that allow
expressions to be driven continuously onto variables or nets. The syntax for these statements is given in Syntax 9-3.

Section 9 Copyright 2000 IEEE. All rights reserved. 129
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

net_assignment ::From Annex A - A.6.1)

net_lvalue= expression
procedural_continuous_assignments(Erom Annex A - A.6.2)

assignvariable_assignment

| deassignvariable_lvalue

| force variable_assignment

| force net_assignment

| releasevariable_lvalue

| releasenet_Ivalue

variable_assignment :From Annex A - A.6.3)
variable_Ivalue= expression

net_lvalue ::5(From Annex A - A.8.5)
hierarchical_net_identifier
| hierarchical_net_identifigrconstant_expressidr{ [constant_expressidr}
| hierarchical_net_identifidrconstant_expressidr{ [constant_expressidr}
[constant_range_expressipn
| hierarchical_net_identifidrconstant_range_expression
| net_concatenation
variable_lvalue ::=
hierarchical_variable_identifier
| hierarchical_variable_identifi¢rexpression { [expression }
| hierarchical_variable_identifi€rexpression { [expression }
[range_expression
| hierarchical_variable_identifi¢range_expression
| variable_concatenation

Syntax 9-3—Syntax for procedural continuous assignments

The left-hand side of the assignment in Hesign statemershall be a variable reference or a concatenation of vari-
ables. It shall not be a memory word (array reference) or a bit-select or a part-select of a variable.

In contrast, the left-hand side of the assignment irféinee statemertan be a variable reference or a net reference. It
can be a concatenation of any of the above. Bit-selects and part-selects of vector variables or vector nets are not
allowed.

9.3.1 The assign and deassign procedural statements

The assignprocedural continuous assignment statement shall override all procedural assignments to a variable. The
deassigmprocedural statement shall end a procedural continuous assignment to a variable. The value of the variable
shall remain the same until the reg is assigned a new value through a procedural assignment or a procedural continu-
ous assignment. The assign and deassign procedural statements allow, for example, modeling of asynchronous clear/
preset on a D-type edge-triggered flip-flop, where the clock is inhibited when the clear or preset is active.

If the keywordassignis applied to a variable for which there is already a procedural continuous assignment, then this
new procedural continuous assignment shall deassign the variable before making the new procedural continuous
assignment.

Example:

The following example shows a use of the assign and deassign procedural statements in a behavioral description of a
D-type flip-flop with preset and clear inputs.

130 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module dff (g, d, clear, preset, clock);

output q;
input d, clear, preset, clock;
reg q;
always @(clear or preset)
if (Iclear)
assigng = 0;
else if(!preset)
assigng = 1,
else
deassignq;
always @(posedgeclock)
q=d;
endmodule

If eitherclear orpreset is low, then the outpug will be held continuously to the appropriate constant value and
a positive edge on thedock will not affectq. When both thelear andpreset are high, thewy is deassigned.

If either operand to an arithmetic operator is real, the resulting expression is of type real.
9.3.2 The force and release procedural statements

Another form of procedural continuous assignment is provided byoifce andreleaseprocedural statements. These
statements have a similar effect to the assign-deassign pair, but a force can be applied to nets as well as to variables.
The left-hand side of the assignment can be a variable, a net, a constant bit-select of a vector net, a part-select of a
vector net, or a concatenation. It cannot be a memory word (array reference) or a bit-select or a part-select of a vector
variable.

A forcestatement to a variable shall override a procedural assignment or procedural continuous assignment that takes
place on the variable until a release procedural statement is executed on the variable. A&brabeprocedural
statement is executed, the variable shall not immediately change value (as would a net that is forced). The value spec-
ified in the force statement shall be maintained in the variable until the next procedural assignment takes place, except
in the case where a procedural continuous assignment is active on the variable.

A force procedural statement on a net overrides all drivers of the net—gate outputs, module outputs, and continuous
assignments—until a release procedural statement is executed on the net.

Releasing a variable that currently has an active procedural continuous assignment shall re-establish that assignment.

Section 9 Copyright 2000 IEEE. All rights reserved. 131
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

module test;
rega, b, c, d;
wire €;

and and1 (e, a, b, c);
initial begin

$monitor("%d d=%b,e=%b", $stime d, €);
assignd=a &b &c;

a=1;
b=0;
c=1;
#10;

forced=(a|b]|c);
forcee=(a|b]|c);
#10 $stop
released;
releasee;
#10 S$finish;

end

endmodule

Results:
0 d=0,e=0
10d=1,e=1
20 d=0,e=0

In this example, aand gate instancandl is “patched” as amr gate by a force procedural statement that forces its
output to the value of its logical or inputs, and an assign procedural statement of logical and values is “patched” as an
assign procedural statement of logical or values.
The right-hand side of a procedural continuous assignment or a force statement can be an expression. This shall be
treated just as a continuous assignment; that is, if any variable on the right-hand side of the assignment changes, the
assignment shall be re-evaluated while the assign or force is in effect. For example:

forcea=b +f(c) ;

Here, ifb changes ot changesa will be forced to the new value of the expresdieif{c)

9.4 Conditional statement

The conditional statemenr(por if-else statement) is used to make a decision as to whether a statement is executed or
not. Formally, the syntax is given in Syntax 9-4.

132 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

conditional_statement ::From Annex A - A.6.6)
if (expressior)
statement_or_null¢lsestatement_or_null]
| if_else_if statement
function_conditional_statement :(From Annex A - A.6.6)
if (expressior) function_statement_or_null
[elsefunction_statement_or_null]
| function_if_else_if_statement

Syntax 9-4—Syntax of if statement

If the expression evaluates to true (that is, has a nonzero known value), the first statement shall be executed. If it eval-
uates to false (has a zero value or the valueds z), the first statement shall not execute. If there is an else statement
and expression is false, the else statement shall be executed.

Since the numeric value of thie expression is tested for being zero, certain shortcuts are possible. For example, the
following two statements express the same logic:

if (expression)

if (expression !=0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a nested if
sequence. This is resolved by always associating the else with the closest previous if that lacks an else. In the example
below, the else goes with the inner if, as shown by indentation.

if (index > 0)
if (rega > regb)
result = rega;
else /I else applies to preceding if
result = regb;

If that association is not desired, a begin-end block statement shall be used to force the proper association, as shown
below.

if (index > 0) begin
if (rega > regb)
result = rega;
end
elseresult = regb;

9.4.1 If-else-if construct

The following construction occurs so often that it is worth a brief separate discussion:

Section 9 Copyright 2000 IEEE. All rights reserved. 133
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

if else_if statement ::fFrom Annex A - A.6.6)
if (expressior) statement_or_null
{ else if (expressior) statement_or_null }
[elsestatement_or_null]
function_if_else_if_statement :(Erom Annex A - A.6.6)
if (expressiorn function_statement_or_null
{ else if (expressior) function_statement_or_null }
[elsefunction_statement_or_null]

Syntax 9-5—Syntax of if-else-if construct

This sequence of if statements (known asfaise-if construct) is the most general way of writing a multiway deci-

sion. The expressions shall be evaluated in order; if any expression is true, the statement associated with it shall be
executed, and this shall terminate the whole chain. Each statement is either a single statement or a block of state-
ments.

The last else part of the if-else-if construct handles the none-of-the-above or default case where none of the other con-
ditions were satisfied. Sometimes there is no explicit action for the default; in that case, the trailing else statement can
be omitted or it can be used for error checking to catch an impossible condition.

Example:

The following module fragment uses the if-else statement to test the vamalele to decide whether one of three
modify_segn regs has to be added to the memory address, and which increment is to be addeadexhereg.
The first ten lines declare the regs and parameters.

/I declare regs and parameters

reg [31:0] instruction, segment_area[255:0];

reg [7:0] index;

reg [5:0] modify segl,
modify _seg2,
modify seg3;

parameter
segmentl
segment2
segment3
data = 128;

0, inc_segl
20, inc_seg2
64, inc_seg3

1
AN

/I test the index variable

if (index < segment2) begin
instruction = segment_area [index + modify_segl];
index = index + inc_segl;

end

else if (index < segment3) begin
instruction = segment_area [index + modify_seg?2];
index = index + inc_seg2;

end

else if (index < data) begin
instruction = segment_area [index + modify_seg3];
index = index + inc_seg3;

end

else
instruction = segment_area [index];

134 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

9.5 Case statement

The casestatement is a multiway decision statement that tests whether an expression matches one of a number of
other expressions and branches accordingly. The case statement has the syntax shown in Syntax 9-6.

case_statement :(From Annex A - A.6.7)
case (expressior)
case_item { case_itemgndcase
| casez (expression
case_item { case_itemgndcase
| casex (expression
case_item { case_itemgndcase
case_item ::=
expression { expression } statement_or_null
| default [:] statement_or_null
function_case_statement ::=
case (expressior)
function_case_item { function_case_itemar}dcase
| casez (expression
function_case_item { function_case_itemar}dcase
| casex (expression
function_case_item { function_case_iterar}dcase
function_case_item ::=
expression { expression } function_statement_or_null
| default [:] function_statement_or_null

Syntax 9-6—Syntax for case statement

Thedefaultstatement shall be optional. Use of multiple default statements in one case statement shall be illegal.

The case expression and the case item expression can be computed at runtime; neither expression is required to be a
constant expression.

Examples:

A simple example of the use of the case statement is the decodingreigagto produce a value faesult as fol-
lows:

Section 9 Copyright 2000 IEEE. All rights reserved. 135
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

reg [15:0] rega;
reg [9:0] result;

case (rega)

16'd0: result = 10'b0111111111;
16'd1: result = 10'b1011111111;
16'd2: result = 10'b1101111111;
16'd3: result = 10'b1110111111;
16'd4: result = 10'b1111011111;
16'd5: result = 10'b1111101111;
16'd6: result = 10'b1111110111;
16'd7: result = 10'b1111111011;
16'd8: result = 10'b1111111101;
16'd9: result = 10'b1111111110;
default result = 'bx;
endcase

Thecase item expressiostall be evaluated and compared in the exact order in which they are given. During the lin-
ear search, if one of thease item expressions matches the case expression given in parentheses, then the statement
associated with that case item shall be executed. If all comparisons fail and the default item is given, then the default
item statement shall be executed. If the default statement is not given and all of the comparisons fail, then none of the
case item statements shall be executed.

Apart from syntax, thease statement differs from the multiway if-else-if construct in two important ways:

a) The conditional expressions in the if-else-if construct are more general than comparing one expression with
several others, as in the case statement.

b) The case statement provides a definitive result when thexeazidz values in an expression.

In a case expression comparison, the comparison only succeeds when each bit matches exactly with respect to the val-
uesO, 1, x , andz. As a consequence, care is needed in specifying the expressionsasthestatement. The bit

length of all the expressions shall be equal so that exact bit-wise matching can be performed. The length of all the
case item expressions, as well as the case expression in the parentheses, shall be made equal to the length of the
longest case expression and case item expression.

NOTE—The default length of andz is same as the default length of an integer.

The reason for providing a case expression comparison that handbesatitz values is that it provides a mecha-
nism for detecting such values and reducing the pessimism that can be generated by their presence.

Examples:

Example 1-Fhe following example illustrates the use of a case statement to xaadtiz values properly.

136 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

case (select[1:2])

2'b00: result = 0;

2'b01: result = flaga,

2'b0x,

2'b0z: result = flaga ? 'bx : O;
2'b10: result = flagb;

2'bx0,

2'bz0: result = flagh ? 'bx : 0O;
default result = 'bx;
endcase

In this example, ifselect[1] is 0 andflaga is O, then whether the value sklect[2] isx or z, result
should be&d—which is resolved by the third case.

Example 2—Fhe following example shows another way to use a case statement tocdmtdet values.

case(sig)
1'bz: S$display("signal is floating");
T'bx: $display("signal is unknown");
default: $display("signal is %b", sig);
endcase

9.5.1 Case statement with don’t-cares

Two other types of case statements are provided to allow handling of don’t-care conditions in the case comparisons.
One of these treats high-impedance valmsaé don't-cares, and the other treats both high-impedance and unknown
(x) values as don't-cares.

These case statements can be used in the same way as the traditional case statement, but they begin with keywords
casezandcasexrespectively.

Don't-care valuesZ values for casez andx values for casex) in any bit of either the case expression or the case
items shall be treated as don't-care conditions during the comparison, and that bit position shall not be considered.
The don't-care conditions in case expression can be used to control dynamically which bits should be compared at
any time.

The syntax of literal numbers allows the use of the question rt®rkin place ofz in these case statements. This
provides a convenient format for specification of don’t-care bits in case statements.

Examples:

Example +-The following is an example of the casez statement. It demonstrates an instruction decode, where values
of the most significant bits select which task should be called. If the most significantibit isfa 1, then the task
instruction1 is called, regardless of the values of the other biis of

Section 9 Copyright 2000 IEEE. All rights reserved. 137
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

reg[7:0] ir;

casez(ir)

8'b000107??7: instruction3(ir);
8'b000001?7?: instruction4(ir);
endcase

Example 2—Fhe following is an example of the casex statement. It demonstrates an extreme case of how don't-care
conditions can be dynamically controlled during simulation. In this case, # 8b01100110 |, then the task
stat2 is called.

reg [7:0] r, mask;

mask = 8’bx0x0x0x0;
casex(r * mask)
8'b001100xx: statl;
8'b1100xx00: stat2;
8'b00xx0011: stat3;
8'bxx010100: stat4;
endcase

9.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant expression shall be compared
against case item expressions.

Example:

The following example demonstrates the usage by modeling a 3-bit priority encoder.

reg [2:0] encode ;

case(1)

encode[2] : $display(“Select Line 2") ;

encode[1] : $display(“Select Line 1) ;

encode[0] : $display(“Select Line 0”) ;

default $display(“Error: One of the bits expected ON");
endcase

Note that the case expression is a constant expression (1). The case items are expressions (bit-selects) and are com-
pared against the constant expression for a match.

9.6 Looping statements
There are four types of looping statements. These statements provide a means of controlling the execution of a state-

ment zero, one, or more times.

138 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
forever Continuously executes a statement.
repeat Executes a statement a fixed number of times. If the expression evaluates to unknown or high

impedance, it shall be treated as zero, and no statement shall be executed.

while Executes a statement until an expression becomes false. If the expression starts out false, the
statement shall not be executed at all.

for Controls execution of its associated statement(s) by a three-step process, as follows:

a) Executes an assignment normally used to initialize a variable that controls the number of loops
executed.

b) Evaluates an expression—if the result is zero, the for-loop shall exit, and if it is not zero, the
for-loop shall execute its associated statement(s) and then perforna .stethe expression
evaluates to an unknown or high-impedance value, it shall be treated as zero.

c) Executes an assignment normally used to modify the value of the loop-control variable, then
repeats step.

Syntax 9-7 shows the syntax for various looping statements.

function_loop_statement :From Annex A - A.6.8)
forever function_statement
| repeat (expressior) function_statement
| while (expression) function_statement
| for (variable_assignment expression variable_assignment
function_statement
loop_statement ::=
forever statement
| repeat (expressior) statement
| while (expressior) statement
| for (variable_assignment expression variable_assignmeit
statement

Syntax 9-7—Syntax for the looping statements

The rest of this clause presents examples for three of the looping statements. The forever loop should only be used in
conjunction with the timing controls or the disable statement, therefore, this example is presented in 9.7.2.

Examples:

Example 1-Repeat statement: In the following example of a repeat loop, add and shift operators implement a
multiplier.

Section 9 Copyright 2000 IEEE. All rights reserved. 139
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

begin : mult
reg [longsize:1] shift_opa, shift_opb;
shift_opa = opa;
shift_opb = opb;
result = 0;
repeat (size) begin
if (shift_opb[1])
result = result + shift_opa;
shift_opa = shift_opa << 1;
shift_opb = shift_opb >> 1;
end
end

Example 2-While statement: The following example counts the number of bgalues inrega .

begin: countls
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while (tempreg) begin
if (tempreg[0])
count = count + 1,
tempreg = tempreg >> 1;
end
end

Example 3—For statement: The for statement accomplishes the same results as the following pseudo-code that is
based on the while loop:

begin
initial_assignment;
while (condition) begin
statement
step_assignment;
end
end

The for loop implements this logic while using only two lines, as shown in the pseudo-code below.

for (initial_assignment; condition; step_assignment)
statement

140 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

9.7 Procedural timing controls

The Verilog HDL has two types of explicit timing control over when procedural statements can occur. The first type is
adelay contro] in which an expression specifies the time duration between initially encountering the statement and
when the statement actually executes. The delay expression can be a dynamic function of the state of the circuit, but it
can be a simple number that separates statement executions in time. The delay control is an important feature when
specifying stimulus waveform descriptions. It is described in 9.7.1 and 9.7.7.

The second type of timing control is t¥ent expressigrwhich allows statement execution to be delayed until the
occurrence of some simulation event occurring in a procedure executing concurrently with this procedure. A simula-
tion event can be a change of value on a net or variable (an implicit event) or the occurrence of an explicitly named
event that is triggered from other procedures (an explicit event). Most often, an event control is a positive or negative
edge on a clock signal. Event control is discussed in 9.7.2 through 9.7.7.

The procedural statements encountered so far all execute without advancing simulation time. Simulation time can
advance by one of the following three methods:

— A delay control, which is introduced by the symbol #
— Anevent control, which is introduced by the symbol @
— The wait statement, which operates like a combination of the event control and the while loop

Syntax 9-8 describes timing control in procedural statements.

delay_control ::From Annex A - A.6.5)
delay_value
| # (mintypmax_expression
delay_or_event_control ::=
delay_control
| event_control
| repeat (expression event_control
event_control ::=
@ event_identifier
| @ (event_expression
| @*
|@ (%)
event_expression ::=
expression
| hierarchical_identifier
| posedgeexpression
| negedgeexpression
| event_expressiamr event_expression
| event_expressigrevent_expression

Syntax 9-8—Syntax for procedural timing control

The gate and net delays also advance simulation time, as discussed in Section 6. The next subclauses discuss the three
procedural timing control methods.

9.7.1 Delay control

A procedural statement following the delay control shall be delayed in its execution with respect to the procedural
statement preceding the delay control by the specified delay. If the delay expression evaluates to an unknown or high-
impedance value, it shall be interpreted as zero delay. If the delay expression evaluates to a negative value, it shall be

Section 9 Copyright 2000 IEEE. All rights reserved. 141
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

interpreted as a 2’'s complement unsigned integer of the same size as a time variable. Specify parameters are permit-
ted in the delay expression. They may be overridden by SDF annotation, in which case the expression is reevaluated.

Examples:
Example 1-Fhe following example delays the execution of the assignment by 10 time units:
#10 rega = regb;

Example 2—Fhe next three examples provide an expression following the number sign (#). Execution of the assign-
ment is delayed by the amount of simulation time specified by the value of the expression.

#d rega = regb; /I d is defined as a parameter
#((d+e)/2) rega = regb;// delay is average of d and e
#regrregr =regr + 1; // delay is the value in regr

9.7.2 Event control

The execution of a procedural statement can be synchronized with a value change on a net or variable or the occur-
rence of a declared event. The value changes on nets and variable can be used as events to trigger the execution of a
statement. This is known as detectingimplicit eventThe event can also be based on the direction of the change—

that is, towards the value pg¢sedgé or towards the value hégedgé. The behavior of posedge and negedge event

is shown in Table 9-1 and can be described as follows:

— A negedgeshall be detected on the transition fraarto x, z, or0, and fromx orz to 0
— A posedgsshall be detected on the transition frérto x, z, or1, and fromx orz to 1

Table 9-1—Detecting posedge and negedge

To 0 1 X z
From
0 No edge | posedge| posedge posedpe
1 negedge | Noedge negedge negedge
X negedge | posedge No edge No edge
z negedge | posedge No edge No edge

If the expression evaluates to more than a 1-bit result, the edge transition shall be detected on the least significant bit
of the result. The change of value in any of the operands without a change in the value of the least significant bit of the
expression result shall not be detected as an edge.

Example:

The following example shows illustrations of edge-controlled statements.

142 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

@r rega = regb; // controlled by any value change in the reg r
@ (posedgeclock) rega =regb; // controlled by posedge on clock
forever @(negedgeclock) rega = regb; // controlled by negative edge

9.7.3 Named events

A new data type, in addition to nets and variables, called “event” can be declared. An identifier declared as an event
data type is called npamed eventA named event can be triggered explicitly. It can be used in an event expression to
control the execution of procedural statements in the same manner as event control described in 9.7.1. Named events
can be made to occur from a procedure. This allows control over the enabling of multiple actions in other procedures.

An event name shall be declared explicitly before it is used. Syntax 9-9 gives the syntax for declaring events.

event_declaration ::éFrom Annex A - A.2.1.3)
eventlist_of event_identifiers
list_of event identifiers ::#rom Annex A - A.2.3)
event_identifier [dimension { dimension }]
{ , event_identifier [dimension { dimension }] }
dimension ::5(From Annex A - A.2.5)
[dimension_constant_expressiodimension_constant_expression

Syntax 9-9—Syntax for event declaration

An event shall not hold any data. The following are the characteristics of a named event:

— It can be made to occur at any particular time
— It has no time duration
— Its occurrence can be recognized by using the event control syntax described in

A declared event is made to occur by the activation of an event triggering statement with the syntax given in
Syntax 9-10.

event_trigger ::From Annex A - A.6.5)
-> hierarchical_event_identifier

Syntax 9-10—Syntax for event trigger

An event-controlled statement (for exampletri@ rega = regb;) shall cause simulation of its containing pro-
cedure to wait until some other procedure executes the appropriate event-triggering statement (for example,
->trig).

Named events and event control give a powerful and efficient means of describing the communication between, and
synchronization of, two or more concurrently active processes. A basic example of this is a small waveform clock
generator that synchronizes control of a synchronous circuit by signalling the occurrence of an explicit event periodi-
cally while the circuit waits for the event to occur.

Section 9 Copyright 2000 IEEE. All rights reserved. 143
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

9.7.4 Event or operator

The logical or of any number of events can be expressed such that the occurrence of any one of the events triggers the
execution of the procedural statement that follows it. The keyweordr a comma charactey) (s used as an event

logical or operator. A combination of these can be used in the same event expression. Comma-separated sensitivity
lists shall be synonymous to-separated sensitivity lists.

Examples:

The next two examples show the logical or of two and three events respectively.

@(trig or enable) rega = regb; /I controlled by trig or enable
@posedgeclk_a or posedgeclk b or trig) rega = regb;

The following examples show the use of the commaé an event logical or operator.

always@(a, b, c, d, e)

always @(posedgeclk, negedgerstn)

always@(a orb,c,d ore)
9.7.5 Implicit event_expression list
The event_expression list of an event control is a common source of bugs in RTL simulations. Users tend to
forget to add some of the nets or variables read in the timing control statement. This is often found when comparing
RTL and gate level versions of a design. The implaient_expression , @*, is a convenient shorthand that
eliminates these problems by adding all nets and variables which are read by the statement (which can be a statement
group) of gprocedural_timing_control_statement to theevent_expression

All net and variable identifiers which appear in the statement will be automatically added to the event expression with
these exceptions:

— Identifiers which only appear in wait or event expressions.
— Identifiers which only appear ashderarchical _reg_identifiein thereg_Ivalue of the left hand side of
assignments.

Nets and variables which appear on the right hand side of assignments, in function and task calls, or case and condi-
tional expressions shall all be included by these rules.

Examples:
Example 1

always @(*) // equivalent to @(a or b or c or d or f)
y=(a &b) | (c &d) | myfunction(f);

Example 2

always @* begin// equivalent to @(a or b or ¢ or d or tmp1 or tmp2)

tmpl =a & b;
tmp2=c & d;
y =tmpl | tmp2;
end
144 Copyright 2000 IEEE. All rights reserved. Section 9

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 3

always @* begin // equivalent to @(b)
@(i) kid = b; //'iis not added to @*
end

Example 4

always @* begin // equivalent to @(a or b or c or d)
Xx=a”’b;
@* /I equivalent to @(c or d)
Xx=c"d;
end

9.7.6 Level-sensitive event control

The execution of a procedural statement can also be delayed until a condition becomes true. This is accomplished
using thewait statement, which is a special form of event control. The nature of the wait statement is level-sensitive,
as opposed to basic event control (specified by@tiearacter), which is edge-sensitive.

The wait statement shall evaluate a condition, and, if it is false, the procedural statements following the wait statement
shall remain blocked until that condition becomes true before continuing. The wait statement has the form given in
Syntax 9-11.

wait_statement ::From Annex A - A.6.5)
wait (expression statement_or_null

Syntax 9-11—Syntax for wait statement

Example:

The following example shows the use of the wait statement to accomplish level-sensitive event control.

begin
wait (lenable) #10 a = b;
#10c =d;

end

If the value ofenable is 1 when the block is entered, the wait statement will delay the evaluation of the next state-
ment #10 a = b;) until the value ofenable changes td. If enable is already0 when thebegin-end
block is entered, then the assignmenat="b; " is evaluated after a delay of 10 and no additional delay occurs.

9.7.7 Intra-assignment timing controls

The delay and event control constructs previously described precede a statement and delay its execution. In contrast,
theintra-assignment delay and event contrale contained within an assignment statement and modify the flow of
activity in a different way. This subclause describes the purpose of intra-assignment timing controls and the repeat
timing control that can be used in intra-assignment delays.

An intra-assignment delay or event control shall delay the assignment of the new value to the left-hand side, but the
right-hand side expression shall be evaluated before the delay, instead of after the delay. The syntax for intra-assign-

Section 9 Copyright 2000 IEEE. All rights reserved. 145
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

ment delay and event control is given in Syntax 9-12.

blocking_assignment ::fFrom Annex A - A.6.2)
variable_Ivalue= [delay_or_event_control] expression
nonblocking_assignment ::=
variable_Ivalue<=[delay_or_event_control] expression
delay_control ::5{From Annex A - A.6.5)
delay_value
| # (mintypmax_expression
delay_or_event_control ::=
delay_control
| event_control
| repeat (expressiorn event_control
event_control ::=
@ event_identifier
| @ (event_expression
| @*
|@ (%)
event_expression ::=
expression
| hierarchical_identifier
| posedgeexpression
| negedgeexpression
| event_expressianr event_expression
| event_expressigrevent_expression

Syntax 9-12—Syntax for intra-assignment delay and event control

The intra-assignment delay and event control can be applied to both blocking assignments and nonblocking assign-
ments. The event expression shall be resolved to a 1-bit valuagepbhatevent control shall specify an intra-assign-

ment delay of a specified number of occurrences of an event. ifefieatcount literal, or signed reg holding the
repeatcount, is less than or equal @at the time of evaluation, the assignment occurs as if there ispeatcon-

struct.

Examples:

repeat (-3) @ (event_expression)
/I will not execute event_expression.

repeat(a) @ (event_expression)
/l'if ais assigned -3 it will execute the event_expression
/l'if ais declared as an unsigned reg but not if it is signed.

This construct is convenient when events have to be synchronized with counts of clock signals.
Examples:

Table 9-2 illustrates the philosophy of intra-assignment timing controls by showing the code that could accomplish

146 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

the same timing effect without using intra-assignment.

Table 9-2—Intra-assignment timing control equivalence

Intra-assignment timing control

With intra-assignment construct Without intra-assignment construct

begin
a=#5b; temp = b;
#5 a = temp;
end

begin

a = @(posedgeclk) b; temp = b;
@(posedgeclk) a = temp;
end

begin

a= repeaf(3) t@e)rgp:g; "
osedgeclk) b; osedgecik),

e geclk) @ (posedgeclk);

@ (posedgeclk) a = temp;

end

The next three examples use the fork-join behavioral construct. All statements between the kégrkoeasljoin
execute concurrently. This construct is described in more detail in 9.8.2.

The following example shows a race condition that could be prevented by using intra-assignment timing control:

fork
#5a=Db;
#5b = a;
join

The code in this example samples and sets the values oflbanidb at the same simulation time, thereby creating a
race condition. The intra-assignment form of timing control used in the next example prevents this race condition.

fork /I data swap
a=#5Db;
b=#5a;

join

Intra-assignment timing control works because the intra-assignment delay causes the valaedbfto be evalu-
atedbeforethe delay, and the assignments to be mafier the delay. Some existing tools that implement intra-
assignment timing control use temporary storage in evaluating each expression on the right-hand side.

Intra-assignment waiting fogventsis also effective. In the following example, the right-hand side expressions are
evaluated when the assignment statements are encountered, but the assignments are delayed until the rising edge of
the clock signal.

fork /l data shift
a = @(posedgeclk) b;
b = @(posedgeclk) c;

join

The following is an example of a repeat event control as the intra-assignment delay of a nonblocking assignment:

Section 9 Copyright 2000 IEEE. All rights reserved. 147
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

a<= repeat5) @(posedgeclk) data;

Figure 9-1 illustrates the activities that result from thjgeat event control.

v data is evaluated

data
a

Figure 9-1—Repeat event control utilizing a clock edge

In this example, the value alata is evaluated when the assignment is encountered. After five occurrences of
posedgeclk , a is assigned the value déta .

The following is an example of a repeat event control as the intra-assignment delay of a procedural assignment:
a= repeat(num) @(clk) data;

In this example, the value ofata is evaluated when the assignment is encountered. After the number of transitions
of clk equals the value @fum, a is assigned the value déta .

The following is an example of a repeat event control with expressions containing operations to specify both the num-
ber of event occurrences and the event that is counted:

a<= repeat(a+b) @(posedgephil or negedgephi2) data;
In this example, the value afata is evaluated when the assignment is encountered. After the sum of the positive

edges ofphil and the negative edges @hi2 equals the sum af andb, a is assigned the value dfta . Even if
posedgephil andnegedgephi2 occurred at the same simulation time, each will be detected separately.

9.8 Block statements

Theblock statementare a means of grouping two or more statements together so that they act syntactically like a sin-
gle statement. There are two types of blocks in the Verilog HDL:

— Sequential blogkalso calledegin-end block
— Parallel block also calledork-join block

148 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The sequential block shall be delimited by the keywdodgin and end. The procedural statements in sequential
block shall be executed sequentially in the given order.

The parallel block shall be delimited by the keywofdek andjoin. The procedural statements in parallel block shall
be executed concurrently.

9.8.1 Sequential blocks
A sequential bloclshall have the following characteristics:
— Statements shall be executed in sequence, one after another
— Delay values for each statement shall be treated relative to the simulation time of the execution of the previous
statement

— Control shall pass out of the block after the last statement executes

Syntax 9-13 gives the formal syntax for a sequential block.

function_seq_block ::from Annex A - A.6.3)
begin|[: block_identifier
{ block_item_declaration }] { function_statementhd
seq_block ::=
begin|[: block_identifier
{ block_item_declaration }] { statementgnd
block_item_declaration ::fFrom Annex A - A.2.8)
{ attribute_instance } block reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

Syntax 9-13—Syntax for the sequential block

Examples:

Example 1-A sequential block enables the following two assignments to have a deterministic result:

begin

areg = breg;

creg = areg; I creg stores the value of breg
end

The first assignment is performed ardg is updated before control passes to the second assignment.

Example 2-Belay control can be used in a sequential block to separate the two assignments in time.

Section 9 Copyright 2000 IEEE. All rights reserved. 149
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
begin
areg = breg;
@(posedgeclock) creg = areg; // assignment delayed until
end /I posedge on clock

Example 3—Fhe following example shows how the combination of the sequential block and delay control can be
used to specify a time-sequenced waveform.

parameterd = 50; // d declared as a parameter and

reg [7:0]r; I/l r declared as an 8-bit reg
begin // a waveform controlled by sequential delay
#d r ="h35;
#d r="hE2;
#d r = 'h00;
#d r ="hF7;
#d -> end_wave;//trigger an event called end_wave
end

9.8.2 Parallel blocks
A parallel blockshall have the following characteristics:

— Statements shall execute concurrently

— Delay values for each statement shall be considered relative to the simulation time of entering the block
— Delay control can be used to provide time-ordering for assignments

— Control shall pass out of the block when the last time-ordered statement executes

Syntax 9-14 gives the formal syntax for a parallel block.

par_block ::5(From Annex A - A.6.3)

fork [: block_identifier

{ block_item_declaration }] { statementjdin
block_item_declaration ::-rom Annex A - A.2.8)
{ attribute_instance } block reg_declaration

| { attribute_instance } event_declaration

| { attribute_instance } integer_declaration

| { attribute_instance } local_parameter_declaration

| { attribute_instance } parameter_declaration

| { attribute_instance } real_declaration

| { attribute_instance } realtime_declaration

| { attribute_instance } time_declaration

Syntax 9-14—Syntax for the parallel block

The timing controls in a fork-join block do not have to be ordered sequentially in time.

150 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:

The following example codes the waveform description shown in example 3 of 9.8.1 by using a parallel block instead
of a sequential block. The waveform produced on the reg is exactly the same for both implementations.

fork
#50 r ='h35;
#100 r = 'hE2;
#150 r = 'h00;
#200 r = 'hF7;
#250 -> end_wave;
join

9.8.3 Block names

Both sequential and parallel blocks can be named by addimgme_of block after the keywordbeginor fork .
The naming of blocks serves several purposes:

— It allows local variables, parameters, and named events to be declared for the block.
— It allows the block to be referenced in statements such as the disable statement (Section 11).

All variables shall be static—that is, a unique location exists for all variables and leaving or entering blocks shall not
affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation time.

9.8.4 Start and finish times

Both sequential and procedural blocks have the notion of a start and finish time. For sequential blocks, the start time
is when the first statement is executed, and the finish time is when the last statement has been executed. For parallel
blocks, the start time is the same for all the statements, and the finish time is when the last time-ordered statement has
been executed.

Sequential and parallel blocks can be embedded within each other, allowing complex control structures to be
expressed easily and with a high degree of structure. When blocks are embedded within each other, the timing of
when a block starts and finishes is important. Execution shall not continue to the statement following a block until the

finish time for the block has been reached—that is, until the block has completely finished executing.

Examples:

Example 1-Fhe following example shows the statements from the example in 9.8.2 written in the reverse order and
still producing the same waveform.

fork
#250 -> end_wave;
#200 r = 'hF7;
#150 r = 'h00;
#100 r ='hE2;
#50 r ='h35;

join

Section 9 Copyright 2000 IEEE. All rights reserved. 151
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example 2-¥When an assignment is to be made after two separate events have occurred, knowjoiagmthef
eventsafork-join block can be useful.

begin
fork
@Aevent;
@Bevent;
join
areg = breg;
end

The two events can occur in any order (or even at the same simulation time) aiodkth@n block will com-
plete and the assignment will be made. In contrast to this, ifdtejoin block was aegin-end block and the
Bevent occurred before th&event , then the block would be waiting for the n®dvent .

Example 3—Fhis example shows two sequential blocks, each of which will execute when its controlling event occurs.
Because the event controls are withifioak-join block, they execute in parallel and the sequential blocks can
therefore also execute in parallel.

fork
@enable_a
begin
#ta wa = O;
#ta wa = 1,
#ta wa = O;
end
@enable b
begin
#tb wb = 1;
#tb wb = O;
#tb wb = 1;
end
join

9.9 Structured procedures
All procedures in the Verilog HDL are specified within one of the following four statements:

— initial construct
— alwaysconstruct
— Task

— Function

The initial and always constructs are enabled at the beginning of a simulation. The initial construct shall execute only
once and its activity shall cease when the statement has finished. In contrast, the always construct shall execute
repeatedly. Its activity shall cease only when the simulation is terminated. There shall be no implied order of execu-

tion between initial and always constructs. The initial constructs need not be scheduled and executed before the
always constructs. There shall be no limit to the number of initial and always constructs that can be defined in a mod-
ule.

152 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Tasks and functions are procedures that are enabled from one or more places in other procedures. Tasks and functions
are described in Section 10.

9.9.1 Initial construct

The syntax for thénitial constructis given in Syntax 9-15.

initial_construct ::5(From Annex A - A.6.2)
initial statement

Syntax 9-15—Syntax for initial construct

Examples:

The following example illustrates use of the initial construct for initialization of variables at the start of simulation.

initial begin
areg = 0O; // initialize a reg
for (index = 0; index < size; index = index + 1)
memory[index] = 0; //initialize memory word
end

Another typical usage of the initial construct is specification of waveform descriptions that execute once to provide
stimulus to the main part of the circuit being simulated.

initial begin
inputs = ’'b00000O; //initialize at time zero

#10 inputs = 'b011001;// first pattern

#10 inputs = 'b011011; // second pattern

#10 inputs = 'b011000; // third pattern

#10 inputs = 'b001000; // last pattern
end

9.9.2 Always construct

The always constructepeats continuously throughout the duration of the simulation. Syntax 9-16 shows the syntax
for the always construct.

always_construct ::#From Annex A - A.6.2)
always statement

Syntax 9-16—Syntax for always construct

The always construct, because of its looping nature, is only useful when used in conjunction with some form of tim-
ing control. If an always construct has no control for simulation time to advance, it will create a simulation deadlock
condition.

Section 9 Copyright 2000 IEEE. All rights reserved. 153
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

The following code, for example, creates a zero-delay infinite loop.

alwaysareg = ~areg;

Providing a timing control to the above code creates a potentially useful description as shown in the following:

always#half_period areg = ~areg;

154 Copyright 2000 IEEE. All rights reserved. Section 9
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 10

Tasks and functions

Tasks and functions provide the ability to execute common procedures from several different places in a description.
They also provide a means of breaking up large procedures into smaller ones to make it easier to read and debug the
source descriptions. This section discusses the differences between tasks and functions, describes how to define and
invoke tasks and functions, and presents examples of each.

10.1 Distinctions between tasks and functions

The following rules distinguish tasks from functions:

— A function shall execute in one simulation time unit; a task can contain time-controlling statements.

— A function cannot enable a task; a task can enable other tasks and functions.

— Afunction shall have at least omgput type argument and shall not havea@utput or inout type argument; a
task can have zero or more arguments of any type.

— A function shall return a single value; a task shall not return a value.

The purpose of dunctionis to respond to an input value by returning a single valuéagk can support multiple

goals and can calculate multiple result values. However, onlyptitgut or inout type arguments pass result values

back from the invocation of a task. A function is used as an operand in an expression; the value of that operand is the
value returned by the function.

Example:

Either a task or éunctioncan be defined to switch bytes in a 16-bit word. The task would return the switched word in
an output argument, so the source code to enable a task salitath_bytes could look like the following exam-
ple:

switch_bytes (old_word, new_word);

The taskswitch_bytes would take the bytes inld_word , reverse their order, and place the reversed bytes in
new_word .

A word-switching function would return the switched word as the return value of the function. Thus, the function call
for the functionswitch_bytes could look like the following example:

new_word = switch_bytes (old_word);

10.2 Tasks and task enabling

A task shall be enabled from a statement that defines the argument values to be passed to the task and the variables
that receive the results. Control shall be passed back to the enabling process after the task has completed. Thus, if a
task has timing controls inside it, then the time of enabling a task can be different from the time at which the control

is returned. A task can enable other tasks, which in turn can enable still other tasks—with no limit on the number of
tasks enabled. Regardless of how many tasks have been enabled, control shall not return until all enabled tasks have
completed.

Section 10 Copyright 2000 IEEE. All rights reserved. 155
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

10.2.1 Task declarations

The syntax for defining tasks is given in Syntax 10-1.

task_declaration ::dFrom Annex A - A.2.7)

task [automatic] task_identifier,
{task_item_declaration }
statement

endtask

| task [automatic] task_identifier task_port_lis) ;

{ block_item_declaration }
statement

endtask

task_item_declaration ::=
block_item_declaration
| { attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
task_port_list ::=
task _port_item { task_port_item }
task_port_item ::=
{ attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration
block_item_declaration ::fFrom Annex A - A.2.8)
{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration
block_reg_declaration ::=
reg [signed] [range]
list_of block variable_identifiers
list_of block variable_identifiers ::=
block_variable_type { block_variable_type }
block_variable_type ::=
variable_identifier
| variable_identifier dimension { dimension }

Syntax 10-1—Syntax for task declaration

There are two alternate task declaration syntaxes.

The first syntax shall begin with the keywatakk, followed by the optional keywordutomatic, followed by a name

for the task and a semicolon, and ending with the keyvasrdtask The keywordautomatic declares an automatic

task that is reentrant with all the task declarations allocated dynamically for each concurrent task entry. Task item
declarations can specify the following:

— Input arguments
— Output arguments

156 Copyright 2000 IEEE. All rights reserved. Section 10
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

— Inout arguments

— All data types that can be declared in a procedural block

The second syntax shall begin with the keywtadk, followed by a name for the task and a parenthesis enclosed
task_port_list Thetask_port_listshall consist of zero or more comma separas=k_port_itemsThere shall be a
semicolon after the close parenthesis. The task body shall follow and then the keydtask

In both syntaxes, the declarations have the same syntax as the corresponding declarations in a module definition (see
12.3.3 and 3.2.2). Tasks without the optional keywauntbmatic are static tasks, with all declared items being stati-

cally allocated. These items shall be shared across all uses of the task executing concurrently. Task with the optional
keywordautomatic are automatic tasks. All items declared inside automatic tasks are allocated dynamically for each
invocation. Automatic task items can not be accessed by hierarchical references. Automatic tasks can be invoked
through use of their hierarchical name.

10.2.2 Task enabling and argument passing

The task enabling statement shall pass arguments as a comma-separated list of expressions enclosed in parentheses.
The formal syntax of the task enabling statement is given in Syntax 10-2.

task_enable ::#rom Annex A - A.6.9)
hierarchical_task_identifier(fexpression { expression } | ;

Syntax 10-2—Syntax of the task enabling statement

The list of arguments for a task enabling statement shall be optional. If the list of arguments is provided, the list shall
be an ordered list of expressions that has to match the order of the list of arguments in the task definition.

If an argument in the task is declared asrgwut, then the corresponding expression can be any expression. The order

of evaluation of the expressions in the argument list is undefined. If the argument is declaredigmiaior aninout,

then the expression shall be restricted to an expression that is valid on the left-hand side of a procedural assignment
(see 9.2). The following items satisfy this requirement:

— reg, integer, real, realtime, andtime variables

— Memory references

— Concatenations okg, integer, real, realtime andtime variables
— Concatenations of memory references

— Bit-selects and part-selectsrefy, integer, andtime variables

The execution of the task enabling statement shall pass input values from the expressions listed in the enabling state-
ment to the arguments specified within the task. Execution of the return from the task shall pass values from the task
output andinout type arguments to the corresponding variables in the task enabling statement. All arguments to the
task shall be passed fgluerather than by reference (that iganterto the value).

Examples:

Example 1-Fhe following example illustrates the basic structure of a task definition with five arguments.

Section 10 Copyright 2000 IEEE. All rights reserved. 157
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

task my_task;
input a, b;
inout c;
output d, e;
begin

. /I statements that perform the work of the task

¢ =fool; // the assignments that initialize result regs

d = foo2;
e = foo3;
end
endtask

Or using the second form of a task declaration, the task could be defined as:
task my task; (input a, b, inout c, output d, e);

begin

. /I statements that perform the work of the task

¢ =fool; // the assignments that initialize result regs

d = foo2;
e = foo3;
end
endtask

The following statement enables the task:
my_task (v, W, X, Y, 2);

The task enabling argumer{ts w, X, v, andz) correspond to the argumerits b, c, d, ande) defined by
the task. At task enabling time, tigput andinout type argumentga, b, andc) receive the values passedvn
w, andx. Thus, execution of the task enabling call effectively causes the following assignments:

W,

a=v;
b
C=X;

As part of the processing of the task, the task definitiomfgr task shall place the computed result values into
d, ande. When the task completes, the following assignments to return the computed values to the calling process are
performed:

Cl
d;
e

N < X
I

Example 2—Fhe following example illustrates the use of tasks by describing a traffic light sequencer:

158 Copyright 2000 IEEE. All rights reserved. Section 10
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

modaule traffic_lights;

reg clock, red, amber, green;

parameter on =1, off =0, red_tics = 350,
amber _tics = 30, green_tics = 200;

/Il initialize colors.
initial red = off;
initial amber = off;
initial green = off;

always begin /I sequence to control the lights.
red = on; / turn red light on
light(red, red_tics); /I and wait.
green = on; [/l turn green light on
light(green, green_tics); // and wait.
amber = on; // turn amber light on

light(amber, amber_tics); // and wait.
end

/l task to wait for 'tics’ positive edge clocks
I/l before turning 'color’ light off.
task light;
output color;
input [31:0] tics;
begin
repeat (tics) @ (posedgeclock);
color = off; /I turn light off.
end
endtask

always begin /I waveform for the clock.
#100 clock = 0;
#100 clock = 1,

end

endmodule// traffic_lights.

10.2.3 Task memory usage and concurrent activation

A task may be enabled more than once concurrently. All variables of an automatic task shall be replicated on each
concurrent task invocation to store state specific to that invocation. All variables of a static task shall be static in that
there shall be a single variable corresponding to each declared local variable in a module instance, regardless of the
number of concurrent activations of the task. However, static tasks in different instances of a module shall have sepa-
rate storage from each other.

Variables declared in static tasks shall retain their values between invocations. They shall be initialized to the default
initialization value as described in 3.2.2. Variables declared in automatic tasks shall be initialized to the default ini-
tialization value whenever execution enters their scope.

Because variables declared in automatic tasks are deallocated at the end of the task invocation, they shall not be used
in certain constructs that might refer to them after that point.

— They shall not be assigned values using non-blocking assignments or procedural continuous assignments.
— They shall not be referenced by procedural continuous assignments or procedural force statements.

Section 10 Copyright 2000 IEEE. All rights reserved. 159
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

— They shall not be referenced in intra-assignment event controls of non-blocking assignments.
— They shall not be traced with system tasks sudmamitor and$dumpvars.

10.3 Functions and function calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this clause explains how
to define and use functions.

10.3.1 Function declarations

The syntax for defining a function is given in Syntax 10-3.

function_declaration ::fFrom Annex A - A.2.6)
function [automatic] [signed] [range_or_type]
function_identifier,
function_item_declaration { function_item_declaration }
function_statement
endfunction
| function [automatic] [signed] [range_or_type]
function_identifier(function_port_lisf) ;
block_item_declaration { block item_declaration }
function_statement
endfunction

function_item_declaration ::=
block_item_declaration
| input_declaration
function_port_list ::=
{ attribute_instance } input_declaration { attribute_instance }
input_declaration }
range_or_type ::=
range fnteger |real |realtime |time
block_item_declaration ::fFrom Annex A - A.2.8)
{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

block_reg_declaration ::=
reg [signed] [range]
list_of block variable_identifiers
list_of block variable_identifiers ::=
block_variable_type { block_variable_type }
block_variable_type ::=
variable_identifier
| variable_identifier dimension { dimension }

Syntax 10-3—Syntax for function declaration

A function definition shall begin with the keywofdnction, followed by the optional keywordutomatic, followed

160 Copyright 2000 IEEE. All rights reserved. Section 10
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

by the optionakigneddesignator, followed by the range or type of the return value from the function, followed by the
name of the function, and then either a semicolon, or a function port list enclosed in parenthesis, and then a semico-
lon, and then shall end with the keywaeddfunction. The use of @aange_or_typeshall be optional. A function spec-

ified without a range or type defaults to a one bit reg for the return value. If uaedge_or_typeshall specify the

return value of the function isr@al , aninteger , atime , arealtime or avalue with arange ¢gh:m] bits. A

function shall have at least one input declared.

The keywordautomatic declares a recursive function with all the function declarations allocated dynamically for
each recursive call. Automatic function items can not be accessed by hierarchical references. Automatic functions can
be invoked through the use of their hierarchical name.

Function inputs shall be declared one of two ways. The first method shall have the name of the function followed by a
semicolon. After the semicolon one or more input declarations optionally mixed with block item declarations shall
follow. After the function item declarations there shall be a behavioral statement and then the enddeywtiod.

The second method shall have the name of the function, followed by an open parenthesis, and one or more input dec-
larations, separated by commas. After all the input declarations, there shall be a close parenthesis, and a semicolon.
After the semicolon, there shall be zero or more block item declarations, followed by a behavioral statement, and then
the endfunctiorkeyword.

Example:

The following example defines a function caliggtbyte , using a range specification.

function [7:0] getbyte;
input [15:0] address;
begin
/I code to extract low-order byte from addressed word

getbyte = result expression;
end
endfunction

Or using the second form of a function declaration, the function could be defined as:

function [7:0] getbyte (input [15:0] address);
begin
/I code to extract low-order byte from addressed word

getbyte = result expression;
end
endfunction

10.3.2 Returning a value from a function

The function definition shall implicitly declare a variable, internal to the function, with the same name as the func-
tion. This variable either defaults to a 1-bit reg or is the same type as the type specified in the function declaration.
The function definition initializes the return value from the function by assigning the function result to the internal
variable with the same name as the function.

Itis illegal to declare another object with the same name as the function in the scope where the function is declared.
Inside a function, there is an implied variable with the name of the function, which may be used in expressions within
the function. Itis, therefore, also illegal to declare another object with the same name as the function inside the func-
tion scope.

Section 10 Copyright 2000 IEEE. All rights reserved. 161
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The following line from the example in 10.3.1 illustrates this concept:
getbyte = result expression;
10.3.3 Calling a function

A function call is an operand within an expression. The function call has the syntax given in Syntax 10-4.

function_call ::=(From Annex A - A.8.2)
hierarchical_function_identifier{ attribute_instancééxpression { expression }

Syntax 10-4—Syntax for function call

The order of evaluation of the arguments to a function call is undefined.
Example

The following example creates a word by concatenating the results of two calls to the fuyetigte (defined in
section 10.3.1):

word = control ? {getbyte(msbyte), getbyte(Isbyte)}:0;
10.3.4 Function rules
Functions are more limited than tasks. The following six rules govern their usage:

a) A function definition shall not contain any time-controlled statements—that is, any statements introduced
with #, @, orwait.

b) Functions shall not enable tasks.
c) A function definition shall contain at least one input argument.
d) A function definition shall not have any argument declared as output or inout.

e) A function definition shall include an assignment of the function result value to the internal variable that has
the same name as the function name.

f) A function shall not have any non-blocking assignments.
Example:

This example defines a function calléattorial that returns an integer value. THectorial function is
called iteratively and the results are printed.

162 Copyright 2000 IEEE. All rights reserved. Section 10
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module tryfact;

/I define the function
function automatic integer factorial;
input [31:0] operand;
integer i;
if (operand >= 2)
factorial = factorial (operand - 1) * operand;
else
factorial = 1;
endfunction

/I test the function
integer result;
integer n;
initial begin
for (n=0; n<=7;n=n+l) begin
result = factorial(n);
$display("%0d factorial=%0d", n, result);
end
end
endmodule// tryfact

The simulation results are as follows:

0 factorial=1

1 factorial=1

2 factorial=2

3 factorial=6

4 factorial=24

5 factorial=120
6 factorial=720
7 factorial=5040

10.3.5 Use of constant functions

Constant function callare used to support the building of complex calculations of values at elaboration time (see
12.1.3). Aconstant function calshall be a function invocation of eonstant functioriocal to the calling module
where the arguments to the function amnstant expression€onstant functionare a subset of normal Verilog func-
tions that shall meet the following constraints:

— They shall contain no hierarchical references.

— Any function invoked within aonstant functioshall be aconstant functioocal to the current module. Sys-
tem functions shall not be invoked.

— They shall have no side effects.

— The only system task that may be invokeédisplay , and it shall be ignored when invoked at elaboration
time.

— All parameter values used within the function shall be defined before the use of the ingokistgnt function
call (i.e. any parameter use in the evaluation abastant function caktonstitutes a use of that parameter at
the site of the originatonstant function cgll

Section 10 Copyright 2000 IEEE. All rights reserved. 163
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

— Allidentifiers which are not parameters or functions shall be declared locally to the current function.

— Ifthey use any parameter value that is affected directly or indirectlydsfjparam statement (see 12.2.1), the
result is undefined. This can produce an error or the constant function can return an indeterminate value.

— They shall not be declared inside a generate scope.

— They shall not themselves use constant functions in any context requiring a constant expression.

Constant function callare evaluated at elaboration time. Their execution has no effect on the initial values of the
variables used either at simulation time or among multiple invocations of a function at elaboration time. In each of
these cases, the variables are initialized as they would be for normal simulation.

Example:

This example defines a function callelbgb2 that returns an integer which has the value of the ceiling of the log
base 2.

module ram_model (address, write, chip_select, data);
parameter data_width = 8;
parameter ram_depth = 256;
localparam adder_width = clogb2(ram_depth);
input [adder_width - 1:0] address;
input write, chip_select;
inout [data_width - 1:0] data;

/Idefine the clogb2 function

function integer clogh2;
input depth;
integer i,result;
begin

for (i=0; 2*i<depth;i=i+1)
result=i+1;
clogb2 = result;

end

endfunction

reg [data width - 1:0] data_store[O:ram_depth - 1];
/lthe rest to the ram model
An instance of thisam_model with parameters assigned:

ram_model #(32,421) ram_aO(a_addr,a_wr,a_cs,a_data);

164 Copyright 2000 IEEE. All rights reserved. Section 10
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 11

Disabling of named blocks and tasks

The disablestatement provides the ability to terminate the activity associated with concurrently active procedures,
while maintaining the structured nature of Verilog HDL procedural descriptions. The disable statement gives a mech-
anism for terminating a task before it executes all its statements, breaking from a looping statement, or skipping state-
ments in order to continue with another iteration of a looping statement. It is useful for handling exception conditions
such as hardware interrupts and global resets.

The disable statement has the syntax form shown in Syntax 11-1.

function_call ::=(From Annex A - A.8.2)
hierarchical_function_identifier{ attribute_instancééxpression { expression }

Syntax 11-1—Syntax of disable statement

Either form of disable statement shall terminate the activity of a task or a named block. Execution shall resume at the
statement following the block or following the task enabling statement. All activities enabled within the named block

or task shall be terminated as well. If task enable statements are nested—that is, one task enables another, and that
one enables yet another—then disabling a task within the chain shall disable all tasks downward on the chain. If a
task is enabled more than once, then disabling such a task shall disable all activations of the task.

The results of the following activities that may be initiated by a task are not specified if the task is disabled:

— Results of output and inout arguments
— Scheduled, but not executed, nonblocking assignments
— Procedural continuous assignmemtssfgnandforce statements)

The disable statement can be used within blocks and tasks to disable the particular block or task containing the dis-
able statement. The disable statement can be used to disable named blocks within a function, but cannot be used to
disable functions. In cases where a disable statement within a function disables a block or a task that called the func-
tion, the behavior is undefined. Disabling an automatic task or a block inside an automatic task proceeds as for regular
tasks for all concurrent executions of the task.

Examples:

Example 1-Fhis example illustrates how a block disables itself.

begin : block_name

rega = regb;

disable block_name;

regc = rega,; // this assignment will never execute
end

Section 11 Copyright 2000 IEEE. All rights reserved. 165
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example 2—Fhis example shows the disable statement being used within a named block in a manner similar to a for-
wardgota The next statement executed after the disable statement is the one following the named block.

begin : block_name

if (a == 0)
disable block_name;

end /I end of named block
/I continue with code following named block

Example 3—Fhis example shows the disable statement being used as an early return from a task. However, a task dis-
abling itself using a disable statement is not a short-hand foettira statement found in programming languages.

task proc_a;
begin

if (a == 0)
disableproc_a; // return if true

o .
endtask

Example 4-Fhis example shows the disable statement being used in an equivalent way to the two statements
tinueandbreakin the C programming language. The example illustrates control code that would allow a named block
to execute until a loop counter reactregerations or until the variabla is set to the value dbf. The named block
break contains the code that executes uatiE= b, at which point thedisable break; statement terminates
execution of that block. The named blockntinue contains the code that executes for each iteration ofdhe

loop. Each time this code executes thgable continue; statement, theontinue block terminates and exe-
cution passes to the next iteration of foer loop. For each iteration of theontinue block, a set of statements exe-
cutesif(a!=0). Another set of statements executéd=b)

begin : break
for i=0;i<n;i=i+l) begin: continue
@clk

if (a==0) // "continue" loop
disable continue;

statements

statements

@clk

if (a == D) // "break" from loop
disable break;

statements

statements

end
end

166 Copyright 2000 IEEE. All rights reserved. Section 11
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 5—Fhis example shows the disable statement being used to disable concurrently a sequence of timing con-
trols and the taskction , when thereset event occurs. The example showiek /join block within which is

a named sequential blockent_expr) and a disable statement that waits for occurrence of the esset . The
sequential block and the wait foeset execute in parallel. Thevent_expr block waits for one occurrence of
eventevl and three occurrences of eveéng . When these four events have happened, plus a delhyiwfe units,

the taskaction executes. When the everdgset occurs, regardless of events within the sequential block, the
fork /join block terminates—including the taaktion

fork
begin: event_expr
@ev];
repeat(3) @trig;
#d action (areg, breg);
end
@reset disableevent_expr;
join

Example 6—Fhe next example is a behavioral description of a retriggerable monostable. The nameeteigent
restarts the monostable time periodelfrig continues to occur within 250 time units, trewill remain atl.

always begin: monostable
#250 q = 0;
end

always @retrig begin
disable monostable;
a=1

end

Section 11 Copyright 2000 IEEE. All rights reserved. 167
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

168 Copyright 2000 IEEE. All rights reserved. Section 11
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 12

Hierarchical structures

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be embedded within
other modules. Higher-level modules create instances of lower-level modules and communicate with them through
input, output, and bidirectional ports. These module input/output ports can be scalar or vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards (PCBs). The system
would be represented as the top-level module and would create instances of modules that represent the boards. The
board modules would, in turn, create instances of modules that represent ICs, and the ICs could, in turn, create
instances of modules such as flip-flops, mux’s, and alu’s.

To describe a hierarchy of modules, the user provides textual definitions of the various modules. Each module defini-
tion stands alone; the definitions are not nested. Statements within the module definitions create instances of other
modules, thus describing the hierarchy.

12.1 Modules

This clause gives the formal syntax for a module definition and then gives the syntax for module instantiation, along
with an example of a module definition and a module instantiation.

A module definition shall be enclosed between the keywanddule andendmodule The identifier following the
keywordmodule shall be the name of the module being defined. The optional list of parameter definitions shall spec-
ify an ordered list of the parameters for the module. The optional list of ports or port declarations shall specify an
ordered list of the ports for the module. The order used used in defining the list of parameters in the
module_parameter_port_list and in the list of ports can be significant when instantiating the module (see
12.2.2.1 and 12.3.5). The identifiers in this list shall be declared in input, output, and inout statements within the mod-
ule definition. Ports declared in the list of port declarations shall not be redeclared within the body of the module. The
module items define what constitutes a module and they include many different types of declarations and definitions;
many of which have already been introduced.

The keywordmacromodule can be used interchangeably with the keyworddule to define a module. An imple-
mentation can choose to treat module definitions beginningwatttomodule keyword differently.

Section 12 Copyright 2000 IEEE. All rights reserved. 169
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module_declaration ::fFrom Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier [module_parameter_port |list]
[list_of _ports]; { module_item }
endmodule
| { attribute_instance } module_keyword module_identifier [module_parameter_port| list]
[list_of port_declarations;]{ non_port_module_item }
endmodule
module_keyword ::3nodule | macromodule

module_parameter_port_list :(Erom Annex A -A.1.4

(parameter_declaration, fparameter_declaration)}
list_of_ports ::=(port{, port})
list_of port_declarations ::Eport_declaration { port_declaration } | ()
port ::= [port_expression] port_identifier([port_expression)]
port_expression ::= port_referendeport_reference { port_reference }
port_reference ::= port_identifier | port_identifiezonstant_expressidn

| port_identifierf range_expression
port_declaration ::= {attribute_instance} inout_declaration

| {attribute_instance} input_declaration

| {attribute_instance} output_declaration
module_item ::= module_or_generate_itdfrom Annex A - A.1.5)

| port_declaration

| { attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration

| { attribute_instance } parameter_declaration

| { attribute_instance } specify_block

| { attribute_instance } specparam_declaration
module_or_generate_item ::= { attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override

| { attribute_instance } continuous_assign

| { attribute_instance } gate_instantiation

| { attribute_instance } udp_instantiation

| { attribute_instance } module_instantiation

| { attribute_instance } initial_construct

| { attribute_instance } always_construct

module_or_generate_item_declaration ::= net_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration
non_port_module_item ::= { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

parameter_override ::defparam list_of param_assignments

Syntax 12-1—Syntax for module

170 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

See 12.3 for the definitions of ports.

12.1.1 Top-level modules

Top-level moduleare modules that are included in the source text but are not instantiated, as described in 12.1.2.
12.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module definitions do not nest.
That is, one module definition shall not contain the text of another module definition withimodsile-endmodule
keyword pair. A module definition nests another modulensgantiatingit. The module instantiation statemeaote-

ates one or more nametstancef a defined module.

For example, a counter module might instantiate a D flip-flop module to create multiple instances of the flip-flop.

Syntax 12-2 gives the syntax for specifying instantiations of modules.

module_instantiation ::fFrom Annex A - A.4.1)
module_identifier [parameter_value_assignment]
module_instance {module_instance }
parameter_value_assignment ::=
(list_of_parameter_assignmeits
list_of parameter_assignments ::=
ordered_parameter_assignmenbfdered parameter_assignment }
| named_parameter_assignment ndmed_parameter_assignment }
ordered_parameter_assignment ::=
expression
named_parameter_assignment ::=
. parameter_identifief [expression]
module_instance ::=
name_of_instancg] list_of _port_connections)]
name_of instance ::=
module_instance_identifier [range]
list_of port_connections ::=
ordered_port_connection,{ordered_port_connection }
| named_port_connection fiamed_port_connection }
ordered_port_connection ::=
{ attribute_instance } [expression]
named_port_connection ::=
{ attribute_instance }port_identifier([expression)

Syntax 12-2—Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of instances to be created. The
array of instances are described in 7.1. The syntax and semantics of arrays of instances defined for gates and primi-
tives apply for modules as well.

One or more module instances (identical copies of a module) can be specified in a single module instantiation state-
ment.

The list of port connections shall be provided only for modules defined with ports. The parentheses, however, are

always required. When a list of port connections is given using the ordered port connection method, the first element

Section 12 Copyright 2000 IEEE. All rights reserved. 171
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

in the list shall connect to the first port declared in the module, the second to the second port, and so on. See 12.3 for
a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a variable or a net identifier, an expression, or a blank. An expression can
be used for supplying a value to a module input port. A blank port connection shall represent the situation where the
port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list, or by pro-
viding no expression in the parentheses [ipart_name ()].

Examples:

Example 1-Fhe following example illustrates a circuit (the lower-level module) being driven by a simple waveform
description (the higher-level module) where the circuit module is instantiated inside the waveform module.

/I Lower level module:

/l module description of a nand flip-flop circuit

module ffnand (q, gbar, preset, clear);

output g, gbar; /ldeclares 2 circuit output nets
input preset, clear; /ldeclares 2 circuit input nets

/I declaration of two nand gates and their interconnections
nand gl (g, gbar, preset),

g2 (gbar, q, clear);
endmodule

/I Higher-level module:

/[a waveform description for the nand flip-flop
module ffnand_wave;

wire outl, out2; /loutputs from the circuit
reginl, in2; [Ivariables to drive the circuit
parameter d = 10;

[/l instantiate the circuit ffnand, name it “ff”,
/I and specify the 10 port interconnections
ffnand ff(outl, out2, inl, in2);

/I define the waveform to stimulate the circuit

initial begin
#dinl=0;in2=1;
#dinl =1,
#d in2 = 0;
#din2 =1,

end

endmodule

Example 2—Fhe following example creates two instances of the flip-flop moéfulend defined in example 1. It
connects only to the output in one instance and only to tifmar output in the other instance.

172 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

/I a waveform description for testing
/l the nand flip-flop, without the output ports
module ffnand_wave;
reg inl, in2; //variables to drive the circuit
parameter d = 10;
/I make two copies of the circuit ffnand
/I ff1 has gbar unconnected, ff2 has q unconnected
ffnand ff1(outl, , inl, in2),
ff2(.gbar(out2), .clear(in2), .preset(inl), .q());
/I ff3(.q(out3),.clear(inl),,,); is illegal

/I define the waveform to stimulate the circuit
initial begin
#d inl
#d inl
#d in2
#d in2

0; in2 = 1;
1

0;
1

end
endmodule

12.1.3 Generated instantiation

After a Verilog design has been parsed, but before simulation begins, the design must have the modules being instan-
tiated linked to the modules being defined, the parameters propagated among the various modules, and hierarchical
references resolved. This phase in understanding a Verilog description is termed elaboration.

Generate instantiations are resolved during elaboration because that is when the parameters associated with a module
become defined, hence, allowing the definition of the generated statements and declarations. Genvars are only
defined during the evaluation of the generate instantiations and do not exist during simulation of a design.

Generate statements facilitate the creation of parameterized models. When used with constant functions (see 10.3.5),
parameters can be used to constrain other parameter(s) or localparam(s) in a generated design.

All generate instantiations are coded within a module scope and require the keyaredse- endgenerate

Generate statements allow control over the declaration of variables, functions and tasks, as well as control over
instantiations. Generated instantiations are one or more: modules, user defined primitives, Verilog gate primitives,
continuous assignments, initial blocks and always blocks. Generated declarations and instantiations can be condition-
ally instantiated into a design. Generated variable declarations and instantiations can be multiply instantiated into a
design. Generated instances have unique identifier names and can be referenced hierarchically as described in 12.4.

To support the interconnection between structural elements and/or procedural blocks, generate statements permit the
following Verilog data types to be declared within the generate saogereg, integer, real, time, realtime, and
event Generated data types have unique identifier names and can be referenced hierarchically as described in 12.4 .

Parameter redefinition using by the ordered or nape@meter = value assignment odefparam state-

ments can also be declared within the generate scope. Howealafparam statement within the generate scope or
within a hierarchy instantiated within the generate scope shall only modify the value of a parameter declared within
the generate scope or within a hierarchy instantiated within the generate scope.

Tasks and functions declarations shall also be permitted within the generate scope, however not in a generate loop.
Generated tasks and functions shall have unique identifier names and may be referenced hierarchically as described in
12.4.

Section 12 Copyright 2000 IEEE. All rights reserved. 173
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Module declarations and module items that shall not be permitted in a generate statement include: parameters, local
parameters, input declarations, output declarations, inout declarations and specify blocks.

Connections to generated module instances are handled the same way as they are handled with normal module
instances as described in 12.1.2.

Generated statements are created using one of the following three methods: generate-loop, generate-conditional, or
generate-case.

The syntax for generate instantiations is given in Syntax 12-3.

174 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

module_item ::5From Annex A - A.1.5)
module_or_generate_item
| port_declaration
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration
module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct
module_or_generate_item_declaration ::=
net_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

generated_instantiation :(Erom Annex A -A.4.2)
generate{ generate_item pndgenerate
generate_item_or_null ::=
generate_item;|
generate_item ::=
generate_conditional_statement
| generate_case_statement
| generate_loop_statement
| generate_block
| module_or_generate_item
generate_conditional_statement ::=
if (constant_expressigrgenerate_item_or_null lsegenerate_item_or_null]
generate_case_statement case (constant_expressign
genvar_case_item { genvar_case_itean§icase
genvar_case_item ::= constant_expressigmropstant_expression:}
generate_item_or_nulldefault [:] generate_item_or_null
generate_loop_statement ::=
for (genvar_assignmentonstant_expressigrgenvar_assignmeint
begin : generate_block_identifier { generate_iterarid
genvar_assignment ::=
genvar_identifier constant_expression
generate_block ::=
begin[: generate_block_identifier] { generate_iterar}d

Section 12

Syntax 12-3—Syntax for generate blocks

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

175

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

12.1.3.1 genvar - generate statement index variable

An index variable that shall only be declared for use in generate statements shall be declagehearand is
referred to as genvarin the rest of this section.

The syntax for generate statement index variable declarations is given in Syntax 12-4.

genvar_declaration ::@rom Annex A - A.2.1.3
genvar list_of_genvar_identifiers

list_of genvar_identifiers ::éFrom Annex A - A.2.3)
genvar_identifier { genvar_identifier }

Syntax 12-4—Syntax for generate statement index variable declaration

A genvarshall be declared within the module where the genvar is used. A genvar can be declared either inside or out-
side of a generate scope. A genvar is a positive integer that is local to and shall only be used within a generate loop
that uses it as an index variable.

Genvars are only defined during the evaluation of the generate blocks (see 12.1.3), and do not exist during simulation
of a Verilog design.

The value of a genvar shall only be defined by a generate loop. Two generate loops using the same genvar as an index
variable shall not be nested. The value of a genvar can be referenced in any context where the value of a parameter
could be referenced.

12.1.3.2 generate-loop

A generate-loop permits one or more variable declarations, modules, user defined primitives, gate primitives, contin-
uous assignments, initial blocks and always blocks to be instantiated multiple times using a for-loop. The index loop
variable used in a generate for-loop shall be declared as a genvar. Both genvar assignments in the for-loop shall assign
to the same genvar, which is the loop index variable.

Examples:

Example 1-A parameterized gray-code to binary-code converter module using a loop to generate continuous assign-
ments

module gray2hinl (bin, gray);
parameter SIZE = 8; // this module is parameterizable
output [SIZE-1:0] bin;
input [SIZE-1:0] gray;

genvari;

generate for(i=0; i<SIZE; i=i+1) begin:bit
assignbinli] = ~gray[SIZE-1:i];
end endgenerate
endmodule

176 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 2-The same gray-code to binary-code converter module in example 1 is built using a loop to generate
always blocks

module gray2bin2 (bin, gray);
parameter SIZE = 8; // this module is parameterizable
output [SIZE-1:0] bin;
input [SIZE-1:0] gray;
reg [SIZE-1:0] bin;

genvari;

generate for(i=0; i<SIZE; i=i+1) begin:bit
always @gray[SIZE-1:i]) // fixed part select
bin[i] = ~gray[SIZE-1:i];
end endgenerate
endmodule

The models in examples 3 and 4 are parameterized modules of ripple adders using a loop to generate Verilog gate
primitives. Example 3 uses a two dimensional net declaration outside of the generate loop to make the connections
between the gate primitives while example 4 makes the net declaration inside of the generate loop to generate the
wires needed to connect the gate primitives for each iteration of the loop.

Section 12 Copyright 2000 IEEE. All rights reserved. 177
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example 3—Generated ripple adder with two-dimensional net declaration outside of the generate loop

178

module addergenl (co, sum, a, b, ci);

parameter SIZE = 4;
output [SIZE-1:0] sum;

output Co;
input [SIZE-1:0] a, b;
input ci;

wire [SIZE :0] c;
wire [SIZE-1:0]t[1:3];
genvar i;

assignc[0] = ci;

/I Generated instance names are:
/I xor gates: bit[0].g1 bit[1].g1 bit[2].g1 bit[3].g1

1 bit[0].g2 bit[1].92 bit[2].92 bit[3].g2
/l and gates: bit[0].g3 bit[1].g3 bit[2].g3 bit[3].g3
1 bit[0].g4 bit[1].g4 bit[2].g4 bit[3].g4

/I or gates: bit[0].g5 bit[1].g5 bit[2].g5 bit[3].g5
/I Generated instances are connected with
/I multi-dimensional nets t[1][3:0] t[2][3:0] t[3][3:0]
/I (12 multi-dimensional nets total)
generate
for (i=0; i<SIZE; i=i+1) begin:bit
xor g1 (t[1]i], ~al[i], bfi]);
xor g2 (sum(i], t[2][i], c[i);
and g3 (t[2][i], afi], bli]);
and g4 (t[3][], tA][], c[i);
or g5 (c[i+1], t[2]fi], t[3][i]);
end
endgenerate

assignco = c[SIZE];

endmodule

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 12

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 4-Generated ripple adder with net declaration inside of the generate loop

module addergenl (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;

output Co;
input [SIZE-1:0] a, b;
input ci;

wire [SIZE :0] c;
genvar i;
assignc[0] = ci;

/I Generated instance names are:
/I xor gates: bit[0].g1 bit[1].g1 bit[2].g1 bit[3].g1

1 bit[0].g2 bit[1].92 bit[2].92 bit[3].g2
/l and gates: bit[0].g3 bit[1].g3 bit[2].g3 bit[3].g3
1 bit[0].g4 bit[1].g4 bit[2].g4 bit[3].g4

/I or gates: bit[0].g5 bit[1].g5 bit[2].g5 bit[3].g5
/I Generated instances are connected with
/I generated nets: bit[0].t1 bit[1].t1 bit[2].t1 bit[3].t1
1 bit[0].t2 bit[1].t2 bit[2].t2 bit[3].t2
1 bit[0].t3 bit[1].t3 bit[2].t3 bit[3].t3
generate
for (i=0; i<SIZE; i=i+1) begin:bit
wire ti,t2, t3; // generated net declaration

xor g1 (t1, ali], b[i]);
xor g2 (sumli], t1, c[i]);
and g3 (t2, a[i], bli]);
andg4 (t3, ti,c]i]);
or g5 (c[i+1], t2, t3);
end
endgenerate

assignco = c[SIZE];
endmodule

The generated instance names in a multi-level generate loop are shown in example 5. The generated name for the
scope at each generate loop is created by adding the "[genvar’s value]" string to the end of the generate block identi-
fier for the loop. The generated names are now generated identifiers (see 2.7.2) which can be used in hierarchical
path names (see 12.4).

Section 12 Copyright 2000 IEEE. All rights reserved. 179
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example 5-A multi-level generate loop

parameter SIZE = 2;

genvar i, j, k, m;
generate
for (i=0; i<SIZE+1; i=i+1) begin:B1 // scope B1][i]
M1 N1(); // instantiates B1[i].N1[i]
for (j=0; j<SIZE; j=j+1) begin:B2 // scope B1[i].B2[j]
M2 N2(); // instantiates B1[i].B2[j].N2
for (k=0; k<SIZE; k=k+1) begin:B3 // scope B1[i].B2[j].B3[K]
M3 N3(); // instantiates B1[i].B2[j].B3[k].N3
end
end
if (i>0)

for (m=0; m<SIZE; m=m+1) begin:B4 // scope B1[i].B4[m]
M4 N4(); // instantiates B1[i].B4[m].N4
end
end
endgenerate

/I some of the generated instance names are:
// B1[0].N1 B1[1].N1

// B1[0].B2[0].N2 B1[0].B2[1].N2

// B1[0].B2[0].B3[0].N3 B1[0].B2[0].B3[1].N3
/[B1[0].B2[1].B3[0].N3

/I B1[1].B4[0].N4 B1[1].B4[1].N4

12.1.3.3 generate-conditional

A generate-conditional is an if-else-if generate construct that permits modules, user defined primitives, Verilog gate
primitives, continuous assignments, initial blocks and always blocks to be conditionally instantiated into another
module based on an expression that is deterministic at the time the design is elaborated.

Example 6 shows the implementation of a parameterized module. If either of the multialieddth or b_width
parameters are less than 8 (bits), a CLA multiplier is instantiated. If both of the multiglievgdth or b_width
parameters are greater than or equal to 8 (bits), a Wallace tree multiplier is instantiated.

180 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 6—-An implementation of a parameterized multiplier module

module multiplier(a,b,product);

parameter a_width = 8, b_width = 8;

localparam product_width = a_width+b_width; // can not be modified
/I directly with the defparam statement

/I or the module instance statement #

input [a_width-1:0] a;

input [b_width-1:0] b;

output [product_width-1:0] product;

generate
if ((a_width < 8) || (b_width < 8))
CLA_multiplier #(a_width,b_width) ul(a, b, product);
Il instance a CLA multiplier
else
WALLACE_multiplier #(a_width,b_width) ul(a, b, product);
/I instance a Wallace-tree multiplier
endgenerate
/I The generated instance name is ul

endmodule

12.1.3.4 generate-case

A generate case construct permits modules, user defined primitives, Verilog gate primitives, continuous assignments,
initial blocks and always blocks to be conditionally instantiated into another module based on a select one-of-many
case construct. The selecting case expression must be deterministic at the time the design is elaborated.

Example —Generate with a case to handle widths less that 3

generate

case(WIDTH)

1: adder_1bit x1(co, sum, a, b, ci);
/I 1-bit adder implementation

2: adder_2bit x1(co, sum, a, b, ci);
/I 2-bit adder implementation

default: adder_cla #(WIDTH) x1(co, sum, a, b, ci);

/I others - carry look-ahead adder

endcase
/I The generated instance name is x1

endgenerate

Section 12 Copyright 2000 IEEE. All rights reserved. 181
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example 8-A module of memory dimm

module dimm;
parameter [31:0] MEM_SIZE = 8, // in mbytes
MEM_WIDTH = 16;
input [11:0] adr;
input [1:0] ba;

input rasx, casx, CSx, Wex;
input [7:0] dgm;
input cke;

input [7:0] ds;
inout [63:0] data;
input [3:0] clk;

wire rasb, casb, csb, web;
wire [7:0] bex;

genvari;

generate
case({MEM_SIZE, MEM_WIDTH})
{32'd8, 32'd16}: // 8Meg 16 bits wide.
begin
for (i=0;i<4;i=i+1)
begin:word
sms_16b216t0 p
(.clk(clk), .csb(csx), .cke(cke), .ba(ba]0]),
.addr(adr[10:0]),...rasb(rasx), .casb(casx),
.web(wex),.udgm(dgm[2*i+1]), .ldgm(dgm[2*i]),
...dgi(data[15+16*i:16*i]), .dev_id(dev_id3[4:0])
)i
end
task read_mem;
input [31:0] address;
output [63:0] data;
begin
word[3].p.read_mem(address, data[63:48]);
word[2].p.read_mem(address, data[47:32]);
word[1].p.read_mem(address, data[31:16]);
word[0].p.read_mem(address, data[15:0]);
end
endtask
end

182 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section 12

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

/I The generated instance names are word[3].p, word[2].p,
/I word[1].p, word[0].p, and the task read_mem
{32'd16, 32'd8}: // 16Meg 8 bits wide.
begin
for (i=0;i<4;i=i+ 1)
begin:byte
sms_16b208t0 p
(.clk(clk), .csb(csx), .cke(cke), .ba(bal0]),
.addr(adr[10:0]),
...rasb(rasx), .casb(casx), .web(wex), .dgm(dgmli]),
.dgi(data[8+8*i:8*i]),...dev_id(dev_id7[4:0])
)i
end
task read_mem;
input [31:0] address;
output [63:0] data;
begin
byte[7].p.read_mem(address, data[63:56]);
byte[6].p.read_mem(address, data[55:48]);
byte[5].p.read_mem(address, data[47:40]);
byte[4].p.read_mem(address, data[39:32]);
byte[3].p.read_mem(address, data[31:24]);
byte[2].p.read_mem(address, data[23:16]);
byte[1].p.read_mem(address, data[15:8]);
byte[0].p.read_mem(address, data[7:0]);
end
endtask
endcase
endgenerate
/I The generated instance names are byte[7].p, byte[6].p,
/I byte[5].p, byte[4].p, byte[3].p, byte[2].p, byte[1].p,
/I byte[0].p and the task read_mem

endmodule

12.2 Overriding module parameter values

There are two different ways that parameters can be defined. This firstimothele_parameter_port_ligsee 12.1),
and the second is asmodule_iten{see 3.11). A module declaration can contain parameter definitions of either or
both types, or no parameter definitions.

A module parameter can have a type specification and a range specification. The effect of parameter overrides on a
parameter’s type and range shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of the final
override value assigned to the parameter.

— A parameter with a range specification, but with no type specification, shall be the range of the parameter dec-
laration and shall be unsigned. An override value shall be converted to the type and range of the parameter.

— A parameter with a type specification, but with no range specification, shall be of the type specified. An over-
ride value shall be converted to the type of the parameter. A signed parameter shall default to the range of the
final override value assigned to the parameter.

Section 12 Copyright 2000 IEEE. All rights reserved. 183
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

— A parameter with a signed type specification and with a range specification shall be a signed, and shall be the
range of its declaration. An override value shall be converted to the type and range of the parameter.

Examples:

module generic_fifo
#(parameter MSB=3, LSB=0, DEPTH=4) // These parameters can be overridden
(
input [MSB:LSB] in,
input clk, read, write, reset,
output [MSB:LSB] out,
output full, empty

localparam FIFO_MSB = DEPTH*MSB; // These parameters are local, and
localparam FIFO_LSB = LSB; I/l cannot be overridden. They can be
/I affected by altering the public
/I parameters above, and the module
/I will work correctly.
reg [FIFO_MSB:FIFO_LSB] fifo;
reg [LOG2(DEPTH):0] depth;

always @ posedgeclk or reset) begin
casex({read,write,reset})
// implementation of fifo
endcase
end
endmodule

There are two ways to alter non-local parameter valuesdéiffgaram statemenivhich allows assignment to parame-

ters using their hierarchical names, and thedule instance parameter value assignmeittich allows values to be
assigned inline during module instantiation. If a defparam assignment conflicts with a module instance parameter, the
parameter in the module will take the value specified by the defparam. The module instance parameter value assign-
ment comes in two forms, by ordered list or by name. The next two subclauses describe these two methods.

There are two kinds of parameter declarations. The first kind of parameter declaration has a type and or range qualifi-
cation, and second does not. When an untyped and unranged parameter’s value is overridden, the parameter takes on
the size and type of the override.

When a typed and/or ranged parameter is overriden, the new value is converted to the type and size of the destination,
and assigned to that parameter.

Example:

module foo(a,b);
real r1,r2;
parameter [2:0] A = 3'h2;
parameter B = 3'h2;
initial begin
r1=A;
r2 = B;
$display("rl is %f r2 is %f",r1,r2);
end
endmodule// foo

184 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module bar;
wire a,b;
defparam f1.A = 3.1415;
defparam f1.B = 3.1415;
foo f1(a,b);
endmodule// bar

ParameteA is a typed and/or ranged parameter, so when its value is redefined, the parameter retains its original type
and sign. Therefore, the defparamfdfA with the value 3.1415 is performed by converting the floating point num-
ber 3.1415 into a fixed point number '3’ and then the low 3 bits of 3 are assighed to

ParameteB is not a typed and/or ranged parameter, so when its value is redefined, the parameter type and range take
on the type and range of the new value. Therefore, the defparfixBof with the value 3.1415 replac&s current
value of 3'h2 with the floating point number 3.1415.

12.2.1 defparam statement

Using thedefparam statemenparameter values can be changed in any module instance throughout the design using
the hierarchical name of the parameter. However, a defparam statement in a hierarchy under a generate scope or array
of instances shall not change a parameter value outside that hierarchy. See 12.4 for hierarchical names.

The expression on the right-hand side of the defparam assignments shall be a constant expression involving only
numbers and references to parameters. The referenced parameters (on the right-hand safpErdmm) shall be
declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments together in
one module.

In the case of multiple defparams for a single parameter, the parameter takes the value of the last defparam statement
encountered in the source text. When defparams are encountered in multiple source files, e.g., found by library
searching, the defparam from which the parameter takes it’s value is undefined.

Section 12 Copyright 2000 IEEE. All rights reserved. 185
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Example:

module top;
reg clk;

reg [0:4] inl;
reg [0:9] in2;
wire [0:4] o1,
wire [0:9] 02;

vdff m1 (o1, inl, clk);
vdff m2 (02, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input [0:size-1] in;

input clk;

output [0:size-1] out;

reg [O:size-1] out;

always @ (posedgeclk)
delay out = in;
endmodule

module annotate;
defparam
top.ml.size = 5,
top.m1l.delay = 10,
top.m2.size = 10,
top.m2.delay = 20;
endmodule

The moduleannotate has thedefparam statement which overridesize anddelay parameter values for
instancesnlandmz2in the top-level moduléop . The modulesop andannotate would both be considered top-
level modules.

12.2.2 Module instance parameter value assignment

An alternative method for assigning values to parameters within module instances is to use one of the two forms of
module instance parameter value assignment. They are assignment by ordered list and assignment by name. The two
types of module instance parameter value assignment shall not be mixed; parameter assignments to a particular mod-
ule instance shall be entirely by order or entirely by name.

Module instance parameter value assignment by ordered list is similar in appearance to the assignment of delay val-
ues to gate instances and assignment by name is similar to connecting module ports by name. It supplies values for
particular instances of a module to any parameters that have been specified in the definition of that module.

12.2.2.1 Parameter value assignment by ordered list

The order of the assignments in the module instance parameter value assignment by ordered list shall follow the order
of declaration of the parameters within the module. It is not necessary to assign values to all of the parameters within

a module when using this method. However, it is not possible to skip over a parameter. Therefore, to assign values to
a subset of the parameters declared within a module, the declarations of the parameters that make up this subset shall

186 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

precede the declarations of the remaining parameters. An alternative is to assign values to all of the parameters, but to
use the default value (the same value assigned in the declaration of the parameter within the module definition) for
those parameters that do not need new values.

Example:

Consider the following example, where the parameters within module instapdea are changed during instantia-
tion.

module m;

reg clk;

wire [0:4] out_c, in_c;
wire[1:10] out_a, in_a;
wire[1:5] out_b, in_b;

Il create an instance and set parameters
vdff #(10,15) mod_a(out_a, in_a, clk);

Il create an instance leaving default values
vdff mod_b(out_b, in_b, clk);

Il create an instance and set one parameter
vdff #(.delay(12)) mod_c(out_c, in_c, clk);
endmodule

module vdff (out, in, clk);
parameter size = 5, delay = 1;
input [0:size-1] in;

input clk;

output [0:size-1] out;

reg [0:size-1] out;

always @(posedgeclk)
delay out = in;
endmodule

In this example, the name of the module being instantiatedlis . The construc#(10,15) assigns values to
parameters used in tieod_a instance ofvdff . The parametesize is assigned the value 10 and the parameter
delay is assigned the value 15 for the instance of moddié calledmod_a. The construct(.delay(12))

assigns the parametdelay the value 12 in the instance of moduté#f calledmod_c.

12.2.2.2 Parameter value assignment by name

Parameter assignment by name consists of explicitly linking the parameter name and it's new value. The name of the
parameter shall be the name specified in the instantiated module.

It is not necessary to assign values to all of the parameters within a module when using this method. Only those
parameters that are assigned new values need to be specified.

The parameter expression is optional so that the instantiating module can document the existence of a parameter with-
out assigning anything to it. The parentheses are required and in this case the parameter retains its default value. Once
a parameter is assigned a value, there shall not be another assignment to this parameter name.

Section 12 Copyright 2000 IEEE. All rights reserved. 187
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

12.2.3 Parameter dependence

A parameter (for examplenemory_size) can be defined with an expression containing another parameter (for
example, word_size). Since memory_size depends on the value ofvord_size , a modification of
word_size changes the value ofiemory_size . For example, in the following parameter declaration, an update

of word_size , whether by defparam statement or in an instantiation statement for the module that defined these
parameters, automatically updateemory_size.

parameter

word_size = 32,
memory_size = word_size * 4096;

12.3 Ports

Ports provide a means of interconnecting a hardware description consisting of modules, primitives, and macromod-
ules. For example, module A can instantiate module B, using port connections appropriate to module A. These port
names can differ from the names of the internal nets and variables specified in the definition of module B.

12.3.1 Port definition

The syntax for ports and a list of ports is given in Syntax 12-5.

list_of ports ::5(From Annex A - A.1.4)
(port {, port})
list_of port_declarations ::=
(port_declaration { port_declaration }

()
port ::=
[port_expression]
| . port_identifier([port_expression)
port_expression ::=
port_reference
| { port_reference {port_reference }
port_reference ::=
port_identifier
| port_identifief constant_expressidn
| port_identifiel] range_expression
port_declaration ::=
{attribute_instance} inout_declaration
| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

Syntax 12-5—Syntax for port

12.3.2 List of ports
The port reference for each port in the list of ports at the top of each module declaration can be one of the following:

— A simple identifier or escaped identifier

— A bit-select of a vector declared within the module
— A part-select of a vector declared within the module
— A concatenation of any of the above

188 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The port expression is optional because ports can be defined that do not connect to anything internal to the module.
Once a port has been defined, there shall not be another port definition with this same name.

The first type of module port with only port_expression is an implicit port. The second type is the explicit
port. This explicitly specifies thport_identifier used for connecting module instance ports by name (see
12.3.6) and theort_expression which contains identifiers declared inside the module as described in 12.3.3.
Use of named port connections shall not be used for implicit ports unlesgpdtteexpressionis a simple
port_identifier

12.3.3 Port declarations

Eachport_expressioim the list of ports for the module declaration shall also be declared in the body of the module as
one of the following port declarationsput, output, or inout (bidirectional). This is in addition to any other data
type declaration for a particular port— for exampleresy or wire. The syntax for port declarations is given in
Syntax 12-6.

inout_declaration ::€From Annex A - A.2.1.2)
inout [net_type] [signed] [range] list_of_port_identifiers
input_declaration ::=
input [net_type] [signed] [range] list_of_port_identifiers
output_declaration ::=
output [net_type] [signed] [range]
list_of_port_identifiers
| output [reg] [signed] [range]
list_of port_identifiers
| output reg [signed] [range]
list_of variable_port_identifiers
| output [output_variable_type]
list_of_port_identifiers
| output output_variable_type
list_of variable_port_identifiers
list_of port_identifiers ::¥From Annex A - A.2.3)
port_identifier {, port_identifier }

Syntax 12-6—Syntax for port declarations

If a port declaration includes a net or variable type, then the port is considered completely declared and it is an error
for the port to be declared again as a variable or net data type declaration. Because of this, all other aspects of the port
shall be declared in such a port declaration, including the signed and range definitions if needed.

If a port declaration does not include a net or variable type, then the port can be again declared in a net or variable
declaration. If the net or variable is declared as a vector, the range specification between the two declarations of a port
shall be identical. Once a name is used in a port declaration it shall not be declared again in another port declaration
or in a data type declaration.

NOTE—Implementations may limit maximum number of ports in a module definition, but they will at least be 256.

Example:

input aport; // First declaration - okay.
input aport; // Error - multiple declaration, port declaration
output aport; // Error - multiple declaration, port declaration

The signed attribute can be attached either to a port declaration or to the corresponding net or reg declaration, or to

Section 12 Copyright 2000 IEEE. All rights reserved. 189
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

both. If either the port or the net/reg is declared as signed, then the other shall also be considered signed.

Implicit nets shall be considered unsigned. Nets connected to ports without an explicit net declaration shall be consid-
ered unsigned, unless the port is declared as signed.

Example:
module test(a,b,c,d,e,f,g,h);
input [7:0] &; /I no explicit declaration - net is unsigned
input [7:0] b;

input signed [7:0] c;

input signed[7:0]d; // no explicit net declaration - net is signed
output [7:0] e; /I no explicit declaration - net is unsigned
output [7:0] f;

output signed[7:0] g;

output signed[7:0] h; // no explicit net declaration - net is signed

wire signed[7:0] b; /I port b inherits signed attribute from net decl.
wire [7:0] c; /I net ¢ inherits signed attribute from port

reg signed[7:0] f; /I port f inherits signed attribute from reg decl.
reg[7:0] g; /l reg g inherits signed attribute from port
endmodule

module complex_ports ({c,d}, .e(f)); // Nets {c,d} receive the first
Il port bits. Name 'f’ is declared inside the module.
/l Name ’e’ is defined outside the module.
/I Can’t use named port connections of first port.

module split_ports (a[7:4], a[3:0]); // First port is upper 4 bits of

II'a’.

/l Second port is lower 4 bits of 'a’.

/I Can’t use named port connections because

/I of part-select port 'a’.
module same_port (.a(i), .b(i)); /I Name ' is declared inside the
/ module as a inout port. Names 'a’ and 'b’ are
/l defined for port connections.

module renamed_concat (.a({b,c}), f, .g(h[1]));
/I Names 'b’, 'c’, 'f, 'h’ are defined inside the module.
/I Names 'a’, 'f", 'g’ are defined for port connections.
/I Can use named port connections.

module same_input (a,a);
input a; I/l This is legal. The inputs are ored together.

12.3.4 Lists of ports declarations

An alternate syntax which minimizes the duplication of data can be used to specify the ports of a module. Modules
shall either be declared entirely with the list of ports syntax as described in 12.3.2 or entirely using the
list_of_port_declarationss described in this section.

Each declared port provides the complete information about the port. The port's direction, width, net, or variable
type, and whether the port is signed or unsigned is completely described. The same syntax for input, inout, and output
declarations is used in the module header as would be used for the list of port style declaration, except the

190 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

list_of_port_declarationss included in the module header rather than separately (after thleich terminates the
module header).

As an example, the module named test given in the previous example could alternatively be declared as:

Example:

module test (
input [7:0] a,
input signed[7:0] b, c, d, // multiple ports that share all
/I attributes can be declared together
output [7:0] e, /I every attribute of the declaration
/I must be in the one declaration
output signed reg [7:0] f, g,
output signed [7:0] h) ;
/'t is illegal to redeclare any ports of the module in the body
/I of the module.
endmodule

Theport_referenceype of module port declaration shall not be done us$istgof port_declarationstyle of module
declarations. Also ports declared using tis¢ of port_declarationshall only be simple identifiers. They shall not
be bit-selects, part-selects, or concatenations (as in the exaomfgex_ports); nor can a port be split (as in the
examplesplit_ports); nor can they be named ports (as in the exas®gige_port).

Designs may freely mix modules declared using each syntax; hence implementations desiring the above special cases
of port declaration can be done using the fisstof_ports syntax.

12.3.5 Connecting module instance ports by ordered list

One method of making the connection between the port expressions listed in a module instantiation and the ports
declared within the instantiated module is the ordered list—that is, the ports expressions listed for the module
instance shall be in the same order as the ports listed in the module declaration.

Example:

The following example illustrates a top-level modutepgmod) that instantiates a second moduteodB). Module
modBhas ports that are connected by an ordered list. The connections made are as follows:

— Portwa in themodBdefinition connects to the bit-selef0] in thetopmod module.
— Portwb connects to[3] .

— Portc connects tav

— Portd connects to[4] .

In themodBdefinition, portsva andwb are declared dsouts while portsc andd are declared asput

Section 12 Copyright 2000 IEEE. All rights reserved. 191
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (v[0], v[3], w, V[4]);
endmodule

module modB (wa, wb, c, d);
inout wa, wb;
input c, d;

tranifl gl (wa, wb, cinvert);

not #(2, 6) nl (cinvert, int);

and #(6, 5) g2 (int, c, d);
endmodule

During simulation of thé1 instance oimodb, theand gateg2 activates first to produce a value on . This value
triggers thenot gatenl to produce output ocinvert , which then activates theanifl gategl.

12.3.6 Connecting module instance ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the connection,
the port declaration name from the module declaration to the expression — the name used in the module declaration,
followed by the name used in the instantiating module. This compound name is then placed in the list of module con-
nections. The port name shall be the hame specified in the module declaration. The port name cannot be a bit-select, a
part-select, or a concatenation of ports. If the module port declaration was impligipthexpression shall

be a simpleport_identifer which is used as the port name. If the module port declaration was explicit, the
explicit name is used as the name of port.

The port expression can be any valid expression.

The port expression is optional so that the instantiating module can document the existence of the port without con-
necting it to anything. The parentheses are required.

The two types of module port connections shall not be mixed; connections to the ports of a particular module instance
shall be all by order or all by name.

Examples:

Example 1-n the following example, the instantiating module connects its signps andtopB to the portdnl
andOut defined by the modulALPHA At least one port provided bLPHAIs unused; it is nameth2 . There
could be other unused ports not mentioned in the instantiation.

ALPHA instancel (.Out(topB),.In1(topA),.In2());

192 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 2—Fhis example defines the module®dBandtopmod , and thertopmod instantiatesnodBusing ports
connected by name.

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (.wb(v[3]),.wa(v[0]),.d(v[4]),.c(w));
endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input c, d;
tranifl gl(wa, wb, cinvert);
not #(6, 2) nl(cinvert, int);
and #(5, 6) g2(int, c, d);

endmodule

Since these connections are made by name, the order in which they appear is irrelevant.

Multiple module instance port connections are not allowed, e.g., the following example is illegal:

Example 3—Fhis example shows illegal port connections.

module test;
a ia (i (a), .i (b), /I illegal connection of input port twice.
.0 (c), .0 (d), /Il illegal connection of output port twice.
.e (e), .e () /I illegal connection of inout port twice.
endmodule

12.3.7 Real numbers in port connections

Thereal data type shall not be directly connected to a port. It shall be connected indirectly, as shown in the follow-
ing example. The system functioisealtobits and$bitstoreal shall be used for passing the bit patterns across mod-
ule ports. (See 17.8 for a description of these system tasks.)

Section 12 Copyright 2000 IEEE. All rights reserved. 193
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

module driver (net_r);

output net_r;

real r;

wire [64:1] net_r = $realtobits(r);
endmodule

module receiver (net_r);
input net_r;
wire [64:1] net_r;
real r;
initial assignr= $bitstoreal(net_r);

endmodule

12.3.8 Connecting dissimilar ports

A port of a module can be viewed as providing a link or connection between two items (nets, regs, expressions,
etc.)—one internal to the module instance and one external to the module instance.

Examination of the port connection rules described in 12.3.9 will show that the item receiving the value through the
port (the internal item for inputs, the external item for outputs) shall be a structural net expression. The item that pro-
vides the value can be any expression.

NOTE—A port that is declared as input (output) but used as an output (input) or inout may be coerced to inout. If not coerced to
inout, a warning has to be issued.

12.3.9 Port connection rules

The following rules shall govern the way module ports are declared and the way they are interconnected.
12.3.9.1 Rule 1

An input or inout port shall be of type net.

12.3.9.2 Rule 2

Each port connection shall be a continuous assignment of source to sink, where one connected item shall be a signal
source and the other shall be a signal sink. The assignment shall be a continuous assignment from source to sink for
input or output ports. The assignment is a nonstrength reducing transistor connection for inout ports. Only nets or
structural net expressions shall be the sinks in an assignment.

A structural net expressiois a port expression whose operands can be the following:

— A scalar net

— A vector net

— A constant bit-select of a vector net

— A part-select of a vector net

— A concatenation of structural net expressions

194 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The following external items shall not be connected to the output or inout ports of modules:

— \Variables
— Expressions other than

i) A scalar net

i) A vector net

ii) A constant bit-select of a vector net
iv) A part-select of a vector net

v) A concatenation of the expressions listed above
12.3.10 Net types resulting from dissimilar port connections

When different net types are connected through a module port, the nets on both sides of the port can take on the same
type. The resulting net type can be determined as shown in Table 12-1. In theetdbleal netmeans the net speci-

fied in the module instantiation, amternal netmeans the net specified in the module definition. The net whose type

is used is said to be tl@ominating netThe net whose type is changed is said to bedibrainated netit is permissi-

ble to merge the dominating and dominated nets into a single net, whose type shall be that of the dominating net. The
resulting net is called tr@mulated netand the dominated net is calleddlapsed net

The simulated net shall take the delay specified for the dominating net. If the dominating net is of ttizegpeany
strength value specified for the trireg net shall apply to the simulated net.

12.3.10.1 Net type resolution rule

When the two nets connected by a port are of different net type, the resulting single net can be assigned one of the fol-
lowing:

— The dominating net type if one of the two nets is dominating,
— The net type external to the module

When a dominating net type does not exist, the external net type shall be used.
12.3.10.2 Net type table
Table 12-1 shows the net type dictated by net type resolution rule.

The simulated net shall take the net type specified in the table and the delay specified for that net. If the simulated net
selected is &ireg, any strength value specified for the trireg net applies to the simulated net.

Table 12-1—Net types resulting from dissimilar port connections

External net
Internal
net wire, wand, wor, . . .
tri triand trior trireg trio tril supplyO |supplyl
wire, ext ext ext ext ext ext ext ext
tri
wand, int ext warn warn warn warn ext ext
triand
Section 12 Copyright 2000 IEEE. All rights reserved. 195

This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
Table 12-1—Net types resulting from dissimilar port connections (continued)
External net

Internal

net wire, wand, wor, . . .

tri triand trior trireg trio tril supplyO |supplyl

wor, int warn ext warn warn warn ext ext
trior
trireg int warn warn ext ext ext ext ext
trio int warn warn int ext warn ext ext
tril int warn warn int warn ext ext ext
supply0 int int int int int int ext warn
supplyl int int int int int int warn ext
KEY

ext = The external net type is used
int = The internal net type is used
warn = A warning is issued and the external net type is used

12.3.11 Connecting signed values via ports

The sign attribute shall not cross hierarchy. In order to have the signed type cross hierarchy, the signed keyword must

be used in the object's declaration at the different levels of hierarchy. Any expressions on a port shall be treated as any
other expression in an assignment. It shall be typed, sized, evaluated and the resulting value assigned to the object on
the other side of the port using the same rules as an assignment.

12.4 Hierarchical names

Every identifier in a Verilog HDL description shall have a uniduerarchical path nameThe hierarchy of modules

and the definition of items such as tasks and named blocks within the modules shall define these names. The hierar-
chy of names can be viewed as a tree structure, where each module instance, generated instance, task, function, or
namedbegin-end or fork-join block defines a new hierarchical level, or scope, in a particular branch of the

tree.

At the top of the name hierarchy are the names of one or more root modules of which no instances have been created.
This root or these parallel root modules make up one or more hierarchiekesign descriptior description Inside

any module, each module instance (including an arrayed or generated instance), task definition, function definition,
and namedegin-end or fork-join block shall define a new branch of the hierarchy. Named blocks within
named blocks and within tasks and functions shall create new branches. Only non-recursively referenced automatic
tasks and/or functions create visible branches that can be referenced. Recursively called tasks and functions, declared
using the automatic keyword and recursively called from within the same task or function, do not create visible
branches that can be referenced. See 10.2.1 and 10.3.1 for a discussion of automatic tasks and functions.

Each node in the hierarchical name tree shall be a separate scope with respect to identifiers. A particular identifier can
be declared at most once in any scope. See 12.6 for a discussion of scope rules and 3.12 for a discussion of name
spaces.

196 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Any named Verilog object onierarchical name referencean be referenced uniquely in its full form by concatenat-

ing the names of the modules, module instance names, tasks, functions, or named blocks that contain it. The period
character shall be used to separate each of the names in the hierarchy, except for escaped identifiers embedded in the
hierarchical name reference, which are followed by separators composed of white space and a period-character. The
complete path name to any object shall start at a top-level (root) module. This path name can be used from any level
in the hierarchy or from a parallel hierarchy. The first node nhame in a path name can also be the top of a hierarchy that
starts at the level where the path is being used (which allows and enables downward referencing of items) with the
exceptions of items of automatic tasks and automatic task item declarations. These declarations can not be accessed
by their hierarchical names.

The syntax for hierarchical path names is given in Syntax 12-7.

escaped_hierarchical_identiﬂer: (From Annex A - A.9.3)
escaped_hierarchical_branch
[{ .simple_hierarchical_branchescaped_hierarchical _branch }]
escaped_identifier ::=
\{Any_ASCII_character_except_white_space} white_space
hierarchical_identifier ::=
simple_hierarchical_identifier
| escaped_hierarchical_identifier
simple_hierarchical_identifién:=
simple_hierarchical_branchdscaped_identifier]
simple_identifie? ::= [a-zA-Z_]{[a-zA-Z0-9_$]}
simple_hierarchical_branéh:= (From Annex A - A.9.4)
simple_identifier [[unsigned_number]]
[{ .simple_identifier [[unsigned_number]]}]
escaped_hierarchical_brarcte
escaped_identifier [[unsigned_number]]
[{ .escaped_identifier [[unsigned_number]]}]
white_space ::From Annex A - A.9.5)
space | tab | newline | &of

The period inescaped_hierarchical_identifiand escaped_hierarchical_branshall be preceded by
white_spacebut shall not be followed byhite_space

2The period () in simple_hierarchical_identifiemdsimple_hierarchical_branciall not be preceded or
followed bywhite_space.

3A simple_identifiemndarrayed_referencshall start with an alpha or underscorg ¢haracter, shall have at
least one character, and shall not have any spaces.

“End of file.

Syntax 12-7—Syntax for hierarchical path names

Section 12 Copyright 2000 IEEE. All rights reserved. 197
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Examples:

Example 1-Fhe code in this example defines a hierarchy of module instances and named blocks.

module mod (in); module cct (stim1, stim2);

input in; input stiml, stim2;

always @(osedgein) begin: keep /l instantiate mod

reg hold; mod amod(stim1), bmod(stim2);
hold = in; endmodule

end

endmodule

module wave;
reg stiml, stim2;

cct a(stiml, stim2); // instantiate cct

initial begin :wavel
#100 fork :innerwave

reg hold;
join
#150 begin
stiml = 0;
end
end
endmodule

Figure 12-1 illustrates the hierarchy implicit in this Verilog code.

wave
[
| |
a wavel

|
amod bmod Innerwave
keep keep

Figure 12-1—Hierarchy in a model
198 Copyright 2000 IEEE. All rights reserved. Section 12

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Figure 12-2 is a list of the hierarchical forms of the names of all the objects defined in the code.

wave wave.a.bmod

wave.stiml wave.a.bmod.in

wave.stim2 wave.a.bmod.keep

wave.a wave.a.bmod.keep.hold
wave.a.stiml wave.wavel

wave.a.stim2 wave.wavel.innerwave
wave.a.amod wave.wavel.innerwave.hold
wave.a.amod.in

wave.a.amod.keep

wave.a.amod.keep.hold

Figure 12-2—Hierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. If the unique hier-
archical path name of an item is known, its value can be sampled or changed from anywhere within the description.

Example 2-Fhe next example shows how a pair of named blocks can refer to items declared within each other.

begin
fork :mod_1
reg x;
mod_2.x

I
=

join

fork :mod_2
reg x;
mod_1.x

I
o

join
end

12.5 Upwards name referencing

The name of a module or module instance is sufficient to identify the module and its location in the hierarchy. A
lower-level module can reference items in a module above it in the hierarchy.Variables can be referenced if the name
of the higher-level module or its instance name is known. For tasks, functions, and named blocks, Verilog shall look
in the enclosing module for the name until it is found or until the root of the hierarchy is reached. It shall only search
in higher enclosing modules for the name, not instances. The syntax for an upward reference is given in Syntax 12-8.

upward_name_reference (Mot in the Annex A BNF)
module_identifier.item_name
item_name ;=
function_identifier
| block_identifier
| net_identifier
| parameter_identifier
| port_identifier
| task_identifier
| variable_identifier

Syntax 12-8—Syntax for upward name referencing

Section 12 Copyright 2000 IEEE. All rights reserved. 199
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Upwards name references can also be done with names of the form
module_instance_name.item_name
A name of this form shall be resolved as follows:

a) Look in the current module for a module instance namedule_instance_name . If found, this name
reference shall be treated as a downward reference, and the item name shall be resolved in the corresponding
module.

b) Look in the parent module for a module instance namediule_instance_name . If found, the item
name shall be resolved from that instance, which is the sibling of the module containing the reference.

c) Repeat step b), going up the hierarchy.

There shall be no spaces within the hierarchical name reference, except for escaped identifiers embedded in the hier-
archical name reference, which are followed by separators composed of white space and a period-character.

Example:

In this example, there are four modulash, ¢, andd. Each module contains an integerThe highest-level mod-
ules in this segment of a model hierarchy arandd. There are two copies of modutebecause modula andd
instantiateb. There are four copies ofi because each of the two copied dfistantiates twice.

module a;
integer i;

b a bl();
endmodule

module b;

integer i;

¢ b _c1(), b_c20;

initial /I downward path references two copies of i
#10 b_cl.i=2;// a.a_bl.b_cl.,d.d_bl.b_cl.i

endmodule

module c;
integer i;
initial begin /I local name references four copies of i:
i=1; /l a.a_bl.b cl.i,a.a bl.b _c2.i,
//d.d_bl.b _cl.i,d.d_bl.b c2.i
b.i=1,; /I upward path references two copies of i
/l a.a_bl., d.d_bl.
end
endmodule

module d;

integer i;

b d_b1();

initial begin /I full path name references each copy of i
ai=1, d.i=5;
a.a_bli=2; d.d_bl.i=6;
a.a blb cli=3; dd blb cli=7;
a.a_bl.b c2.i=4; d.d blb c2.i=8;

end

endmodule

200 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

12.6 Scope rules

The following four elements define a new scope in Verilog:

— Modules

— Tasks

— Functions

— Named blocks

An identifier shall be used to declare only one item within a scope. This rule means it is illegal to declare two or more
variables that have the same name, or to name a task the same as a variable within the same module, or to give a gate
instance the same name as the name of the net connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a task, function, or named block, it shall be
declared either locally within the task, function, or named block, or within a module, task or named block that is
higher in the same branch of the name tree that contains the task, function, or named block. If it is declared locally,
then the local item shall be used; if not, the search shall continue upward until an item by that name is found or until

a module boundary is encountered. If the item is a variable, it shall stop at a module boundary; if the item is a task,
function, or named block it continues to search higher-level modules until found. The search shall cross named block,
task, and function boundaries but not module boundaries. This fact means that tasks and functions can use and modify
the variables within the containing module by name, without going through their ports.

If an identifier is referenced with a hierarchical name, the path can start with an module name, instance name, task,
function, or named block. The names shall be searched first at the current level, then in higher-level modules until
found. Since both module names and instance names can be used, precedence is given to instance names if there is a
module named the same as an instance name.

Because of the upward searching, path names which are not strictly on a downward path can be used.

Section 12 Copyright 2000 IEEE. All rights reserved. 201
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Example:

Example 1-4n Figure 12-3, each rectangle represents a local scope. The scope available to upward searching extends
outward to all containing rectangles—with the boundary of the module A as the outer limit. Thus block G can directly
reference identifiers in F, E, and A; it cannot directly reference identifiers in H, B, C, and D.

module A
AN
task B~
Scopes not block B > _
available to N / Scopes available
block G block F <11 to block G
N ¥
task C block G
N
block H
func D

Figure 12-3—Scopes available to upward name referencing

Example 2—Fhe following example shows an incompletely defined downward reference that can be accessed.

task t;

reg r,s;

begin : b
/I redundant assignments to reg r
t.b.r = 0; // poorly defined but found by upward search
ts = 0; /I fully defined downward reference

end

endtask

202 Copyright 2000 IEEE. All rights reserved. Section 12
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 13

Configuring the contents of a design

13.1 Introduction

To facilitate both the sharing of Verilog designs between designers and/or design groups, and the repeatability of the
exact contents of a given simulation (or other tool) session, the concepntifurationss used in the Verilog lan-

guage. A configuration is simply an explicit set of rules to specify the exact source description to be used to represent
each instance in a design. The operation of selecting a source representation for an instance is refdrneding as

the instance.

The example below shows a simple configuration problem.

Example:
file top.v file adder.v file adder.vg
module top(); module adder(...); module adder(...);
adder al(...); /I rtl adder description // gate-level adder description
adder a2(...);
endmodule endmodule endmodule

Consider using thetl adder description inadder.v for instanceal in module top and the gate-level adder
description inadder.vg for instancea2. In order to specify this particular set of instance bindings and to avoid
having to change the source description to specify a new set, a configuration can be used.

config cfgl; // specify rtl adder for top.al, gate-level adder for top.a2
designrtiLib.top;
default liblist rtlLib;
instancetop.a2 liblist gateLib;

endconfig

The elements of aonfigare explained in subsequent sections, but this simple example illustrates some important
points aboutonfigs. As evidenced by theonfig-endconfigsyntax, the config is a design element, similar to a mod-

ule, which exists in the Verilog namespace. The config contains a set of rules which are applied when searching for a
source description tbind to a particular instance of the design.

A Verilog design description starts with a top-level module (or modules), which is not instantiated elsewhere in the
design. From this module’s source description, the instantiated modules (or children) are found, and then the source
descriptions for the module definitions of these subinstances shall be located, and so on until every instance in the
design is mapped to a source description.

13.1.1 Library notation

In order to map a Verilog instance to a source description, the concept of a syffitiralig, which is simply a logical
collection of design elements (such as modules, macromodules, primitives, or configs) can be used. These design ele-
ments can be referred to eslls. The cell name shall be the same as the name of the module/macromodule/primitive/
config being processed. Syntax 13-1 specifies a cell from a given library.

Section 13 Copyright 2000 IEEE. All rights reserved. 203
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

library_cell ::=(Not in the Appendix A BNF)
[library_identifier]cell_identifier[:config]

Syntax 13-1—Syntax for cell

This notation gives a symbolic method of referring to source descriptions; the method of mapping source descriptions
into libraries is shown in greater detail in 13.2.1. The optionahfig ~ extension shall be used explicitly to refer to
a config in the case where a config has the same name as a module/macromodule/primitive.

For the purposes of this example, suppose thetfilpsy andadder.v , thertl descriptions, have been mapped
into the libraryrtiLib , and the fileadder.vg , the gate-level description of tleelder , has been mapped into the
library gateLib . The actual mechanism for mapping source descriptions to libraries is detailed in 13.2.

13.1.2 Basic configuration elements

Thedesignstatement irtonfig cfgl of the first example of 13.1 specifies the top-level module in the design and
what source description is to be used. In this exampleytthi.top notation indicates the top-level module
description shall be taken fromlLib . Sincetop.v andadder.v were mapped to this library, the actual
description for the module is known to come frtop.v .

The default statement coupled with tHiblist clause specifies, by default, all subinstances of top {op.al and
top.a2) shall be taken fromtlLib , which means the descriptionstop.v andadder.v , which were mapped
to this library, shall be used. For a basic design, which can be compt#telythis can be sufficient to specify com-
pletely the binding for the entire design. However, herettiea2 instance of adder to the gate-level description
shall be bound.

The instance statement specifies, for the particular instatm@a2 , the source description shall be taken from
gateLib . The instance statement overrides the default rule for this particular instance. &ideevg was
mapped taateLib , this statement dictates the gate-level descripti@auder.vg be used for instandep.a2

13.2 Libraries

As mentioned in the previous section, a library is a logical collection of cells which are mapped to particular source
description files. The symboli®h. cell[:config] notation supports the separate compilation of source files by pro-
viding a file system-independent name to refer to source descriptions when instances in a design are bound. It also
allows multiple tools, which can have different invocation use-models, to share the same configuration.

13.2.1 Specifying libraries - the library map file

When parsing a source description file (or files), the parser shall first read the library mapping information from a pre-
defined file prior to reading any source files. The name of this file and the mechanism for reading it shall be tool-spe-
cific, but all compliant tools shall provide a mechanism to specify one or more library mapping files to be used for a
particular invocation of the tool. If multiple mapping files are specified, then they shall be read in the order in which
they are specified.

For the purposes of this discussion, assume the existence of a file fiamep in the current working directory,
which is automatically read by the parser prior to parsing any source files specified on the command line. The syntax
for declaring a library in the library map file is shown in Syntax 13-2.

204 Copyright 2000 IEEE. All rights reserved. Section 13
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

escaped_hierarchical_identifler= (From Annex A - A.1.1)
library text ::=

{ library_descriptions }
library_descriptions ::=

library_declaration

| include_statement

| config_declaration
library_declaration ::=

library library_identifier file_path_spec [{file_path_spec }]

[-incdir file_path_spec [{ file_path_spec }]

file_path_spec ::=

file_path
include_statement ::=

include <file_path_spec>

The period inescaped_hierarchical_identifiend escaped_hierarchical_branstmell be preceded by
white_spacebut shall not be followed byhite_space

Syntax 13-2—Syntax for declaring library in the library map file

NOTES

1—The file_path uses file system-specific notation to specify an absolute or relative path to a particular file or set of files. The fol-
lowing shortcuts/wildcards can be used:

? single character wildcard (matches any single character)

* multiple character wildcard (matches any number of characters in a directory/file name)
hierarchical wildcard (matches any number of hierarchical directories)
specifies the parent directory
specifies the directory containing tiie.map

Paths which end ih shall include all files in the specified directory. Identical*to .
Paths which do not begin with are relative to the directory in which the current lib.map file is located.

2—The paths/*.v and*.v are identical and both specify all files withva suffix in the current directory.

Any file encountered by the compiler which does not match any library’s file_path specification shall by default be
compiled into a library nameaork .

To perform the library mapping discussed in the example in 13.1, use the following library definitions in the
lib.map file:

library rtlLib *.v ; /l matches all files in the current directory with auffix
library gateLib ./*.vg ; /I matches all files in the current directory wittvg suffix

13.2.1.1 File path resolution

If a file name potentially matches multiple file path specifications, the path specifications shall be resolved in the fol-
lowing order:

a) File path specifications which end with an explicit filename
b) File path specifications which end with a wildcarded filename
c) File path specifications which end with a directory

Section 13 Copyright 2000 IEEE. All rights reserved. 205
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

If a fle name matches path specifications in multiple library definitions (after the above resolution rules have been
applied), it shall be an error.

Using these rules with the library definitions in titemap file, all source files encountered by the parser/compiler
can be mapped to a unique library. Once the source descriptions have been mapped to libraries, the cells defined
therein are available for binding.

NOTE—Tool implementers may find it convenient to provide a command-line argument to explicitly specify the library into which
the file being parsed is to be mapped, which shall override any library definitions libbth@ap file. If these libraries do not
exist in thelib.map file, they can only be accessed via an explicit config.

If multiple cells with the same name map to the same library, the A&T cell encountered shall be written to the

library. This is to support a “separate-compile” use-model (see 13.4.3), where it is assumed encountering a cell after it
has previously been compiled is intended to be a recompiling of the cell. In the case where multiple modules with the
same name are mapped to the same library in a single invocation of the compiler, then a warning message shall be
issued.

13.2.2 Using multiple library mapping files

In addition to specifying library mapping informationli.map file can also include references to otlibrmap
files. Theinclude command is used to insert the entire contents of a library mapping file in another file during pars-
ing. The result is as though the contents of the included mapping file appear in pladaafitteecommand.

The syntax of dib.map file is limited to library specifications, include statements, and standard Verilog comment
syntax. Syntax 13-3 shows the syntax foritl@dude command.

include_statement ::From Annex A - A.1.1)
include <file_path_spec>

Syntax 13-3—Syntax for include command

If the file path specification, whether in an include or library statement, describes a relative path, it shall be relative to
the location of the file which contains the file path. Library providers shall include a local library mapping file in addi-
tion to the source contents of the library. Individual users can then simply include the provider’s library mapping file
in their own map file to gain access to the contents of the provided library.

13.2.3 Mapping source files to libraries

For each cell definition encountered during parsing/compiling, the name of the source file being parsed is compared
to the file path specifications of the library declarations in all of the library map files being used. The cell is mapped
into the library whose file path specification matches the source file name.

13.3 Configurations

As mentioned in the introduction of this chapter, a configuration is simply a set of rules to apply when searching for
library cells to which to bind instances. The syntax for configurations is shown in 13.3.1.

13.3.1 Basic configuration syntax

The configuration syntax is shown in Syntax 13-4.

206 Copyright 2000 IEEE. All rights reserved. Section 13
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

config_declaration ::£From Annex A -A.1.2)
config config_identifier;
design_statement
{config_rule_statement}
endconfig

design_statement ::=
design{ [library_identifier.Jcell_identifier } ;

config_rule_statement ::=

default_clause liblist_clause
| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use_clause

Syntax 13-4—Syntax for configuration

13.3.1.1 Design statement

The designstatement names the library and cell of the top-level module or modules in the design hierarchy config-
ured by the config. There shall be one and only one design statement, but multiple top-level modules can be listed in
the design statement. The cell or cells identified can not be configurations themselves. It is possible the design identi-
fied can have the same name as configs, however.

Thedesignstatement shall appear before any config rule statements in the config.
If the library identifier is omitted, then the library which contains the config shall be used to search for the cell.
13.3.1.2 The default clause

The syntax for thelefault clause is specified in Syntax 13-5.

default_clause ::from Annex A - A.1.2)
default

Syntax 13-5—Syntax for default clause

The default clause selects all instances which do not match a more specific selection clauseseExpansion
clause (see 13.3.1.6) can not be used witlefault selection clause. For other expansion clauses, there can not be
more than onéefault clause which specifies the expansion clause.

For simple design configurations, it might be sufficient to spedfault liblist (see 13.3.1.5).
13.3.1.3 The instance clause

Theinstanceclause is used to specify the specific instance to which the expansion clause shall apply.The syntax for
theinstanceclause is specified in Syntax 13-6.

Section 13 Copyright 2000 IEEE. All rights reserved. 207
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

inst_clause ::¥From Annex A - A.1.2)
instanceinst_name

inst_name ::=
topmodule_identifierfnstance_identifier}

Syntax 13-6—Syntax for instance clause

The instance name associated withittetanceclause is a Verilog hierarchical name, starting at the top-level module
of the config (i.e., the name of the cell in tesignstatement).

13.3.1.4 The cell clause

Thecell selection clause names the cell to which it applies. The syntax foeltlibause is specified in Syntax 13-7.

cell_clause ::¥From Annex A - A.1.2)
cell[library_identifier]cell_identifier

Syntax 13-7—Syntax for cell clause

If the optional library name is specified then the selection rule applies to any instance which is bound or is under con-
sideration for being bound to the selected library and cell. It is an error if a library name is includedliselection
clause and the corresponding expansion clause is a library list expansion clause.

13.3.1.5 The liblist clause

Theliblist clause defines an ordered set of libraries to be searched to find the current instance. The syntéik-for the
list clause is specified in Syntax 13-8.

liblist_clause ::5(From Annex A - A.1.2)
liblist [{library_identifier}]

Syntax 13-8—Syntax for liblist clause

liblists are inherited hierarchically downward as instances are bound. When searching for a cell to bind to the current
unbound instance, and in the absence of an applicable binding expansion clause, the specified library list is searched
in the specified order.

The current library list is selected by the selection clauses. If no library list clause is selected, or the selected library
list is empty, then the library list contains the single name which is the library in which the cell containing the
unbound instance is found (i.e., the parent cell’s library).

13.3.1.6 The use clause

The use clause specifies a specific binding for the selected cell. The syntax fonsthelause is specified in
Syntax 13-9.

208 Copyright 2000 IEEE. All rights reserved. Section 13
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

use_clause ::from Annex A - A.1.2)
usellibrary_identifier]cell_identifierf.config]

Syntax 13-9—Syntax for use clause

A useclause can only be used in conjunction withiastanceor cell selection clause. It specifies the exact library
and cell to which a selected cell or instance is bounds@clause with no library or cell indicates the selected cell is
unbound.

Theuseclause has no effect on the current value of the library list. It can be common in practice to specify multiple
config rule statements, one of which specifies a binding and the other of which specifies a library list.

If the lib.cell being referred to by theseclause is a config which has the same name as a module/macromodule/prim-
itive in the same library, then the optionabnfig suffix can be added to thé.cell to specify the config
explicitly.

If the library name is omitted, the library shall be inherited from the parent cell.

The binding statement can create situations where the unbound instance’s module name and the cell name to which it
is bound are different. This condition is common in VHDL, but has never before been possible in Verilog.

13.3.2 Hierarchical configurations

For situations where it is desirable to specify a special set of configuration rules for a subsection of a design, it is pos-
sible to bind a particular instance directly to a configuration using the binding clause:

instancetop.al.foo uselibl.foo:config;
// bind to the config foo in library libl

specifies the instanc®p.al.foo is to be replaced with the design hierarchy specified by the configuration
libl.foo:config . The design statement inlib1.foo:config shall specify the actual binding for the
instancetop.al.foo , and the rules specified in the config shall determine the configuration of all other subin-
stances undeop.al.foo

It shall be an error for an instance clause to specify a hierarchical path to an instance which occurs within a hierarchy
specified by another config.

config bot;
designlibl.bot;
default liblist libl lib2;
instancebot.al liblist lib3;
endconfig

config top;
designlibl.top;
default liblist lib2 lib1;
instancetop.bot uselibl.bot:config;

instancetop.bot.al liblist lib4;
/I ERROR - can't set liblist for top.bot.al from this config
endconfig
Section 13 Copyright 2000 IEEE. All rights reserved. 209

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

13.4 Using libraries and configs

The following section describes potential use-models for referencing configs on the command line. It is included for
clarification purposes.

The traditional Verilog simulation use-model takes a file-based approach, where the source descriptions for all cells in
the design are specified on the command line for each invocation of the tool. With the advent of compiled-code simu-
lators, the configuration mechanism shall also support a use-model which allows for the source files to be pre-com-
piled and then for the pre-compiled design objects to be referenced on the command line. This section shall explain
how configurations can be used in both of these scenarios.

13.4.1 Precompiling in a single-pass use-model

The single-pass use-model is the traditional use-model with which most users are familiar. In this use-model, all of
the source description files shall be provided to the simulator via the command line, and only these source descrip-
tions can be used to bind cell instances in the current design. A precompiling strategy in this scenario actually parses
every cell description provided on the command line and map it into the library without regard to whether the cell
actually is used in the design. The tool can optionally check to see if the cell already exists in the library, and if it is
up-to-date (i.e. the source description has not changed since the last time the cell was compiled) the tool can skip
recompiling the cell. After all cells on the command line have been compiled, then the tool can locate the top-level
cell (discussed in Section 12), and proceed down the hierarchy, binding each instance as it is encountered in the hier-
archy.

NOTE—With this use-model it is not necessary for library objects to persist from one tool invocation to another (although for per-
formance considerations it is recommended they do).

13.4.2 Elaboration-time compiling in a single-pass use-model

An alternate strategy which can be used with a single-pass tool is to parse the source files only to find the top-level
module(s), without actually compiling anything into the library during this scanning process. Once the top-level mod-
ule(s) has been found, then it can be compiled into the library, and the tool can proceed down the hierarchy, only com-
piling the source descriptions necessary to bind the design successfully. Based on the binding rules in place, only the
source files which match the current library specification need to be parsed to find the current cell’s source description
to compile. As with the precompiled single-pass use-model, it is not necessary for library cells to persist from one
invocation to another using this strategy.

13.4.3 Precompiling using a separate compilation tool

When using a separate compilation tool, it is essential library cells persist, and the compiled forms shall therefore
exist somewhere in the file system. The exact format and location for holding these compiled forms shall be vendor/
tool-specific. Using this separate compiler strategy, the source descriptions shall be parsed and compiled into the
library using one or more invocations of the compiler tool. The only restriction is all cells in a design shall be precom-
piled prior to binding the design (typically via an invocation of a separate tool). Using this strategy, the tool which
actually does the binding only needs to be told the top-level module(s) of the design to be bound, and then it shall use
the precompiled form of the cell description(s) from the library to determine the subinstances and descend hierarchi-
cally down the design binding each cell as it is located.

13.4.4 Command line considerations

In each of the three preceding strategies, the binding rules can either be specified via a config, or the default rules
(from the library map file) can be used. In the single-pass use-models, the config can be specified by including its
source description file on the command line. In the case where the config includes a design statement, then the speci-
fied cell shall be the top-level module, regardless of the presence of any uninstantiated cells in the rest of the source
files. When using a separate compilation tool, the tool which actually does the binding only needs to be given the
lib.cell specification for the top-level cell(s) and/or the config to be used. In this strategy, the config itself shall also be
precompiled.

210 Copyright 2000 IEEE. All rights reserved. Section 13
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

13.5 Configuration examples

Consider the following set of source descriptions:

Example:
file top.v file adder.v file adder.vg file lib.map
module top(...); module adder(...); module adder(...); library rtiLib top.v;
A ... Il gate-level library aLib adder.*;
adder ail(...); foo f1(...); foo f1(...); library gateLib
adder a2(...); foo f2(...); foo f2(...); adder.vg;
endmodule endmodule endmodule
module foo(...); module foo(...); module foo(...);
Al At ... Il gate-level
endmodule endmodule endmodule

All of the examples in this section shall assumetihgv , adder.v and adder.vg files get compiled with the
givenlib.map file. This yields the following library structure:

rtiLib.top // from top.v
rtiLib.foo // from top.v
alLib.adder // from adder.v
aLib.foo // rtl from adder.v
gateLib.adder // from adder.vg
gateLib.foo // from adder.vg

13.5.1 Default configuration from library map file

With no configuration, the libraries are searched according to the library declaration order in the library map file. This
means all instances of modwdelder shall useaLib.adder (sinceaLib is the first library specified which con-

tains a cell nameadder), and all instances of modufeo shall usertlLib.foo (sincertlLib is the first

library which containgoo).

13.5.2 Using the default clause
To always use the foo definition from faelder.v , use the following simple configuration:
config cfgl;
designrtlLib.top
default liblist aLib rtlLib;

endconfig

The default liblist statement overrides the library search order inlthenap file, soaLib is always searched
beforertlLib . Since thegateLib library is not included in thédiblist , the gate-level descriptions afider
andfoo shall not be used.

To use the gate-level representationadder andfoo , add to the config as follows:

config cfg2;
designrtiLib.top
default liblist gateLib aLib rtlLib;
endconfig
Section 13 Copyright 2000 IEEE. All rights reserved. 211

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

This shall cause the gate representation always to be taken befate thepresentation, using the module defini-
tions foradder andfoo fromadder.vg . Thertl view of top shall be taken since there is no gate representation
available.

13.5.3 Using the cell clause
To modify the config to use thid view of adder and the gate-level representatiorfadf from gateLib

config cfg3;

designrtlLib.top

default liblist aLib rtlLib;
cellfoo usegateLib.foo;
endconfig

The cell clause selects all cells nanfigal and explicitly binds them to the gate representatiayateLib
13.5.4 Using the instance clause

To modify the config so théop.al adder (and its descendants) use the gate representation andpla
adder (and its descendants) use tie representation froraLib :

config cfg4
designrtlLib.top
default liblist gateLib rtILib;
instancetop.a2 liblist aLib;
endconfig

Since thdiblist is inherited, all of the descendantgd@p.a2 inherit itsliblist from the instance selection clause.
13.5.5 Using a hierarchical config

Now suppose all this work has only been on the adder module by itself and a config which ughskttieo
cell forfl , and thegateLib.foo cell forf2 has already been developed. Then use:

config cfg5;
designalib.adder;
default liblist gateLib aLib;
instanceadder.f1 liblist rtlLib;
endconfig

To use this configurationfg5 for thetop.a2 instance ofadder and take the full defaukaLib adder for the
top.al instance, use the following config:

config cfg6;
designrtlLib.top;
default liblist aLib rtlLib;
instancetop.a2 usework.cfg5:config
endconfig

The binding clause specifies theork.cfg5:config configuration is to be used to resolve the bindings of
instancetop.a2 and its descendants. It is the design statement in cofgly which defines the exact binding for
thetop.a2 instance itself. The rest affgs defines the rules to bind the descendantsopfa2 . Notice the
instance clause iofg5 is relative to its own top-level modulagder .

212 Copyright 2000 IEEE. All rights reserved. Section 13
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

13.6 Displaying library binding information

It shall be possible to display the actual library binding information for module instances during simulation. The for-
mat specifie@ol or %Lshall print out thdibrary.cell binding information for the module instance containing
the display (or other textual output) command. This is similar to%méormat specifier which prints out the hierar-
chical path name of the module containing it.

It shall also be able to use the VPI interface to display the binding information. The followinypi&roper-
ties shall exist for objects of typgiModule

— vpiUseBinding - thelibrary.cell binding information for a module instance

— vpiLibrary - the library name into which the module was compiled

— vpiCell - the name of the cell bound to the module instance

— vpiConfig - thelibrary.cell name of the config controlling the binding of the module instance

These properties shall begifing type, similar to thepiName andvpiFullName properties.

13.7 Reserved words

The keywordsonfig, endconfig, anddefault shall be treated as reserved words in the language. The following key-
words shall be reserved words inside ebafig-endconfig block only:

design
instance
cell

use
liblist

13.8 Library mapping examples

In the absence of a configuration, it is possible to perform basic control of the library searching order when binding a
design.

When a config is used, the config overrides the rules specified here.

13.8.1 Using the command line to control library searching

In the absence of a configuration, it shall be necessary for all compliant tools to provide a mechanism of specifying a
library search order on the command line which overrides the default order from the library mapping file. This mech-

anism shall include specification of library names only, with the definitions of these libraries to be taken from the
library mapping file.

NOTE—It is recommended all compliant tools use "-L <library_name>" to specify this search order.
13.8.2 File path specification examples
Example:
Given the following set of files:
/proj/libl/rtl/a.v
/proj/lib2/gates/a.v

/proj/lib1/rtl/b.v
/proj/lib2/gates/b.v

Section 13 Copyright 2000 IEEE. All rights reserved. 213
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

From the/proj library , the following absolutéile_path_specs are resolved as shown:

Iproj/lib*/*/a.v =/proj/libl/rtl/a.v, /proj/lib2/gates/a.v
...[a.v =Iproj/libl/rtl/a.v, /proj/lib2/gates/a.v
Iproj/.../b.v =/proj/libl/rtl/b.v, /proj/lib2/gates/b.v

. Irtl*. v =/projllibl/rtl/a.v, /proj/lib1/rtl/b.v

From the/proj/libl directory, the following relativéle _path_specs are resolved as shown:

.Jlib2/gates/*.v = /proj/lib2/gates/a.v, /proj/lib2/gates/b.v
Jrtl/?.v = [proj/libl/rtl/a.v, /proj/libd/rtl/b.v
Jrtl/ = [projllibd/rtl/a.v, /proj/llibd/rtl/b.v

13.8.3 Resolving multiple path specifications

Example:

library lib1 “/proj/libl/foo*.v”;
library lib2 “/proj/lib1/foo.v”;
library lib3 “../lib1/";

library lib4 “/proj/lib1/*ver.v”;

When evaluated from the directorproj/tb

directory, the following source files shall map into the specified

library:

.Jlibl/foobar.v - libl /I potentially matchebbl andlib3 . Sincelibl includes
a filename antlb3 only specifies a directoriipl takes precedence

/proj/libl/foo.v - lib2 /l takes precedence oMdrl andlib3 path specifications
/proj/libl/bar.v - lib3
/proj/libl/barver.v - lib4 /l takes precedence oMd@3 path specification
/proj/libl/foover.v - ERROR// matchedibl andlib4
[test/tb/tb.v - work // does not match any library specifications.

214 Copyright 2000 IEEE. All rights reserved. Section 13

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 14

Specify blocks

Two types of HDL constructs are often used to describe delays for structural models such as ASIC cells. They are
— Distributed delayswhich specify the time it takes events to propagate through gates and nets inside the mod-
ule (see 7.14)
— Module path delayswhich describe the time it takes an event at a source (input port or inout port) to propa-
gate to a destination (output port or inout port)

This section describes how paths are specified in a module and how delays are assigned to these paths.

14.1 Specify block declaration

A block statement called thepecify blocks the vehicle for describing paths between a source and a destination and
for assigning delays to these paths. The syntax for specify block is shown in Syntax 14-1.

specify_item ::5(From Annex A - A.7.1)
specparam_declaration
| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check

Syntax 14-1—Syntax of specify block

The specify block shall be bounded by the keywasgscifyandendspecify and it shall appear inside a module dec-
laration. The specify block can be used to perform the following tasks:

— Describe various paths across the module.

— Assign delays to those paths.

— Perform timing checks to ensure that events occurring at the module inputs satisfy the timing constraints of
the device described by the module (see Section 15).

The paths described in the specify block, calleddule pathspair a signal source with a signal destination. The
source may be unidirectional (an input port) or bidirectional (an inout port) and is referred to emdtle path
source Similarly, the destination may be unidirectional (an output port) or bidirectional (an inout port) and is referred
to as themodule path destination

Section 14 Copyright 2000 IEEE. All rights reserved. 215
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

specify
specparamtRise_clk g = 150, tFall_clk_q = 200;
specparamtSetup = 70;
(clk =>) = (tRise_clk_q, tFall_clk_q);

$setugd, posedgeclk, tSetup);
endspecify

The first two lines following the keywordpecify declare specify parameters, which are discussed in 3.11.3. The line
following the declarations of specify parameters describes a module path and assigns delays to that module path. The
specify parameters determine the delay assigned to the module path. Specifying module paths is presented in 14.2.
Assigning delays to module paths is discussed in 14.3. The line preceding the keywigpkcifyinstantiates one of

the system timing checks, which are discussed further in Section 15.

14.2 Module path declarations

There are two steps required to set up module path delays in a specify block:

a) Describe the module paths

b) Assign delays to those paths (see 14.3)

The syntax of the module path declaration is described in Syntax 14-2.

path_declaration ::fFrom Annex A - A.7.2)
simple_path_declaration
| edge_sensitive_path_declaratjon
| state_dependent_path_declaration

Syntax 14-2—Syntax of the module path declaration

A module path may be described asimple pathanedge sensitive patlor astate dependent patih module path
shall be defined inside a specify block as a connection between a source signal and a destination signal. Module paths
can connect any combination of vectors and scalars.

Example:

Figure 14-1 illustrates a circuit with module path delays. More than one sofy& C, andD) may have a module
path to the same destinatidd) (and different delays may be specified for each input to output path.

216 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

= module path delay

A
B MODULE PATHS:
fromAtoQ
Q fromBto Q
C fromCtoQ
D fromDto Q

Figure 14-1—Module path delays
14.2.1 Module path restrictions
Module paths have the following restrictions:
— The module path source shall be a net that is connected to a module input port or inout port.
— The module path destination shall be a net or variable that is connected to a module output port or inout port.
— The module path destination shall have only one driver inside the module.

14.2.2 Simple module paths

The syntax for specifying a simple module path is given in Syntax 14-3.

Section 14 Copyright 2000 IEEE. All rights reserved. 217
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

simple_path_declaration :(From Annex A - A.7.2)
parallel_path_description path_delay_value
| full_path_descriptior path_delay_value
parallel_path_description ::=
(specify_input_terminal_descriptor [polarity_operatepr]
specify_output_terminal_descriptpr
full_path_description ::=
(list_of path_inputs [polarity _operatot3 list_of path_outputs
list_of path_inputs ::=
specify_input_terminal_descriptor, §pecify_input_terminal_descriptor }
list_of path_outputs ::=
specify_output_terminal_descriptor §pecify_output_terminal_descriptor }
specify_input_terminal_descriptor :(Erom Annex A - A.7.3)
input_identifier
| input_identifierf constant_expressign
| input_identifiel] range_expressign
specify_output_terminal_descriptor ::=
output_identifier
| output_identifief constant_expressidn
| output_identifief range_expressidgn
input_identifier ::=
input_port_identifier | inout_port_identifier
output_identifier ::=
output_port_identifier | inout_port_identifier
polarity _operator ::¥From Annex A - A.7.4)
+]-

Syntax 14-3—Syntax for simple module path

Simple path can be declared in one of the two forms:

— source*> destination
— source=> destination

The symbolg> and=> each represent a different kind of connection between the module path source and the mod-
ule path destination. The operator establishes &ull connectionbetween source and destination. The operator
establishes parallel connectiorbetween source and destination. Refer to 14.2.5 for a description of full connection
and parallel connection paths.

Example:

The following three examples illustrate valid simple module path declarations.

(A=>Q)=10;
(B=>Q) =(12);
(C,D*>Q)=18;

14.2.3 Edge-sensitive paths

When a module path is described using an edge transition at the source, it is caldgbasensitive patihe edge-

218 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

sensitive path construct is used to model the timing of input to output delays, which only occur when a specified edge
occurs at the source signal.

The syntax of the edge-sensitive path declaration is shown in Syntax 14-4.

edge_sensitive_path_declaration(from Annex A - A.7.4)
parallel_edge_sensitive_path_descriptiopath_delay_value
| full_edge_sensitive_path_descriptiopath_delay value
parallel_edge_sensitive_path_description ::=
([edge_identifier] specify_input_terminal_descriptor
specify_output_terminal_descriptor [polarity _operatodhta_source_expressipn
full_edge_sensitive_path_description ::=
([edge_identifier] list_of path_inputs
list_of path_outputs [polarity_operator data_source_expressipn
data_source_expression ::=
expression
edge_identifier ::=
posedgg negedge

Syntax 14-4—Syntax of the edge-sensitive path declaration

The edge identifier may be one of the keywopisedgeor negedge associated with an input terminal descriptor,
which may be any input port or inout port. If a vector port is specified as the input terminal descriptor, the edge tran-
sition shall be detected on the least significant bit. If the edge transition is not specified, the path shall be considered
active on any transition at the input terminal.

An edge-sensitive path may be specified with full connectiting 6r parallel connections=¢). For parallel connec-

tions &>), the destination shall be any scalar output or inout port or one of its bit-selects. For full connettipns (

the destination shall be a list of one or more of the vector or scalar output and inout ports, and bit-selects or part-
selects of those ports. Refer to 14.2.5 for a description of parallel paths and full connection paths.

The data source expression is an arbitrary expression, which serves as a description of the flow of data to the path des-
tination. This arbitrary data path description does not affect the actual propagation of data or events through the
model; how an event at the data path source propagates to the destination depends on the internal logic of the module.
The polarity operator describes whether the data path is inverting or noninverting.

Examples
Example 1-Fhe following example demonstrates an edge-sensitive path declaration with a positive polarity operator:
(posedgeclock => (out +:in)) = (10, 8);

In this example, at the positive edgeadbck , a module path extends froolock to out using a rise delay of 10
and a fall delay of 8. The data path is frimtoout , andin is not inverted as it propagatesoat .

Example 2-Fhe following example demonstrates an edge-sensitive path declaration with a negative polarity
operator:

(negedgeclock[0] => (out -: in)) = (10, 8);
In this example, at the negative edgectidck[0] , a module path extends froolock[0] to out using a rise

delay of 10 and a fall delay of 8. The data path is fironto out , andin is inverted as it propagatesduot .

Section 14 Copyright 2000 IEEE. All rights reserved. 219
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example 3—Fhe following example demonstrates an edge-sensitive path declaration with no edge identifier:
(clock => (out:in)) = (10, 8);

In this example, at any changediiock , a module path extends frartock toout .

14.2.4 State-dependent paths

A state-dependent patimakes it possible to assign a delay to a module path that affects signal propagation delay
through the path only if specified conditions are true.

A state-dependent path description includes the following items:
— A conditional expression that, when evaluated true, enables the module path
— A module path description

— A delay expression that applies to the module path

The syntax for the state-dependent path declaration is shown in Syntax 14-5.

state_dependent_path_declarationFrom Annex A - A.7.4)
if (module_path_expressigrsimple_path_declaration
| if (module_path_expressigredge_sensitive_path_declaration
| ifnone simple_path_declaration

Syntax 14-5—Syntax of state-dependent paths

14.2.4.1 Conditional expression

The operands in the conditional expression shall be constructed from the following:
— Scalar or vector module input ports or inout ports or their bit-selects or part-selects
— Locally defined variables or nets or their bit-selects or part-selects

— Compile time constants (constant numbers and specify parameters)

Table 14-1 contains a list of valid operators that may be used in conditional expressions:

Table 14-1—List of valid operators in state dependent path delay expression

Operator Description Operator Description
~ bit-wise negation & reduction and

& bit-wise and | reduction or

| bit-wise or N reduction xor

A bit-wise xor ~& reduction nand
A~ N bit-wise xnor ~| reduction nor

== logical equality A A reduction xnor

1= logical inequality { concatenation

&& logical and {{} replication

220

Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section 14

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
Table 14-1—List of valid operators in state dependent path delay expression (continued)
Operator Description Operator Description
Il logical or ?: conditional
! logical not

A conditional expression shall evaluate to t(d¢ for the state-dependent path to be assigned a delay value. If the
conditional expression evaluatestr z, it shall be treated as true. If the conditional expression evaluates to multi-

ple bits, the least significant bit shall represent the result. The conditional expression can have any number of oper-
ands and operators.

14.2.4.2 Simple state-dependent paths

If the path description of a state-dependent path is a simple path, then it is caltegla state-dependent paifhe
simple path description is discussed in 14.2.2.

Examples:

Example 1-Fhe following example uses state-dependent paths to describe the timing of an XOR gate.

module XORgate (a, b, out);
input a, b:
output out;

xor x1 (out, a, b);

specify
specparamnoninvrise = 1, noninvfall = 2
specparaminvertrise = 3, invertfall = 4;
if (@) (b => out) = (invertrise, invertfall);
if (b) (a=> out) = (invertrise, invertfall);
if (~a)(b => out) = (noninvrise, noninvfall);
if (~b)(a => out) = (noninvrise, noninvfall);
endspecify
endmodule

In this example, first two state-dependent paths describe a pair of output rise and fall delay times W@Rghte
(x1) inverts a changing input. The last two state-dependent paths describe another pair of output rise and fall delay
times when th&XORgate buffers a changing input.

Example 2—Fhe following example models a partial ALU. The state-dependent paths specify different delays for dif-
ferent ALU operations.

Section 14 Copyright 2000 IEEE. All rights reserved. 221
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module ALU (01, i1, i2, opcode);
input [7:0] i1, i2;

input [2:1] opcode;

output [7:0] o1;

/[functional description omitted

specify
/l add operation
if (opcode == 2'b00) (i1,i2 *> 0l) = (25.0, 25.0);
/I pass-through il operation
if (opcode == 2'b01) (i1 => 0l) = (5.6, 8.0);
/I pass-through i2 operation
if (opcode == 2'b10) (i2 => 0l) = (5.6, 8.0);
/I delays on opcode changes
(opcode =>01) = (6.1, 6.5);

endspecify

endmodule

In the preceding example, the first three path declarations declare paths extending from operaiitl iapdi2 to

the ol output. The delays on these paths are assigned to operations on the basis of the operation specified by the
inputs onopcode . The last path declaration declares a path fronopieede input to theol output.

14.2.4.3 Edge-sensitive state-dependent paths

If the path description of a state-dependent path describes an edge-dependent path, then the state-dependent path is
called aredge-sensitive state-dependent patie edge-sensitive paths are discussed in 14.2.3.

Different delays can be assigned to the same edge-sensitive path as long as the following criteria are met:

— The edge, condition, or both make each declaration unique.
— The port is referenced in the same way in all path declarations (entire port, bit-select, or part-select).

Examples:
Example 1
if (Ireset && Iclear)
(posedgeclock => (out +:in)) = (10, 8) ;

In this example, if the positive edge ofock occurs whemeset andclear are low, and a module path extends
fromclock toout using arise delay of 10 and a fall delay of 8.

Example 2—Fhe following example shows four edge-sensitive path declarations. Note that each path has a unique
edge or condition.

222 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
specify
(posedgeclk => (g[0] : data)) = (10, 5);
(negedgeclk => (g[0] : data)) = (20, 12);

if (reset)
(posedgeclk => (q[0] : data)) = (15, 8);
if ('reset && cntrl)
(posedgeclk => (q[0] : data)) = (6, 2);
endspecify

Example 3—Fhe two state-dependent path declarations shown below are not legal because even though they have dif-
ferent conditions, the destinations are not specified in the same way: the first destination is a part-select, the second is
a bit-select.

specify
if (reset)
(posedgeclk => (q[3:0]:data)) = (10,5);
if (Ireset)
(posedgeclk => (g[0]:data)) = (15,8);
endspecify

14.2.4.4 The ifnone condition

Theifnone keyword is used to specify a default state-dependent path delay when all other conditions for the path are
false. Thefnone condition shall specify the same module path source and destination as the state-dependent module
paths. The following rules apply to module paths specified wittHrtbee condition:

— Only simple module paths may be described witifraame condition.

— The state-dependent paths that correspond tdribae path may be either simple module paths or edge-sen-
sitive paths.

— If there are no corresponding state-dependent module paths ifadhe module path, then thiénone mod-
ule path shall be treated the same as an unconditional simple module path.

— ltisillegal to specify both aifnone condition for a module path and an unconditional simple module path for
the same module path.

Examples

Example 1-Fhe following are valid state-dependent path combinations.

Section 14 Copyright 2000 IEEE. All rights reserved. 223
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
if (C1) (IN=>OUT) = (1,1);
ifnone (IN => OUT) = (2,2);

/[add operation

if (opcode == 2'b00) (i1,i2 *> 0l) = (25.0, 25.0);
/I pass-through il operation

if (opcode == 2'b01) (i1 => ol) = (5.6, 8.0);

/I pass-through i2 operation

if (opcode == 2'b10) (i2 => 0l) = (5.6, 8.0);

/I all other operations

ifnone (i2 => 01) = (15.0, 15.0);

(posedgeCLK => (Q +: D)) = (1,1);
ifnone (CLK => Q) = (2,2);

Example 2—Fhe following module path description combination is illegal because it combines a state-dependent path
using anifnone condition and an unconditional path for the same module path.

if (@) (b=>out)=(2,2);
if (b) (a=>out) = (2,2);
ifnone (a => out) = (1,1);
(a=>out) = (1,1);

14.2.5 Full connection and parallel connection paths

The operator> shall be used to establishfall connectionbetween source and destination. In a full connection,
every bit in the source shall connect to every bit in the destination. The module path source need not have the same
number of bits as the module path destination.

The full connection can handle most types of module paths, since it does not restrict the size or number of source sig-
nals and destination signals. The following situations require the use of full connections:

— To describe a module path between a vector and a scalar
— To describe a module path between vectors of different sizes
— To describe a module path with multiple sources or multiple destinations in a single statement (see 14.2.6)

The operatoe> shall be used to establistparallel connectiorbetween source and destination. In a parallel connec-
tion, each bit in the source shall connect to one corresponding bit in the destination. Parallel module paths can be cre-
ated only between sources and destinations that contain the same number of bits.

Parallel connections are more restrictive than full connections. They only connect one source to one destination,
where each signal contains the same number of bits. Therefore, a parallel connection may only be used to describe a
module path between two vectors of the same size. Since scalars are one bit wide, either *> or => may be used to set
up bit-to-bit connections between two scalars.

Examples:

Example 1-Figure 14-2 illustrates how a parallel connection differs from a full connection between two 4-bit
vectors.

224 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
Parallel module path Full module path
Input bits Output bits Input bits Output bits
0 0 0
1 1 1
2 2 2
3 mmmememeneseenenes » 3 3

N = number of bits = 4

Number of paths = N = Number of paths =N * N =
Use to define path Use to define path
bit-to-bit connections bit-to-vector connections

Figure 14-2—The difference between parallel and full connection paths

Example 2—Fhe following example shows module paths fo2:4 multiplexor with two 8-bit inputs and one 8-bit
output.

module mux8 (in1, in2, s, q) ;

output [7:0] q;

input [7:0]inl, in2;

input s;

/I Functional description omitted ...

specify
(in1=>q)=(3,4);
(in2=>q)=(2,3);
(s*>0q)=1;

endspecify

endmodule

The module path from to q uses a full connectiort$) because it connects a scalar source—the 1-bit select line—
to a vector destination—the 8-bit output bus. The module paths from both inpuirliheandin2 to g use a parallel
connection £>) because they set up parallel connections between two 8-bit buses.

14.2.6 Declaring multiple module paths in a single statement

Multiple module paths may be described in a single statement by using the signtmtonnect a comma-separated
list of sources to a comma-separated list of destinations. When describing multiple module paths in one statement, the
lists of sources and destinations may contain a mix of scalars and vectors of any size.

The connection in a multiple module path declaration is always a full connection.

Section 14 Copyright 2000 IEEE. All rights reserved. 225
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

(a, b,c *>q1, g2) = 10;

is equivalent to the following six individual module path assignments:

(a *>ql)=10;
(b *>q1)=10;
(c *>q1)=10;
(@ *>q2)=10;
(b *>q2)=10;
(c *>02)=10;

14.2.7 Module path polarity

The polarity of a module path is an arbitrary specification indicating whether or not the direction of a signal transition
is inverted as it propagates from the input to the output. This arbitrary polarity description does not affect the actual
propagation of data or events through the model; how a rise or a fall at the source propagates to the destination
depends on the internal logic of the module.

Module paths may specify any of three polarities:
— Unknown polarity
— Positive polarity
— Negative polarity

14.2.7.1 Unknown polarity

By default, module paths shall hauaknown polarity—that is, a transition at the path source may propagate to the
destination in an unpredictable way, as follows:

— Avrrise at the source may cause either a rise transition, a fall transition, or no transition at the destination.
— A fall at the source may cause either a rise transition, a fall transition, or no transition at the destination.

A module path specified either as a full connection or a parallel connection, but without a polarity opevator
shall be treated as a module path with unknown polarity.

14.2.7.2 Positive polarity

For module paths witpositive polarity any transition at the source may cause the same transition at the destination,
as follows:

— Avrrise at the source may cause either a rise transition or no transition at the destination.
— A fall at the source may cause either a fall transition or no transition at the destination.

A module path with positive polarity shall be specified by prefixingrthelarity operator te=> or *> .
14.2.7.3 Negative polarity

For module paths withegative polarityany transition at the source may cause the opposite transition at the destina-
tion, as follows:

— Avrrise at the source may cause either a fall transition or no transition at the destination.
— Afall at the source may cause either a rise transition or no transition at the destination.

226 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

A module path with negative polarity shall be specified by prefixing the&larity operator te> or *> .
Examples:

The following examples show each type of path polarity:

/I Positive polarity
(Inl+=>q)=In_to_q;
(s +*>Qq)=s_to q;

/I Negative polarity
(Inl-=>qg)=In_to_q;
(s - *>0)=s_to_qg;

/' Unknown polarity

(Inl=>qg)=In_to q;
(s *>(q)=s to q;

14.3 Assigning delays to module paths

The delays that occur at the module outputs where paths terminate shall be specified by assigning delay values to the
module path descriptions. The syntax for specifying delay values is shown in Syntax 14-6.

path_delay value ::fFrom Annex A - A.7.4)
list of path_delay expressions
| (list_of path_delay_expressions
list of path delay expressions ::=
t_path_delay_expression
| trise_path_delay_expressiptfall_path_delay_expression
| trise_path_delay_expressipotfall_path_delay_expressionz_path_delay expression
| t01_path_delay_expressipti0_path_delay_expressiot0z_path_delay_expression
tz1 _path_delay_expressiotliz_path_delay_expressiotzQ_path_delay_ expression
| t01_path_delay expressioti0 path_delay expressiotDz_path_delay expression
tz1_path_delay_expressiotlz_path_delay_expressiotz0_path_delay_expression
tOx_path_delay_expressioix1_path_delay expressiotlx_path_delay_expression
tx0_path_delay_expressioixz_path_delay_expressiotzx_path_delay_ expression
t_path_delay_expression ::=
path_delay_expression

Syntax 14-6—Syntax for path delay value

In module path delay assignments, a module path description (see 14.2) is specified on the left-hand side, and one or
more delay values are specified on the right-hand side. The delay values may be optionally enclosed in a pair of
parentheses. There may be one, two, three, six, or twelve delay values assigned to a module path, as described in
14.3.1. The delay values shall be constant expressions containing literals or specparams, and there may be a delay
expression of the formin:typ:max

Section 14 Copyright 2000 IEEE. All rights reserved. 227
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

specify
/I Specify Parameters
specparamtRise_clk_q = 45:150:270, tFall_clk_g=60:200:350;
specparamtRise_Control = 35:40:45, tFall_control=40:50:65;

/l Module Path Assignments

(clk => q) = (tRise_clk_q, tFall_clk_q);

(clr, pre *> q) = (tRise_control, tFall_control);
endspecify

In the example above, the specify parameters declared followirgpteparamkeyword specify values for the mod-
ule path delays. The module path assignments assign those module path delays to the module paths.

14.3.1 Specifying transition delays on module paths

Each path delay expression may be a single value—representing the typical delay—or a colon-separated list of three
values—representingrainimum typical, andmaximundelay, in that order. If the path delay expression results in a
negative value, it shall be treated as zero. Table 14-2 describes how different path delay values shall be associated
with various transitions. The path delay expression names refer to the names used in Syntax 14-6.

Table 14-2—Associating path delay expressions with transitions

Number of path delay expressions specified
Transitions 1 2 3 6 12
0->1 t trise trise t01 t01
1->0 t tfall tfall t10 t10
0->z t trise tz t0z t0z
z->1 t trise trise tz1 tz1
1>z t tfall tz t1z tlz
z->0 t tfall tfall tz0 tz0
0->x * * * * tOx
x->1 * * * * tx1
1->x * * * * t1x
x->0 * * * * tx0
X->2z * * * * txz
Z->X * * * * tzx
* See 14.3.2.

228 Copyright 2000 IEEE. All rights reserved. Section 14

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:

/I one expression specifies all transitions
(C=>Q)=20;
(C =>Q) =10:14:20;

/I two expressions specify rise and fall delays
specparamtPLH1 = 12, tPHL1 = 25;
specparamtPLH2 = 12:16:22, tPHL2 = 16:22:25;
(C=>Q) = (tPLH1, tPHL1);

(C=>Q) = (tPLH2, tPHL2);

/l three expressions specify rise, fall, and z transition delays
specparamtPLH1 = 12, tPHL1 = 22, tPz1 = 34;

specparamtPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34;
(C => Q) = (tPLH1, tPHL1, tPz1);

(C =>Q) = (tPLH2, tPHL2, tPz2);

/I six expressions specify transitions to/from 0, 1, and z

specparamtO1 = 12, t10 = 16, t0z = 13,
tz1=10,t1z=14,1z0 =34 ;

(C=>Q)=(1t01, t10, t0z, tz1, t1z, tz0) ;

specparam TO1 = 12:14:24, T10 = 16:18:20, TOz = 13:16:30 ;

specparam Tz1 = 10:12:16, T1z = 14:23:36, Tz0 = 15:19:34 ;

(C=>Q)=(TO01, T10, TOz, Tz1, T1z, Tz0);

Il twelve expressions specify all transition delays explicitly
specparamt01=10, t10=12, t0z=14, tz1=15, t1z=29, tz0=36,
tOx=14, tx1=15, t1x=15, tx0=14, txz=20, tzx=30 ,;
(c => Q) = (t01, t10, t0z, tz1, t1z, tz0,
tOx, tx1, t1x, tx0, txz, tzx) ;

14.3.2 Specifying x transition delays

If the x transition delays are not explicitly specified, the calculation of delay values for x transitions is based on the
following two pessimistic rules:

— Transitions from a known state to shall occur as quickly as possible—that is, the shortest possible delay
shall be used for any transitionxo

— Transitions fronx to a known state shall take as long as possible—that is, the longest possible delay shall be
used for any transition from.

Table 14-3 presents the general algorithm for calculating delay values for x transitions, along with specific examples.
The following two groups of x transitions are represented in the table:

a) Transition from a known stagetox: s " X

b) Transition fronx to a known state: x s

Section 14 Copyright 2000 IEEE. All rights reserved. 229
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 14-3—Calculating delays for x transitions

X transition Delay value

General algorithm

s -> X minimum (s-> other known signals)

X ->s maximum (other known signai& s)

Specific transitions

0->x minimum (0-> z delay, 0-> 1 delay)
1->x minimum (1-> z delay, 1-> 0 delay)
Z->X minimum (z-> 1 delay, z-> 0 delay)
x->0 maximum (z-> 0 delay, 1-> 0 delay)
Xx->1 maximum (z-> 1 delay, 0-> 1 delay)
X ->z maximum (1-> z delay, 0-> z delay)

Usage: (C=>Q) = (5,12,17, 10,6, 22);

0->x minimum (17, 5) =5
1->x minimum (6, 12) = 6
Z->X minimum (10, 22) = 10
x->0 maximum (22, 12) = 22
x->1 maximum (10, 5) = 10
X ->z maximum (6, 17) = 17

14.3.3 Delay selection

The simulator shall determine the proper delay to use when a specify path output must be scheduled to transition.
There may be specify paths to the output from more than one input, and the simulator must decide which specify path
to use.

The simulator shall do this by first determining which specify paths to the output are active. Active specify paths are
those whose input has transitioned most recently in time, and which have either no condition or whose conditions are
true. In the presence of simultaneous input transitions, it is possible for many specify paths to an output to be simulta-
neously active.

Once the active specify paths are identified, a delay must be selected from among them. This is done by comparing
the correct delay for the specific transition being scheduled from each specify path, and choosing the smallest.

Examples:
Example 1:

(A=>Y)=(6,9);
(B=>Y)=(5,11);

230 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

For aY transition from0 to 1, if Atransitioned more recently thda delay of6 will be chosen. But iB transitioned
more recently thai, a delay o will be chosen. And if the last time they transition&éndB did so simultaneously,
then the smallest of the two rise delays would be chosen, which is the rise delal tsbi The fall delay fromA of
9 would be chosen I¥ was instead to transition frointo 0.

Example 2:

if (MODE <5) (A=>Y)=(5,9);
if (MODE < 4) (A=>Y)=(4,8);
if (MODE < 3) (A=>Y) = (6, 5);
if (MODE <2) (A=>Y)=(3, 2);
if (MODE <1) (A=>Y)=(7,7);

Anywhere from zero to five of these specify paths might be active depending upon the vM@DdEFor instance,
whenMODEs 2 the first three specify paths are active. A rise transition would select a defgybetause that is the
smallest rise delay among the first three. A fall transition would select a delayhEfcause that is the smallest fall
delay among the first three.

14.4 Mixing module path delays and distributed delays

If a module contains module path delays and distributed delays (delays on primitive instances within the module), the
larger of the two delays for each path shall be used.

Examples:

Example 1-+igure 14-3 illustrates a simple circuit modeled with a combination of distributed delays and path delays
(only the D input to Q output path is illustrated). Here, the delay on the module path fromDripwutputQ= 22,

while the sum of the distributed delay®=+ 1 = 1. Therefore, a transition oQcaused by a transition dhwill occur

22 time units after the transition @

/EI\ = module path delay

1F-Q ‘ = distributed delay

I#

i o

Figure 14-3—Module path delays longer than distributed delays

Example 2-n Figure 14-4, the delay on the module path frbro Q= 22, but the distributed delays along that mod-
ule path now add up tb0 + 20 = 30. Therefore, an event d@caused by an event dwill occur 30 time units after
the event or.

Section 14 Copyright 2000 IEEE. All rights reserved. 231
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
A
B /EI\ = module path delay
~Q ‘ = distributed delay
ol
D

Figure 14-4—Module path delays shorter than distributed delays

14.5 Driving wired logic

Module path output nets shall not have more than one driver within the module. Therefore, wired logic is not allowed
at module path outputs.

Figure 14-6 illustrates a violation of this wired-output rule and a method of avoiding the rule violation.

: >}S E%:—LDé

(@) (b)

o
Io

Figure 14-5—Legal and illegal module paths
In Figure 14-5 (a), any module pathSas illegal because the path destination has two drivers.
Assuming signals in Figure 14-5 (a) is avired-and this limitation can be circumvented by replacing wired logic
with gated logic to create a single driver to the output. Figure 14-5 (b) shows how adding arHighte—the
shaded gate—solves the problem for the module in Figure 14-5 (a).

The example in Figure 14-6 is also illegal. In this example, when the ou@paitsl R are wired together, it creates a
condition where both paths have multiple drivers from within the same module.

232 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

@ |>

NUANY

Figure 14-6—Illlegal module paths

Although multiple output drivers to a path destination are prohihitsitlethe same module, they are allowaatside
the module. The example in Figure 14-7 is legal si@andR each have only one driver within the module in which
the module paths are specified.

RIDTD

D1,
ﬁ)JD

Figure 14-7—Legal module paths

14.6 Detailed control of pulse filtering behavior

Two consecutive scheduled transitions closer together in time than the module path delay is deemed a pulse. By
default, pulses on a module path output are rejected. Consecutive transitions cannot be closer together than the mod-
ule path delay, and this is known as the inertial delay model of pulse propagation.

Pulse width ranges control how to handle a pulse presented at a module path output. They are:

— A pulse width range for which a pulse shall be rejected
— A pulse width range for which a pulse shall be allowed to propagate to the path destination
— A pulse width range for which a pulse shall generate a fogic the path destination

Section 14 Copyright 2000 IEEE. All rights reserved. 233
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Two pulse limit values define the pulse width ranges associated with each module path transition delay. The pulse
limit values are called the error limit (e-limit) and the rejection limit (r-limit). The e-limit must always be at least as
large as the r-limit. Pulses greater than or equal to the e-limit pass unfiltered. Pulses less than the e-limit but greater
than or equal to the r-limit are filtered ¥ Pulses less than the r-limit are rejected and no pulse emerges. By default,
both the e-limit and the r-limit are set equal to the delay. These default values yield full inertial pulse behavior, reject-
ing all pulses smaller than the delay.

Example:

(A=>Y)=7,9;
/ Module path
Il delay for a buffer

A

<4—p Pulse width =4

/I Pulse considered
Y’ I/l at module path output

<) Dhulse width =4

/I Pulse is filtered

The rise delay from inpuA to outputY is 7, and the fall delay i®. By default, the e-limit and the r-limit for the rise
delay are botlyY. The e-limit and the r-limit for the fall delay are both The pulse limits associated with the delay
forming the trailing edge of the pulse determine if and how the pulse should be filtered. Wawefiraws the wave-
form resulting from no pulse filtering. The width of the puls@jswvhich is less than the reject limit for the rise delay
of 7, and so the pulse is filtered as shown in wavefdérm

There are three ways to modify the pulse limits from their default values. First, the Verilog language provides the
PATHPULSES$ specparam to modify the pulse limits from their default values. Second, invocation options can spec-
ify percentages applying to all module path delays to form the corresponding e-limits and r-limits. Third, SDF anno-
tation can individually annotate the e-limit and r-limit of each module path transition delay.

14.6.1 Specify block control of pulse limit values

Pulse limit values may be set from within the specify block withPAeTHPULSE$ specparam. The syntax for using
PATHPULSES to specify the reject limit and error limit values is given in Syntax 14-7.

pulse_control_specparam (Erom Annex A - A.2.4)
PATHPULSES = (reject_limit_value [error_limit_value) ;
| PATHPULSES$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= (reject_limit_value [error_limit_value) ;
error_limit_value ::=
limit_value
reject_limit_value ::=
limit_value
limit_value ::=
constant_mintypmax_expression

Syntax 14-7—Syntax for PATHPULSES$ pulse control

234 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

If only the reject limit value is specified, it shall apply to both the reject limit and the error limit.

The reject limit and error limit may be specified for a specific module path. When no module path is specified, the
reject limit and error limit shall apply to all module paths defined in a module. If both path-speAfielPULSE$
specparams and a non-path-spedf&THPULSES$ specparam appear in the same module, then the path-specific
specparams shall take precedence for the specified paths.

The module path input terminals and output terminals shall conform to the rules for module path inputs and outputs,
with the following restriction: the terminals may not be a bit-select or part-select of a vector.

When a module path declaration declares multiple pathsP &IEHPULSES$ specparam shall only be specified for

the first path input terminal and the first path output terminal. The reject limit and error limit specified shall apply to
all other paths in the multiple path declarationPATHPULSES$ specparam which specifies anything other than the
first path input and path output terminals shall be ignored.

Example:

In the following example, the patftlk=>q) acquires a reject limit o2 and an error limit 0P, as defined by the
first PATHPULSES declaration. The pathglr*>q) and(pre*>q) receive a reject limit 00 and an error limit
of 4, as specified by the secoRATHPULSES$ declaration. The patfdata=>q) is not explicitly defined in any of
the PATHPULSES$ declarations, and so it acquires reject and error limB,cds defined by the laBtATHPULSES$
declaration.

specify
(clk =>q) =12;
(data => q) = 10;
(clr, pre *> q) = 4;

specparam
PATHPULSESclkq = (2,9),
PATHPULSEScIr$qg = (0,4),
PATHPULSES = 3;
endspecify

14.6.2 Global control of pulse limit values

Two invocation options can specify percentages applying globally to all module path transition delays. The error limit
invocation option specifies the percentage of each module path transition delay used for its error limit value. The
reject limit invocation option specifies the percentage of each module path transition delay used for its reject limit
value. The percentage values shall be an integer befiaed100 .

The default values for both the reject and error limit invocation option§ @& When neither option is present then
100% of each module transition delay is used as the reject and error limits.

It is an error if the error limit percentage is smaller than the reject limit percentage. In such cases the error limit per-
centage is set equal to the reject limit percentage.

When bothPATHPULSES$ and global pulse limit invocation options are present, RPASHPULSES$ values shall
take precedence.

14.6.3 SDF annotation of pulse limit values

SDF annotation can be used to specify the pulse limit values of module path transition delays. Section 16 describes
this in greater detail.

Section 14 Copyright 2000 IEEE. All rights reserved. 235
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

When bothPATHPULSES, global pulse limit invocation options, and SDF annotation of pulse limit values are
present, SDF annotation values shall take precedence.

14.6.4 Detailed pulse control capabilities

The default style of pulse filtering behavior has two drawbacks. First, pulse filtering %6 stege may be insuffi-

ciently pessimistic with aiX state duration too short to be useful. Second, unequal delays can result in pulse rejection
whenever the trailing edge precedes the leading edge, leaving no indication that a pulse was rejected. This section
introduces more detailed pulse control capabilities.

14.6.4.1 On-event versus on-detect pulse filtering

When an output pulse must be filteredXpgreater pessimism can be expressed if the module path output transitions
immediately toX (on-detect) instead of at the already scheduled transition time of the leading edge of the pulse (on-
event).

The on-event method of pulse filteringXads the default. When an output pulse must be filtereX, tine leading edge
of the pulse becomes a transition¥@nd the trailing edge a transition fraxa The times of transition of the edges do
not change.

Just like on-event, the on-detect method of pulse filtering changes the leading edge of the pulse into a traKsition to
and the trailing edge to a transition fraXy but the time of the leading edge is changed to occur immediately upon
detection of the pulse.

Figure 14-8 illustrates this behavior using a simple buffer with asymmetric rise/fall times and both the r-limits and e-
limits equal td0. An output waveform is shown for both on-detect and on-event approaches.

rise/fall
4/6

in \ out
/

10 12 14 18

out (on-event) 7////

(default)

out (on-detect) W_

Figure 14-8—On-detect -vs.- on-event

On-detect versus on-event behavior can be selected in two different ways. First, one may be selected globally for all
module path outputs through use of the on-detect or on-event invocation option. Second, one may be selected locally
through use of specify block pulse style declarations.

236 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The syntax for pulse style declarations is shown in Syntax 14-8.

pulsestyle_declaration :@FFrom Annex A- A.7.1)
pulsestyle _oneventist_of path_outputs
| pulsestyle_ondetectist_of _path_outputs

Syntax 14-8—Syntax for pulse style declarations

Itis an error if a module path output appears in a pulse style declaration after it has already appeared in a module path
declaration.

The pulse style invocation options take precedence over pulse style specify block declarations.
14.6.4.2 Negative pulse detection

When the delays to a module path output are unequal, it is possible for the trailing edge of a pulse to be scheduled for
a time earlier than the schedule time of the leading edge, yielding a pulse with a negative width. Under normal opera-
tion, if the schedule for a trailing pulse edge is earlier than the schedule for a leading pulse edge, then the leading
edge is cancelled. No transition takes place when the initial and final states of the pulse are the same, leaving no indi-
cation a schedule was ever present.

Negative pulses can be indicated with eatate by use of the showcancelled style of behavior. When the trailing
edge of a pulse would be scheduled before the leading edge, this style causes the leading edge to be sceduled to
and the trailing edge to be scheduled framwith on-event pulse style, the scheduledeoeplaces the leading edge
schedule. With on-detect pulse style, the schedufeisgonade immediately upon detection of the negative pulse.

showcancelledhehavior can be enabled in two different ways. First, it may be enabled globally for all module path
outputs through use of thehowcancelledand noshowcancelledinvocation options. Second, it may be enabled
locally through use of specify bloghowcancelleddeclarations.

The syntax foshowcancelledleclarations is shown in Syntax 14-9.

showcancelled_declaration :(Erom Annex A- A.7.1)
showcancelledist_of path_outputs
| noshowcancelledist_of path_outputs

Syntax 14-9—Syntax for showcancelled declarations

It is an error if a a module path output appears in a showcancelled declaration after it has already appeared in a mod-
ule path declaration. The showcancelled invocation options take precedence over the showcancelled specify block
declarations.

The showcancelledehavior is illustrated in Figure 14-9, which shows a narrow pulse presented at the input to a
buffer with unequal rise/fall delays. This causes the trailing edge of the pulse to be scheduled earlier than leading
edge. The leading edge of the input pulse schedules an output event 6 units later at the point marKétepulse

trailing edge occurs one time unit later, which schedules an output éuarits later marked by poi. This second
schedule on the output is for a time prior to the already existing schedule for the leading output pulse edge.

The output waveform is shown for three different operating modes. The first waveform shows the default behavior
with showcancelled behavior not enabled and with the default on-event style. The waveform shows showcancelled

Section 14 Copyright 2000 IEEE. All rights reserved. 237
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

behavior in conjunction with on-event. The waveform shows showcancelled behavior in conjunction with on-detect.

out (showcancelled with on-detect)

(in=>out)=(4,6);

in l\ out

in S,
B A
out (default)
ith on- — Z
out (showcancelled with on-event) o A

=

Figure 14-9—Current event cancellation problem and correction

This same situation can also arise with nearly simultaneous input transitions, which is defined as two inputs transi-
tioning closer together in time than the difference in their respective delays to the output. Figure 14-10 shows wave-
forms for a 2-input NAND gate where initiallix is high andB is low. B transition€->1 at timel0, causing a->0

output schedule at tim24. A transitionsl->0 at time12, causing @->1 schedule at tim@2. Arrows mark the

output transitions caused by the transitions on infasdB.

The output waveform is shown for three different operating modes. The first waveform shows the default behavior
with showcancelled behavior not enabled and with the default on-event style. The second shows showcancelled
behavior in conjunction with on-event. The third shows showcancelled behavior in conjunction with on-detect.

238

Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section 14

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
(A=>Q) = 10;
(B=>Q) = 14;

10 12 fZ 24

out (default)

out (showcancelled with on-event) = | //
I Vi

out (showcancelled with on—dewm

Figure 14-10—NAND gate with nearly simultaneous input switching
where one event is scheduled prior to another that has not matured

One drawback of the on-event style with showcancelled behavior is that as the output pulse edges draw closer
together, the duration of the resultiXgstate becomes smaller. Figure 14-11 illustrates how the on-detect style solves
this problem.

Section 14 Copyright 2000 IEEE. All rights reserved. 239
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
(A=>Q) =10
(B=>Q) =14
10 14 24
A ¢
B — |

out (default)

out (showcancelled with on-event)

out (showcancelled with on- detect) ///QZZZ/ZZ

Figure 14-11—Input NAND gate with nearly simultaneous input switching
with output event scheduled at same time.

Examples:

Example 1:

specify
(a=>out)=(2,3);
(b =>out)=(3,4);

endspecify

Since no pulse style or showcancelled declarations appear within the specify block, the compiler applies the default
modes of on-event and noshowcancelled.

Example 2:

specify
(a=>out)=(2,3);
showcancelled out;
(b =>out)=(3,4);
endspecify

This showcancelled declaration is in error because it follows use of out in a module path declaration. It would be con-
tradictory forout to have noshowcancelled behavior from ingpubut showcancelled behavior from ingout

240 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example 2-Both these specify blocks produce the same result. Outpuitsandout_b are both declared showcan-
celled and on_detect.

specify
showcancelled out;
pulsestyle_ondetect out;
(a =>out)=(2,3);
(a=>out)=(4,5);
showcancelled out_b;
pulsestyle _ondetect out_b;
(b=>out_b)=(5,6);
(b=>out_b)=(3,4);

endspecify

specify
showcancelled out,out_b;
pulsestyle _ondetect out,out_b;
(a =>out)=(2,3);
(b=>out)=(3,4);
(a =>out_b)=(3,4);
(b=>out_b)=(5,6);

endspecify

Section 14 Copyright 2000 IEEE. All rights reserved. 241
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

242 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 15

Timing checks

This section describes how timing checks are used in specify blocks to determine if signals obey the timing con-
straints.

15.1 Overview

Timing checks can be placed in specify blocks to verify the timing performance of a design by making sure critical
events occur within given time limits. The syntax for system timing checks is given in Syntax 15-1.

Section 15 Copyright 2000 IEEE. All rights reserved. 243
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

system_timing_check ::From Annex A - A.7.5.1)
$setup_timing_check
| $hold _timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check
$setup_timing_check ::=
$setup (data_eventreference_eventtiming_check_limit [, [notify_reg]]) ;
$hold _timing_check ::=
$hold (reference_eventdata_eventtiming_check_limit [, [notify_reg]]) ;
$setuphold_timing_check ::=
$setuphold (reference_eventdata_eventtiming_check_limit, timing_check_limit
[, [notify_reg][, [stamptime_condition] [[checktime_condition]
[, [delayed_reference][delayed_data]]]11]1];
$recovery_timing_check ::=
$recovery (reference_eventdata_eventtiming_check_limit [, [notify_reg 1]) ;
$removal_timing_check ::=
$removal (reference_eventdata_eventtiming_check limit [, [notify_reg]1) ;
$recrem_timing_check ::=
$recrem (reference_eventdata_eventtiming_check_limit, timing_check_limit
[, [notify_reg][, [stamptime_condition] [[checktime_condition]
[, [delayed_reference][delayed_data]]1]1]11];
$skew_timing_check ::=
$skew (reference_eventdata_eventtiming_check_limit [, [notify_reg]]) ;
$timeskew_timing_check ::=
$timeskew (reference_eventdata_eventtiming_check_limit
[, [notify_reg]][, [event_based flag],[[remain_active flag]]]];

$fullskew_timing_check ::=
$fullskew (reference_eventdata_eventtiming_check_limit, timing_check_limit
[, [notify_reg]][, [event_based flag],[[remain_active flag]]1]];
$period_timing_check ::=
$period (controlled_reference_eventiming_check_limit [, [notify _reg]]) ;
$width_timing_check ::=
$width (controlled_reference_eventiming_check_limit,
threshold [, [notify_reg1]) ;
$nochange_timing_check ::=
$nochange (reference_eventdata_eventstart_edge_offset
end_edge_offset,[[notify_reg]]);

244

Syntax 15-1—Syntax for system timing checks

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Section 15

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The syntax for check time conditions and timing check events are given in Syntax 15-2.

checktime_condition ::from Annex A - A.7.5.2)
mintypmax_expression

controlled_reference_event ::=
controlled_timing_check_event

data_event ::=
timing_check_event
delayed_data ::=
terminal_identifier
| terminal_identifief constant_mintypmax_expressipn

delayed_reference ::=
terminal_identifier
| terminal_identifief constant_mintypmax_expressipn

end_edge_offset ::= mintypmax_expression

event_based_flag ::= constant_expression

notify_reg ::= variable_identifier

reference_event ::= timing_check_event

remain_active_flag ::= constant_mintypmax_expression

stamptime_condition ::= mintypmax_expression

start_edge_offset ::= mintypmax_expression

threshold ::=constant_expression

timing_check_limit ::= expression

timing_check_event ::#From Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descript®& timing_check_condition]

controlled_timing_check _event ::=
timing_check_event_control specify_terminal_descripto&f timing_check_condition]

timing_check_event_control :posedgd negedgg edge_control_specifier
specify_terminal_descriptor ::=
specify_input_terminal_descriptor
| specify_output_terminal_descriptor
edge_control_specifier ::edge[edge_descriptor,[edge_descriptor]]
edge_descriptér.:: 01|10| z_or_x zero_or_one | zero_or_one z_or_X
zero_or_one 9|1
z or xu=x|X|z|z
timing_check_condition ::=
scalar_timing_check_condition
|(scalar_timing_check_conditign
scalar_timing_check_condition ::=
expression
|~ expression
| expression= scalar_constant
| expression== scalar_constant
| expressiol¥ scalar_constant
| expressiolr= scalar_constant
scalar_constant ::¥b0 |1'b1 [1'BO|1'B1|'b0 |'b1 |'BO|'B1|1]0

IEmbedded spaces are illegal.

Syntax 15-2—Syntax for check time conditions and timing check events

For ease of presentation, the timing checks are divided into two groups. The first group of timing checks are described

Section 15 Copyright 2000 IEEE. All rights reserved. 245
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

in terms of stability time windows:

$setup $hold $setuphold
$recovery $removal $recrem

The timing checks in the second group check clock and control signals, and are described in terms of the difference in
time between two events (tBaochangecheck involves three events):

$skew $timeskew $fullskew
Swidth $period $nochange

Although they begin with &, timing checks are not system tasks. The leadimgpresent because of historical rea-
sons, and timing checks shall not be confused with system tasks. In particular, no system task can appear in a specify
block, and no timing check can appear in procedural code.

Some timing checks can accept negative limit values. This topic is discussed in detail in 15.8.

All timing checks have both a reference event and a data event, and boolean conditions can be associated with each.
Some of the checks have two signal arguments, one of which is the reference event and the other the data event. Other
checks have only one signal argument, and the reference and data events are derived from it. Reference events and
data events shall only be detected by timing checks when their associated conditions are true. See 15.6 for more infor-
mation about conditions in timing checks.

Timing check evaluation is based upon the times of two events, called the timestamp event and the timecheck event.
A transition on the timestamp event signal causes the simulator to record (stamp) the time of transition for future use
in evaluating the timing check. A transition on the timecheck event signal causes the simulator to actually evaluate the
timing check to determine whether a violation has taken place.

For some checks the reference event is always the timestamp event, while the data event is always the timecheck
event, while for other checks the reverse is true. And for yet other checks the decision as to which is the timestamp
and which the timecheck event is based upon factors to be discussed later in greater detail.

Every timing check can include an optional notifier which toggles whenever the timing check detects a violation. The
model can use the notifier to make behavior a function of timing check violations. Notifiers are discussed in greater
detail in 15.5.

Like expressions for module path delays, timing check limit values are constant expressions which can include spec-
params.

15.2 Timing checks using a stability window
These timing checks are discussed in this section:

$setup $hold $setuphold
$recovery $removal $recrem

These checks accept two signals, the reference event and the data event, and define a time window with respect to one
signal while checking the time of transition of the other signal with respect to the window. In general they all perform
the following steps:

a) Define a time window with respect to the reference signal using the specified limit or limits;
b) Check the time of transition of the data signal with respect to the time window;

c) Report a timing violation if the data signal transitions within the time window.

246 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

15.2.1 $setup

The$setuptiming check syntax is shown in Syntax 15-3.

$setup_timing_check ::@Ffrom Annex A - A.7.5.1)
$setup (data_eventreference_eventtiming_check_limit [, [notify_reg]]) ;
data_event ::¥From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-3—Syntax for $setup

Table 15-1 defines thgsetuptiming check.

Table 15-1—$setup arguments

Argument Description
data_event Timestamp event
reference_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The data event is usually a data signal, while the reference event is usually a clock signal.
The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The$setuptiming check reports a timing violation in the following case:
(beginning of time window) < (timestamp time) < (end of time window)

The endpoints of the time window are not part of the violation region. When the limit is zersétepcheck shall
never issue a violation.

15.2.2 $hold

The$hold timing check syntax is shown in Syntax 15-4.

Section 15 Copyright 2000 IEEE. All rights reserved. 247
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

$hold _timing_check ::€From Annex A - A.7.5.1)
$hold (reference_eventdata_eventtiming_check_limit [, [notify_reg]]) ;
data_event ::€From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-4—Syntax for $hold

Table 15-2 defines thghold timing check.

Table 15-2—$hold arguments

Argument Description
reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The data event is usually a data signal, while the reference event is usually a clock signal.
The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The$hold timing check reports a timing violation in the following case:
(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. When the limit is zero$tioéd check shall
never issue a violation.

15.2.3 $setuphold

The$setupholdtiming check syntax is shown in Syntax 15-5.

248 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE

data_event ::=

delayed_data ::=

notify_reg ::=

expression

$setuphold_timing_check :@From Annex A - A.7.5.1)
$setuphold (reference_eventdata_eventtiming_check_limit timing_check_limit
[, [notify_reg][, [stamptime_condition] [[checktime_condition]
[, [delayed_reference][delayed_data]]1]1]11];
checktime_condition ::€From Annex A - A.7.5.2)
mintypmax_expression

timing_check_event

terminal_identifier
| terminal_identifief constant_mintypmax_expressipn
delayed_reference :
terminal_identifier
| terminal_identifief constant_mintypmax_expressipn

variable_identifier
reference_event ::=

timing_check_event
stamptime_condition ::=

mintypmax_expression
timing_check_limit :

Syntax 15-5—Syntax for $setuphold

Table 15-3 defines thgsetupholdtiming check.

Table 15-3—$setuphold arguments

Argument

Description

reference_event

Timecheck or timestamp event when setup limit is po|
Timestamp event when setup limit is negative

sitive

ive

data_event Timecheck or timestamp event when hold limit is posi
Timestamp event when hold limit is negative

setup_limit Constant expression

hold_limit Constant expression

notifier (optional) Reg

timestamp_cond (optional) Timestamp condition for negative timing checks

timecheck_cond (optional) Timecheck condition for negative timing checks

delayed_reference (optional) Delayed reference signal for negative timing checks

delayed_data (optional)

Delayed data signal for negative timing checks

The$setupholdtiming check can accept negative limit values. This is discussed in greater detail in 15.8.

The data event is usually a data signal, while the reference event is usually a clock signal.

Section 15

Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Std P1364-2000 (Draft 5)

249

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

When both the setup limit and the hold limit are positive, either the reference event or the data event can be the
timecheck event. It shall depend upon which occurs first in the simulation.

When either the setup limit or the hold limit is negative the restriction becomes:
setup_limit + hold_limit > (simulation unit of precision)

The $setupholdtiming check combines the functionality of tBsetupand$hold timing checks into a single timing
check. Therefore, the following invocation:

$setuphold posedgeclk, data, tSU, tHLD);
is equivalent in functionality to the following, iU andtHLD are not negative:

$setuf data, posedgeclk, tSU);
$hold(posedgeclk, data, tHLD);

When both setup and hold limits are positive and the data event occurs first, the endpoints of the time window are
determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the$setupholdtiming check reports a timing violation in the following case:
(beginning of time window) < (timecheck time) <= (end of time window)

Only the beginning of the time window is not part of the violation region. $&etupholdcheck shall report a timing
violation when the reference and data events occur simultaneously.

When both setup and hold limits are positive and the data event occurs second, the endpoints of the time window are
determined as follows:

beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the$setupholdtiming check reports a timing violation in the following case:
(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. $aetupholdcheck shall report a timing viola-
tion when the reference and data events occur simultaneously.

When both limits are zero, ti$setupholdcheck shall never issue a violation.
15.2.4 $removal

The$removal timing check syntax is shown in Syntax 15-6.

250 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

$removal_timing_check ::Ffrom Annex A - A.7.5.1)
$removal (reference_eventdata_eventtiming_check_limit [, [notify_reg]]) ;
data_event ::¥From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-6—Syntax for $removal

Table 15-4 defines theremovaltiming check.

Table 15-4—$removal arguments

Argument Description
reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock signal.
The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The$removal timing check reports a timing violation in the following case:
(beginning of time window) < (timestamp time) < (end of time window)

The endpoints of the time window are not part of the violation region. When the limit is zer@reheoval check
shall never issue a violation.

15.2.5 $recovery

The$recoverytiming check syntax is shown in Syntax 15-7.

Section 15 Copyright 2000 IEEE. All rights reserved. 251
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

$recovery_timing_check ::@rom Annex A - A.7.5.1)
$recovery (reference_eventdata _eventtiming_check_limit [, [notify_reg]]) ;
data_event ::€From Annex A - A.7.5.2)
timing_check_event
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-7—Syntax for $recovery

Table 15-5 defines thHgrecoverytiming check.

Table 15-5—$recovery arguments

Argument Description
reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock signal.
The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The$recoverytiming check reports a timing violation in the following case:
(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. When the limit is zer&rdeoverycheck shall
never issue a violation.

15.2.6 $recrem

The$recremtiming check syntax is shown in Syntax 15-8.

252 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE
Std P1364-2000 (Draft 5)

mintypmax_expression
data_event ::=
timing_check_event
delayed_data ::=
terminal_identifier

delayed_reference ::=
terminal_identifier

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

stamptime_condition ::=
mintypmax_expression

timing_check_limit ::=
expression

$recrem_timing_check ::From Annex A - A.7.5.1)
$recrem (reference_eventdata_eventtiming_check_limit, timing_check_limit
[, [notify_reg][, [stamptime_condition] [[checktime_condition]
[, [delayed_reference][delayed_data]]]111];
checktime_condition ::€From Annex A - A.7.5.2)

| terminal_identifief constant_mintypmax_expressipn

| terminal_identifief constant_mintypmax_expressipn

Syntax 15-8—Syntax for $recrem

Table 15-6 defines tHerecrem timing check.

Table 15-6—$recrem arguments

Argument

Description

reference_event

Timestamp event when removal limit is negative

Timecheck or timestamp event when removal limit is positive

data_event

Timecheck or timestamp event when recovery limit is posit
Timestamp event when recovery limit is negative

recovery_limit

Constant expression

removal_limit

Constant expression

notifier (optional)

Reg

timestamp_cond (optional) Timestamp condition for negative timing checks

timecheck_cond (optional)

Timecheck condition for negative timing checks

delayed_reference (option

al) Delayed reference signal for negative timing checks

delayed_data (optional)

Delayed data signal for negative timing checks

The$recremtiming check can accept negative limit values. This is discussed in greater detail in 15.8.

When both the removal limit and the recovery limit are positive, either the reference event or the data event can be the

timecheck event. It shall depend upon which occurs first in the simulation.

Section 15
This is an

Copyright 2000 IEEE. All rights reserved.
unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

When either the removal limit or the recovery limit is negative the restriction becomes:
removal_limit + recovery_limit > (simulation unit of precision)

The $recrem timing check combines the functionality of teemoval and $recovery timing checks into a single
timing check. Therefore, the following invocation:

$recrem(posedgeclear, posedgeclk, tREC, tREM);
is equivalent in functionality to the following, tiREC andtREM are not negative:

$removall posedgeclear, posedgeclk, tREM);
$recovery(posedgeclear, posedgeclk, tREC);

When both removal and recovery limits are positive and the data event occurs first, the endpoints of the time window
are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the$recrem timing check reports a timing violation in the following case:
(beginning of time window) < (timecheck time) <= (end of time window)

Only the beginning of the time window is not part of the violation region. $tecrem check shall report a timing
violation when the reference and data events occur simultaneously.

When both removal and recovery limits are positive and the data event occurs second, the endpoints of the time win-
dow are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the$recrem timing check reports a timing violation in the following case:
(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. $hecrem check shall report a timing violation
when the reference and data events occur simultaneously.

When both limits are zero, ti¥setupholdcheck shall never issue a violation.

15.3 Timing checks for clock and control signals
The following timing checks are discussed in this section:
$skew $timeskew $fullskew $period $width $nochange

These checks accept one or two signals and verify transitions on them are never separated by more than the limit. For
those checks specifying only one signal, the reference event and data event are derived from that one signal. In gen-
eral these checks all perform the following steps:

a) Determine the elapsed time between two events;

b) Compare the elapsed time to the specified limit;

254 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

c) Report a timing violation if the elapsed time violates the limit.

The skew checks have two different violation detection mechanisms, event-based and timer-based. Event-based skew
checking is performed only when a signal transitions, while timer-based skew checking takes place as soon as the
simulation time equal to the skew limit has elapsed.

The$nochangecheck involves three events rather than two.

15.3.1 $skew

The$skewtiming check syntax is shown in Syntax 15-9.

$skew_timing_check ::&From Annex A - A.7.5.1)
$skew (reference_eventdata_eventtiming_check_limit [, [notify_reg]1]) ;
data_event ::{From Annex A - A.7.5.2)
timing_check_event
notify_reqg ::=
variable_identifier
reference_event ::=
timing_check_event
timing_check_limit ::=
expression

Syntax 15-9—Syntax for $skew

Table 15-7 defines theskewtiming check.

Table 15-7—$skew arguments

Argument Description
reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression
notifier (optional) Reg

The$skewtiming check reports a violation in the following case:
(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can nevefskexsto report a timing violation, even
when the skew limit value is zero.

The $skewtiming check is event-based; it is evaluated only after a data event. If there is never a data event (i.e., the
data event is infinitely late), théskewtiming check shall never be evaluated, and no timing violation shall ever be
reported. In contrast, tHimeskewand$fullskew checks are timer-based by default, and they shall be used if viola-

tion reports are absolutely required and the data event can be very late or even absent altogether. These checks are dis-
cussed in 15.3.2 and 15.3.3.

$skewshall wait indefinitely for the data event once it has detected a reference event and it shall not report a timing

Section 15 Copyright 2000 IEEE. All rights reserved. 255
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

violation until the data event takes place. A second consecutive reference event shall cancel the old wait for the data
event and begin a new one.

After a reference event, thikskewtiming check shall never stop checking data events for a timing violafiskew
shall report timing violations for all data events occurring beyond the limit after a reference event.

15.3.2 $timeskew

The syntax fotimeskewis shown in Syntax 15-10.

$timeskew_timing_check ::fFrom Annex A - A.7.5.1)
$timeskew (reference_eventdata_eventtiming_check_limit
[, [notify_reg][, [event_based_flag],[[remain_active_flag]]11];
data_event ::¥From Annex A - A.7.5.2)
timing_check_event
event_based_flag ::=
constant_expression
notify_reqg ::=
variable_identifier
reference_event ::=
timing_check_event
remain_active_flag ::=
constant_mintypmax_expression
timing_check_limit ::=
expression

Syntax 15-10—Syntax for $timeskew

Table 15-8 defines thitimeskewtiming check arguments.

Table 15-8—$timeskew arguments

Argument Description
reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expressior
notifier (optional) Reg

event_based_flag (optional) Constant expression
remain_active_flag (optional) Constant expression

The $timeskewtiming check reports a violation only in the following cases:
(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can neveftmeskewto report a timing violation,
even when the skew limit value is zero.

The default behavior fatimeskewis timer-based. Violations are reported immediately upon an elapse of time after

256 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

the reference event equal to the limit, and the check shall become dormant and report no more violations (even in
response to data events) until after the next reference event. This check shall also become dormant if it detects a refer-
ence event when its condition is false.

The $timeskew check's default timer-based behavior can be altered to event-based using the event based flag. It
behaves like th&skewcheck when both the event based flag and the remain active flag are s#tiriégkewcheck
behaves like th&skewcheck when only the event based flag is set, except it becomes dormant after reporting the first
violation.

Example:

$timeskew(posedgeCP &&& MODE, negedgeCPN, 50);

MODE |
cP
|] | | |
_>‘ ‘<_50 F
A B
cen LT LTI LML
c D E

Figure 15-1—Sample $timeskew

Case 1Event based flag and remain active flag not set.

After the first reference event o€Pat A, a violation is reported aB as soon a80 time units have passed. No fur-
ther violations are reported.

Case 2 Event based flag set, remain active flag not set.

The first three negative transitions @PNat pointsC, D andE shall cause timing violations. The second reference
event af occurs whileMODE:is false, turning th×kewcheck dormant, and no further violations are reported.

Case 3Event based flag and remain active flag both set.
Every negative edge d®PN is reported as a violation, which is identicagkewbehavior.
15.3.3 $fullskew

The syntax fofsfullskew is shown in Syntax 15-11.

Section 15 Copyright 2000 IEEE. All rights reserved. 257
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

$fullskew_timing_check ::¥From Annex A - A.7.5.1)
$fullskew (reference_eventdata_eventtiming_check_limit, timing_check_limit
[, [notify_reg][, [event_based_flag],[[remain_active_flag]]11];
data_event ::¥From Annex A - A.7.5.2)
timing_check_event
event_based_flag ::=
constant_expression
notify_reqg ::=
variable_identifier
reference_event ::=
timing_check_event
remain_active_flag ::=
constant_mintypmax_expression
timing_check_limit ::=
expression

Syntax 15-11—Syntax for $fullskew

Table 15-9 defines thgfullskew timing check arguments.

Table 15-9—$fullskew arguments

Argument Description
reference_event Timestamp or timecheck event
data_event Timestamp or timecheck event
limit 1 Non-negative constant expressio
limit 2 Non-negative constant expressio
notifier (optional) Reg

event_based_flag (optional) Constant expression
remain_active_flag (optional) Constant expression

$fullskew is identical tostimeskewexcept the reference and data events can transition in either order. The first limit
is the maximum time by which the data event can follow the reference event. The second limit is the maximum time
by which the reference event can follow the data event.

The reference event is the timestamp event and the data event is the timecheck event when the reference event pre-
cedes the data event. The data event is the timestamp event and the reference event is the timecheck event when the
data event precedes the reference event.

The $fullskew timing check reports a violation only in the following case, where limit is set to limitl when the refer-
ence event transitions first, and to limit2 when the data event transitions first:

(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals shall nevestalss&w to report a timing violation,
even when the skew limit value is zero.

258 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The default behavior fogfullskew is timer-based. Violations shall be reported immediately upon an elapse of time
after the timestamp event equal to the limit. It then becomes dormant and reports no more violations, even in response
to timecheck events, until after the next timestamp event. This check shall also become dormant if it detects a times-
tamp event when the associated condition is false.

The $fullskew check's default timer-based behavior can be altered to event-based using the event based flag. It
behaves like th&skewcheck when both the event based flag and the remain active flag are s#tiriéskewcheck
behaves like th&skewcheck when only the event based flag is set, except it becomes dormant after it reports the first
violation.

Example:

$fullskew (posedgeCP &&& MODE, negedgeCPN, 50, 70);

MODE L
cpP
| l | |
J
»‘ ‘«50
A B
+‘ ‘$7o
70 ,‘ ‘$
CPN D
o

Figure 15-2—Sample $fullskew

Case 1Event based flag and remain active flag not set.

The transition af\ of CPwhile MODEs true begins a wait for a negative transition@RN and a violation is reported
at B as soon as a period of time equal30 time units has passed. This resets the check and readies it for the next
active transition.

A negative transition o®€PNoccurs next a€, beginning a wait for a positive transition @Pwhile MODEs true. At
Datime equal t&0 time units has passed without a positive edg€&while MODEs true, so a violation is reported
and the check is again reset to await the next active transition.

A transition onCPNat E also results in a timing violation, as does the transitioR, &tecause even thou@P transi-
tions, MODEs no longer true. Transitions & and H also result in timing violations, but not the transitionlat
because it is followed by a positive transition@while MODHs true.

Case 2 Event based flag set, remain active flag not set.

The transition af\ of CPwhile MODEs true begins a wait for a negative transition@RAN and a violation is reported
at C on CPNbecause it occurs beyond tG6 time unit limit. This transition aB also begins a wait of0 time units
for a positive transition o@€Pwhile MODEs true. But for transitions o@PNat B throughH there is no positive tran-
sition onCPwhile MODEs true, and so no timing violations are reported. The transitionaat CPNbegins a wait of
70 time units, and this is satisfied by the positive transitio@®atJ while MODEHs true.

Case 3Event based flag and remain active flag both set.

Section 15 Copyright 2000 IEEE. All rights reserved. 259
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The transition af\ of CPwhile MODEs true begins a wait for a negative transition@RN and a violation is reported
atCon CPN and it shall also begin a wait for a positive transition@®Pwhile MODEs true. No such transition 0GP
ever takes place aft@@PNtransitionsC throughH, but no violations are reported beca@®never experiences a pos-
itive transition whileMODBESs true. Transitiorl also reports no violation because a positive transitioh ah CP
while MODEs true occurs within th@0 time unit skew limit.

15.3.4 $width

The$width timing check syntax is shown in Syntax 15-12.

$width_timing_check ::¥From Annex A - A.7.5.1)
$width (controlled_reference_eventiming_check_limit,
threshold [, [notify_reg]1]) ;
controlled_reference_event ({Erom Annex A - A.7.5.2)
controlled_timing_check _event
notify_reg ::=
variable_identifier
threshold ::=
constant_expression
timing_check_limit ::=
expression

Syntax 15-12—Syntax for $width

If the comma before the threshold is present, the comma before the notifier shall also be present, even though both
arguments are optional.

Table 15-10 defines tHwidth timing check.

Table 15-10—$width arguments

Argument Description
reference_event Timestamp edge triggered event
(data_event - implicit) Timecheck edge triggered event
limit Non-negative constant expression
threshold (optional) Non-negative constant expression
notifier (optional) Reg

The$width timing check monitors the width of signal pulses by measuring the time from the timestamp event to the
timecheck event. Since a data event is not passislitith, it is derived from the reference event, as follows:

data event = reference event signal with opposite edge

Because of the way the data event is derivedferdth, an edge triggered event has to be passed as the reference
event. A compilation error shall occur if the reference event is not an edge specification.

While the$width timing check can be defined in terms of a time window, it is simpler to express it as the difference

between the timecheck and timestamp times.$itidth timing check reports a violation in the following case:

260 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

threshold < (timecheck time) - (timestamp time) < limit

The pulse width has to be greater than or equal to limit in order to avoid a timing violation, but no violation is
reported for glitches smaller than the threshold.

The threshold argument shall be included if the notifier argument is required. It is permissible to not specify both the
threshold and notifier arguments, making the default value for the threshold®@etbthe notifier is present, a non-

null value for the threshold shall also be present. Here is a fhgalth check when the notifier is required and the
threshold is not:

$width (posedgeclk, 6, 0, ntfr_reg);

The data event and the reference event shall never occur at the same simulation time because these events are trig-
gered by opposite transitions.

Example:

The following example demonstrates some examples of legal and illegal calls:

/I Legal Calls

$width (negedgeclr, lim);

$width (negedgeclr, lim, thresh, notif);
$width (negedgeclr, lim, 0, notif);

/I lllegal Calls

$width (negedgeclr, lim, , notif);

$width (negedgeclr, lim, notif);
15.3.5 $period

The$period timing check syntax is shown in Syntax 15-13.

$period_timing_check ::fFrom Annex A - A.7.5.1)
$period (controlled_reference_eveniming_check_limit [, [notify_reg]]) ;
controlled_reference_event (Erom Annex A - A.7.5.2)
controlled_timing_check _event
notify_reg ::=
variable_identifier
timing_check_limit ::=
expression

Syntax 15-13—Syntax for $period

Table 15-11 defines ttgperiod timing check.

Table 15-11—$period arguments

Argument Description
reference_event Timestamp edge triggered event
(data_event - implicit) Timestamp edge triggered event
Section 15 Copyright 2000 IEEE. All rights reserved. 261

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 15-11—$period arguments (continued)

limit Non-negative constant expression

notifier (optional) Reg

Since the data event is not passed as an argunigmeriod, it is derived from the reference event, as follows:
data event = reference event signal with the same edge

Because of the way the data event is derived¥eeriod, an edge triggered event shall be passed as the reference
event. A compilation error shall occur if the reference event is not an edge specification.

While the$period timing check can be defined in terms of a time window, it is simpler to express it as the difference
between the timecheck and timestamp times$pweziod timing check reports a violation in the following case:

(timecheck time) - (timestamp time) < limit
15.3.6 $nochange

The$nochangesyntax is shown in Syntax 15-14.

$nochange_timing_check :(Erom Annex A - A.7.5.1)
$nochange (reference_eventdata_eventstart_edge offset
end_edge_offset,[[notify_reg]]);
data_event ::¥From Annex A - A.7.5.2)
timing_check_event
end_edge_offset ::=
mintypmax_expression
notify_reg ::=
variable_identifier
reference_event ::=
timing_check_event
start_edge_offset ::=
mintypmax_expression

Syntax 15-14—Syntax for $nochange

Table 15-12 defines tinochangetiming check arguments.

Table 15-12—$nochange arguments

Argument Description
reference_event Edge triggered timestamp and/or timecheck gvent
data_event Timestamp or timecheck event
start_edge_offset Constant expression
end_edge_offset Constant expression
notifier (optional) Reg
262 Copyright 2000 IEEE. All rights reserved. Section 15

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The$nochangetiming check reports a timing violation if the data event occurs during the specified level of the con-
trol signal (the reference event). The reference event can be specified witbstbégeor thenegedgekeyword, but
the edge control specifiers (see 15.4) can not be used.

The start edge and end edge offsets can expand or shrink the timing violation region, which is defined by the duration
of the reference event signal after the edge. For example, if the reference event is a posedge, then the duration is the
period during which the reference signal is high. A positive offset for start edge extends the region by starting the tim-
ing violation region earlier; a negative offset for start edge shrinks the region by starting the region later. Similarly, a
positive offset for the end edge extends the timing violation region by ending it later, while a negative offset for the
end edge shrinks the region by ending it earlier. If both the offsets are zero, the size of the region shall not change.

Unlike other timing checkspnochangeinvolves three, rather than two, transitions. The leading edge of the reference
event defines the beginning of the time window, while the trailing edge of the reference event defines the end of the
time window. A violation results if the data event occurs anytime within the time window.

The endpoints of the time window are determined as follows:

(beginning of time window) =

(leading reference edge time) - start_edge_offset

(end of time window) = (trailing reference edge time) + end_edge_offset
The$nochangetiming check reports a timing violation in the following case:

beginning of time window) < (data event time) < (end of time window)

The endpoints of the time window are not included. The values stdrt edge offset and
end_edge_offset play a significant role in determining which signal, the reference event or the data event, is the
timestamp or timecheck event.

Example:

$nochangé¢ posedgeclk, data, 0, 0) ;

In this example$nochangesystem task shall report a violation if tdata signal changes whilelk is high. It shall
not be a violation iposedge clk and a transition odata occur simultaneously.

15.4 Edge-control specifiers

The edge-control specifiers can be used to control events in timing checks based on specific edge transitions between
0, 1, andx. Syntax 15-15 shows the syntax for edge-control specifiers.

edge_control_specifier ::From Annex A - A.7.5.3)
edge[edge_descriptor,[edge_descriptor]]
edge_descriptdr.:=
01
|10
| z_or_x zero_or_one
| zero_or_one z_or_x
zero_or_one 9|1
z or x:u=x|X|z|Z

IEmbedded spaces are illegal.

Syntax 15-15—Syntax for edge control specifier

Section 15 Copyright 2000 IEEE. All rights reserved. 263
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Edge-control specifiers contain the keywedbefollowed by a square bracketed list of from one to six pairs of edge

transitions betwee@, 1 andx, as follows:

01 Transition from0 to 1
Ox Transition from0 to x
10 Transition froml to O
1x Transition froml to x
x0 Transition fromx to 0
x1 Transition fromx to 1

Edge transitions involving are treated the same way as edge transitions invotving

The posedgeandnegedgekeywords can be used as a shorthand for certain edge-control specifiers. For example, the
construct:

posedgeclir

is equivalent to the following:
edgd01, Ox, x1] clr

Similarly, the construct
negedgeclr

is the same as the following:
edgd10, x0, 1x] clr

However, edge-control specifiers offer the flexibility to declare edge transitions othpotelyeandnegedge

15.5 Notifiers: user-defined responses to timing violations

Timing check notifiers detect timing check violations behaviorally, and, therefore, take an action as soon as a viola-
tion occurs. Such notifiers can be used to print an informative error message describing the violation or to propagate
anx value at the output of the device which reported the violation.

The notifier is a reg—declared in the module where timing check tasks are invoked—which is passed as the last argu-
ment to a system timing check. Whenever a timing violation occurs, the system task updates the value of the notifier.

The notifier is an optional argument to all system timing checks and can be omitted from the system task call without
adversely affecting its operation.

Table 15-13 shows how the notifier values are toggled when timing violations occur.

Table 15-13—User-defined responses to timing violations

BEFORE violation AFTER violation
X 0
0 1
1 0
z z
264 Copyright 2000 IEEE. All rights reserved. Section 15

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Examples:

Example 1

$setup(data, posedgeclk, 10, notify reg) ;
$width(posedgeclk, 16, notify_reg) ;

Example 2—-€onsider a more complex example of how to use notifiers in a behavioral model. The following example
uses a notifier to set the D flip-flop outpuktevhen a timing violation occurs in an edge-sensitive UDP.

primitive posdff_udp(q, clock, data, preset, clear, notifier);
output q; reg q;

input clock, data, preset, clear, notifier;

table

/lclock data p c notifier state q

1

r 0 11 ? :?:0
r 1 11 ? :?:1

1 2?21 2?2 :1:1;
0 1? ? :0:0;

T ©

n ? ?2? ? :7?:-
? 2?2 2?2 1?:-

? ? 01 ? :?:1
? 0?2 *1 ? :1:1;

? 2?2 10 ? :7?:0;
? ? 1* ?2 :0:0;
? 27 ?7? * 7?2 :x;/lAtany notifier event
/I output x
endtable
endprimitive
Section 15 Copyright 2000 IEEE. All rights reserved. 265

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module dff(q, gbar, clock, data, preset, clear);
output g, gbar;

input clock, data, preset, clear;

reg notifier;

and (enable, preset, clear);

not (gbar, ffout);

buf (q, ffout);

posdff_udp (ffout, clock, data, preset, clear, notifier);

specify
/I Define timing check specparam values
specparamtSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5;
/I Define module path delay rise and fall min:typ:max values
specparamtPLHc = 4:6:9 , tPHLc = 5:8:11;
specparamtPLHpc = 3:5:6 , tPHLpc = 4:7:9;

/I Specify module path delays
(clock *> g,gbar) = (tPLHc, tPHLc);
(preset,clear *> q,gbar) = (tPLHpc, tPHLpc);

/I Setup time : data to clock, only when preset and clear are 1
$setupdata, posedgeclock &&& enable, tSU, notifier);

/l Hold time: clock to data, only when preset and clear are 1
$hold(posedgeclock, data &&& enable, tHD, notifier);

/I Clock period check

$period(posedgeclock, tPW, notifier);

[/l Pulse width : preset, clear

$width(negedgepreset, tWPC, 0, notifier);
$width(negedgeclear, tWPC, 0, notifier);

/I Recovery time: clear or preset to clock
$recovery(posedgepreset, posedgeclock, tREC, notifier);
$recovery(posedgeclear, posedgeclock, tREC, notifier);
endspecify
endmodule

NOTE—This model applies to edge-sensitive UDPs only; for level-sensitive models, an additional URPrmpagation has to
be generated.

15.5.1 Requirements for accurate simulation

In order to accurately model negative value timing checks:

a) Atiming violation shall be triggered if the signal changes in the violation window, exclusive of the endpoints.
Violation windows smaller than two units of simulation precision can not yield timing violations.

b) The value of the latched data shall be the one which is stable during the violation window, again, exclusive of
the endpoints.

To facilitate these modeling requirements, delayed copies of the data and reference signals are generated in the timing

checks, and these are used internally for timing check evaluation at run-time. The setup and hold times used internally

266 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

are adjusted so as to shift the violation window and make it overlap the reference signal.

Delayed data and reference signals can be declared within the timing check so they can be used in the model's func-
tional implementation to insure accurate simulation. If no delayed signals are declared in the timing check, and if a
negative setup or hold value is present, then implicit delayed signals are created. Since implicit delayed signals can
not be used in defining model behavior, such a model can possibly behave incorrectly.

Examples:
Example 1:
$setuphold posedgeCLK, DATA, -10, 20);

Implicit delayed signals shall be created @K andDATA but it shall not be possible to access them. $ketup-
hold check shall be properly evaluated, but functional behavior shall not always be accurate. Th&Tégalue
shall be incorrectly clocked in DATAtransitions betweeposedge CLK and10 time units later.

Example 2:

$setuphold posedgeCLK, DATAL, -10, 20);
$setuphold posedgeCLK, DATAZ2, -15, 18);

Implicit delayed signals shall be created @rK, DATA1andDATAZ one for each. Even thoudPLK s referenced
in two different timing checks, only one implicit delayed signal is created, and it is used for both timing checks.

Example 3:

If a given signal has a delayed signal in some timing checks but not in others, the delayed signal shall be used in both
cases:

$setuphold posedgeCLK, DATAL, -10, 20,,,, del_CLK, del_DATAL);
$setuphold posedgeCLK, DATAZ2, -15, 18);

Explicit delayed signals oflel_CLK anddel_DATA1 are created foELK andDATAZ while an implicit delayed
signal is created foDATAZ2 In other wordsCLK has only one delayed signal created fodi] CLK , rather than
one explicit delayed signal for the first check, and another implicit delayed signal for the second check.

The delayed versions of the signals, whether implicit or explicit, shall be used i#sttep $hold, $setuphold
$recovery, $removal, $recrem, $width, $period and $nochangetiming checks, and these checks shall have their
limits adjusted accordingly. This ensures the notifier shall be toggled at the proper moment. If the adjusted limit
becomes less than or equabtahe limit shall be set t6 and the simulator shall issue a warning.

The delayed versions of the signals shall not be used fdpgkew $fullskew and$timeskewtiming checks because

it can possibly result in the reversal of the order of signal transitions. This causes the notifiers for these timing checks
to toggle at the wrong time relative to the rest of the model, perhaps resulting in transit}dsiéado a timing check
violation being canceled. This issue shall be addressed in the model, possibly by using separate notifiers for these
checks.

It is possible for a set of negative timing check values to be mutually inconsistent and produce no solution for the
delay values of delayed signals. In these situations the simulator shall issue a warning message. The inconsistency
shall be resolved by changing the smallest negative limit val@eénd recalculating the delays for the delayed sig-

nals, and this shall be repeated until a solution is reached. This procedure shall always produce a solution because in
the worst case all negative limit values becdmand no delayed signals are needed.

The delayed timing check signals are only actually delayed when negative limit values are present. If a timing check
signal becomes delayed by more than the propagation delay from that signal to an output, that output shall take longer
than its propagation delay to change. It shall instead transition at the same time which the delayed timing check signal

Section 15 Copyright 2000 IEEE. All rights reserved. 267
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

changes. Thus, the output shall behave as if its specify path delay were equal to the delay applied to the timing check
signal. This situation can only arise when unique setup/hold or removal/recovery times are given for each edge of the
data signal.

Example:

(CLK=Q) =6;
$setuphold(posedgeCLK, posedgeD, -3, 8,,,, dCLK, dD);
$setuphold(posedgeCLK, negedgeD, -7, 13, ,,, dCLK, dD);

The setup time of7 (the larger in absolute value é8 and-7) creates a delay af for dCLK, and so outpu@shall
not change untif time units after a positive edge 6K rather than the 6 time units given in the specify path.

15.5.2 Conditions in negative timing checks

Conditions can be associated with both the reference and data signals by ust@gibeerator, but when either the
setup or hold time is negative the conditions need to be paired with reference and data signals in a more flexible way.
This example illustrates why.

This pair of$setupand$hold checks work together to provide the same check as a $isgfigphold

$setup(data, clk&&&cond1, tsetup, ntfr);
$hold (clk, data&&&cond1, thold, ntfr);

clk is the timecheck event for ttisetupcheck, while data is the timecheck event for $ild check. This can not

be represented in a singksetupholdcheck, and so additional arguments are provided to make this possible. These
arguments are timestamp_cond and timecheck_cond, and they immediately follow the notifier (see 15.2%83tThis
uphold check is equivalent to the separdsetupand$hold checks shown above:

$setuphold clk, data, tsetup, thold, ntfr, , condl);
The timestamp_cond argument is null, while the timecheck_cond arguncentlik .

The timestamp_cond and timecheck_cond arguments are associated with either the reference or data signals based on
which delayed version of these signals occurs first. timestamp_cond is associated with the delayed signal which tran-
sitions first, while timecheck_cond is associated with the delayed signal which transitions second.

Delayed signals are only created for the reference and data signals, and not for any condition signals associated with
them. Therefore, timestamp_cond and timecheck_cond are not implicitly delayed by the simulator. Delayed condition
signals for the timestamp_cond and timecheck _cond fields can be created by making them a function of the delayed
signals.

Example:

assignTE_cond_D = (dTE !==1'b1);
assignTE_cond_TI = (dTE !== 1'b0);
assignDXTI_cond = (dTl !== dD);

specify
$setuphold posedgeCP, D, -10, 20, notifier, ,TE_cond_D, dCP, dD);
$setuphold posedgeCP, TI, 20, -10, notifier, ,TE_cond_TI, dCP, dTI);
$setuphold posedgeCP, TE, -4, 8, notifier, ,DXTI_cond, dCP, dTE);
endspecify

The assign statements create condition signals which are functions of the delayed signals. Creating delayed signal
conditions synchronizes the conditions with the delayed versions of the reference and data signals used to perform the
checks.

268 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The first$setupholdhas a negative setup time, and so the timecheck condiiorcond_D is associated with data
signalD. The secondsetupholdhas a negative hold time, and so the timecheck conditiencond_TI is associ-
ated with reference signafSP The third $setuphold has a negative setup time, and so the timecheck condition
DXTI_cond is associated with data sigrigk .

The violation windows for the example are shown in Figure 15-3.

cpP
500
I
DL .l |
510 520
TE! |
504 508
I [I
T w I
480 490

Figure 15-3—Timing check violation windows

These are the delay values calculated for the delayed signals:

dCP 10.01
dD 0.00
dTl 20.02
dTE 2.02

Use of delayed signals in creating the signals for the timestamp_cond and timecheck_cond arguments is not required,
but it is usually closer to actual device behavior.

15.5.3 Notifiers in negative timing checks

Because the reference and data signals are delayed internally, the detection of the timing violation is also delayed.
Notifier regs in negative timing checks shall be toggled when the timing check detects a timing violation, which
occurs when the delayed signals as measured by the adjusted timing check values are in violation, not when the unde-
layed signals at the model inputs as measured by the original timing check values are in violation.

15.5.4 Option behavior

As already mentioned, the ability of Verilog simulators to handle negative valudkseimpholdand$recremtiming

checks shall be enabled with an invocation option. It is possible models written to accept negative timing check val-
ues with delayed reference and/or delayed data signals can be run without this invocation option enabled. In this cir-
cumstance the delayed reference and data signals become copies of the original reference and data signals. The same
occurs if an invocation option turning off all timing checks is used.

15.6 Enabling timing checks with conditioned events

A construct called a conditioned event ties the occurrence of timing checks to the value of a conditioning signal.
Syntax 15-16 shows the syntax for controlled timing check event.

Section 15 Copyright 2000 IEEE. All rights reserved. 269
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

timing_check_event ::fFfrom Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descript@&f& timing_check_condition]
controlled_timing_check _event ::=
timing_check_event_control specify_terminal_descript&f timing_check_condition]
timing_check_event_control ::=
posedge
| negedge
| edge_control_specifier
specify_terminal_descriptor ::=
specify_input_terminal_descriptor
| specify_output_terminal_descriptor
timing_check_condition ::=
scalar_timing_check_condition
| (scalar_timing_check_conditign
scalar_timing_check_condition ::=
expression
| ~ expression
| expressior= scalar_constant
| expressior== scalar_constant
| expressiof= scalar_constant
| expressiof== scalar_constant

scalar_constant ::=
1'b0|1'b1|1'BO|1'B1|'bO |'b1 |'BO|'B1|1]|0

Syntax 15-16—Syntax for controlled timing check event

The comparisons used in the condition can be deterministic, &s3n!==, ~, or no operation, or nondeterministic,
as in== or !=. When comparisons are deterministic,xamalue on the conditioning signal shall not enable the tim-
ing check. For nondeterministic comparisonsyxam the conditioning signal shall enable the timing check.

The conditioning signal shall be a scalar net; if a vector net or an expression resulting in a multi-bit value is used, then
the least significant bit of the vector net or the expression value is used.

If more than one conditioning signal is required for conditioning timing checks, appropriate logic shall be combined
in a separate signal outside the specify block, which can be used as the conditioning signal.

Examples:

Example 1o illustrate the difference between conditioned and unconditioned timing check events, consider the
following example with unconditioned timing check:

$setuf data, posedgeclk, 10);
Here, a setup timing check shall occur every time there is a positive edge on thellsignal

To trigger the setup check on the positive edge on the sigkalonly when the signatlr is high, rewrite the com-
mand as

$setuf data, posedgeclk &&& clr,10);
Example 2—Fhis example shows two ways to trigger the same timing check as in example 1 (on the pdisitive

edge) only wheglr is low. The second method uses e operator, which makes the comparison deterministic.

270 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

$setuf(data, posedgeclk &&& (~clr),10);
$setur data, posedgeclk &&& (clr ===0),10);

Example 3—Fo perform the previous sample setup check on the pogitiveedge only wherlr andset are high,
add the following statement outside the specify block:

and new_gate(clr_and_set, clr, set);
Then add the condition to the timing check using the signadnd_set as follows:

$setuf data, posedgeclk &&& clr_and_set, 10);

15.7 Vector signals in timing checks

Either or both signals in a timing check can be a vector. This shall be interpreted as a single timing check where the
transition of one or more bits of a vector is considered a single transition of that vector.

Example:

module DFF (Q, CLK, DAT);
input CLK;

input [7:0] DAT,;

output [7:0] Q;

always @(posedgeclk)

Q = DAT;

specify

$setup(DAT, posedgeCLK, 10);
endspecify

endmodule

If DATtransitions fromb00101110 to'b01010011 attimel00, andCLKtransitions from0 to 1 at time 105,
then thebsetuptiming check shall still only report a single timing violation.

Simulators can provide an option causing vectors in timing checks to result in the creation of multiple single-bit tim-
ing checks. For timing checks with only a single signal, sucBmeriod or $width, a vector of widthN results inN

unique timing checks. For timing checks with two signals, sucBsatup $hold, $setuphold $skew $timeskew
$fullskew, $recovery, $removal, $recrem and$nochange whereMandN are the widths of the signals, the result is
M*N unigque timing checks. If there is a notifier, all the timing checks trigger that notifier.

With such an option enabled, the above example yields six timing violation because siBilsi@nsitioned.

15.8 Negative timing checks

Both the$setupholdand$recremtiming checks can accept negative values when the negative timing check option is
enabled. The behavior of these two timing checks is identical with respect to negative values. The descriptions in this
section are for th&setupholdtiming check, but apply equally to tBeecrem timing check.

The setup and hold timing check values define a timing violation window with respect to the reference signal edge
during which the data shall remain constant. Any change of the data during the specified window causes a timing vio-
lation. The timing violation is reported and, through the notifier reg, other actions can take place in the model, such as
forcing the output of a flip-flop t& when it detects a timing violation.

A positive value for both setup and hold times implies this violation window straddles the reference signal shown in
Figure 15-4.

Section 15 Copyright 2000 IEEE. All rights reserved. 271
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

clock

data

. L e Setup time (+)
.......... Hold Time (+)

Figure 15-4—Data constraint interval, positive setup/hold

A negative hold or setup time means the violation window is shifted to either before or after the reference edge. This
can happen in a real device because of disparate internal device delays between the internal clock and data signal
paths. These internal device delays are illustrated in Figure 15-5 showing how significant differences in these delays

can cause nhegative setup or hold values.

272

This is an unapproved IEEE Standards Draft, subject to change.

Copyright 2000 IEEE. All rights reserved.

Section 15

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

Section 15

IEEE
Std P1364-2000 (Draft 5)

ASIC Cell
o |
| |
data ! D1 ! output
! Seq. :
! Elem !
clock | D2 |
| |
| |
L - - - J
Negative Hold time (D1>D2)
clock ! !
data, I |
,‘ N Setup time (+)
‘ [Hold Time (-)
1 <
Negative Setup time (D2>D1)
clock ! !
data | T |

1 D e Setup time (-)
: ! [P Hold Time (+)
| |

Figure 15-5—Data constraint interval, negative setup/hold

Copyright 2000 IEEE. All rights reserved.

273

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

274 Copyright 2000 IEEE. All rights reserved. Section 15
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 16

Backannotation using the Standard Delay Format (SDF)

SDF files contain timing values for specify path delays, specparam values, timing check constraints, and interconnect
delays. SDF files can also contain other information in addition to simulation timing, but these need not concern Ver-
ilog simulation. The timing values in SDF files usually come from ASIC delay calculation tools that take advantage
of connectivity, technology, and layout geometry information.

Verilog backannotation is the process by which timing values from the SDF file update specify path delays, spec-
param values, timing constraint values, and interconnect delays.

All this information is covered further itEEE Std 1497-1999, Standard for Standard Delay Format (SDF) for the
Electronic Design ProcegB2].

16.1 The SDF annotator

The term SDF Annotator refers to any tool capable of backannotating SDF data to a Verilog simulator. It shall report
a warning for any data it is unable to annotate.

An SDF file can contain many constructs which are not related to specify path delays, specparam values, timing
check constraint values, or interconnect delays. An example is any construcfliiii¢GENYV section of the SDF
file. All constructs unrelated to Verilog timing shall be ignored without any warnings issued.

Any Verilog timing value for which the SDF file does not provide a value shall not be modified during the backanno-
tation process, and its pre-backannotation value shall be unchanged.

16.2 Mapping of SDF constructs to Verilog

SDF timing values appear withinGELL declaration, which can contain one or mordd®LAY TIMINGCHECKand

LABEL sections. ThdDELAY section contains propagation delay values for specify paths and interconnect delays.
The TIMINGCHECKSsection contains timing check constraint values. TABEL section contains new values for
specparams. Backannotation into Verilog is done by matching SDF constructs to the corresponding Verilog declara-
tions, then replacing the existing Verilog timing values with those from the SDF file.

16.2.1 Mapping of SDF delay constructs to Verilog declarations

When annotatindpELAYconstructs that are not interconnect delays (covered in 16.2.3), the SDF annotator looks for
specify paths where the names and conditions match. When anndfdtilgGCHECKconstructs, the SDF annota-

tor looks for timing checks of the same type where the names and conditions match. Table 16-1 shows which Verilog
structures can be annotated by each SDF construct BhAYsection.

Section 16 Copyright 2000 IEEE. All rights reserved. 275
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 16-1—Mapping of SDF delay constructs to Verilog declarations

SDF Construct Verilog annotated structure
(PATHPULSE. Conditional and non-conditional specify path pulse limits
(PATHPULSEPERCENT Conditional and non-conditional specify path pulse limits
(IOPATH... Conditional and non-conditional specify path delays/pulse limits
(IOPATH (RETAIN... Conditional and non-conditional specify path delays/pulse limits,

RETAIN ignored without warning

(CONDOQIOPATH... Conditional specify path delays/pulse limits
(CONOQIOPATH (RETAIN... V(\igrr:]oili]tgonal specify path delays/pulse limiETAIN ignored without
(CONDELSHOPATH... ifnone
(CONDELSHOPATH (RETAIN... ifnone, RETAIN ignored without warning
(DEVICE... All specify paths to module outputs. If no specify paths, all primitives

driving module outputs.

(DEVICE port_instance... If port_instance is a module instance, all specify paths to module
outputs. If no specify paths, all primitives driving module outputs. If
port_instance is a module instance output, all specify paths to that
module output. If no specify path, all primitives driving that module
output.

In this example the source SDF signael matches the source Verilog signal, and the destination SDF signal
zout also matches the destination Verilog signal, and so the rise/fall timels®f and 1.7 are annotated to the
specify path.

SDF file:

(IOPATH sel zout (1.3) (1.7))
Verilog specify path:

(sel => zout) = 0;

A conditionallOPATH delay between two ports shall annotate only to Verilog specify paths between those same two
ports with the same condition. In this example the rise/fall time$.8f and1.7 are annotated only to the second
specify path.

SDF file:
(COND mode (IOPATH sel zout (1.3) (1.7)))
Verilog specify paths:

if (!'mode) (sel => zout) = 0;
if (mode) (sel => zout) = 0;

A non-conditionall OPATH delay between two ports shall annotate to all Verilog specify paths between those same

two ports. In this example the rise/fall timeslo8 andl1.7 are annotated to both specify paths.

276 Copyright 2000 IEEE. All rights reserved. Section 16
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

SDF file:
(IOPATH sel zout (1.3) (1.7))
Verilog specify paths:

if (!'mode) (sel => zout) = 0;
if (mode) (sel => zout) = 0;

16.2.2 Mapping of SDF timing check constructs to Verilog

Table 16-2 shows which Verilog timing checks are annotated to by each type of SDF timing olkcls the first
value of a timing checkj2 is the second value, while indicates no value is annotated.

Table 16-2—Mapping of SDF timing check constructs to Verilog

SDF Timing Check

Annotated Verilog Timing checks

(SETUPVL... $setup (v1), $setuphold (v1,x)

(HOLDv1... $hold (v1), $setuphold (x,v1)

(SETUPHOLD1 v2... $setup (v1),$hold (v2), $setuphold (v1i,v2)
(RECOVERY1... $recovery (v1), $recrem (vi,x)

(REMOVANMN1... $removal (v1), $recrem (x,v1)

(RECREM1 v2... $recovery (v1),$removal (v2), $recrem (vi,v2)
(SKEW... $skew (v1)

(TIMESKEW1..1

$timeskew (v1)

(FULLSKEW1 v2...}

$fullskew (v1,v2)

(WIDTHv1... $width (v1,x)
(PERIODVL1.... $period (v1)
(NOCHANGH®. v2... $nochange (v1,v2f

INot part of current SDF standard

2Not usually implemented in Verilog simulators

The reference and data signals of timing checks can have logical condition expressions and edges associated with
them. An SDF timing check with no conditions or edges on any of its signals shall match all corresponding Verilog
timing checks regardless of whether conditions are present or not. In this example the SDF timing check shall anno-
tate to all the Verilog timing checks:

SDF file:
(SETUPHOLD data clk (3) (4))
Verilog timing checks:

$setuphold(posedgeclk&&& mode, data, 1, 1, ntfr);
$setuphold(negedgeclk&&&!mode, data, 1, 1, ntfr);

Section 16 Copyright 2000 IEEE. All rights reserved. 277

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

When conditions and/or edges are associated with the signals in an SDF timing check, then they shall match those in
any corresponding Verilog timing check before annotation shall happen. In this example the SDF timing check shall
annotate to the first Verilog timing check, but not the second:

SDF file:
(SETUPHOLD data (posedgeclk) (3) (4))
Verilog timing checks:

$setuphold(posedgeclk&&& mode, data, 1, 1, ntfr); /I Annotated
$setuphold(negedgeclk&&&!mode, data, 1, 1, ntfr); /I Not annotated

Here, the SDF timing check shall not annotate to any of the Verilog timing checks:
SDF file:

(SETUPHOLD data (COND !'mode (posedgeclk)) (3) (4))
Verilog timing checks:

$setuphold(posedgeclk&&& mode, data, 1, 1, ntfr); /I Not annotated
$setuphold(negedgeclk&&&!mode, data, 1, 1, ntfr); /I Not annotated

16.2.3 SDF annotation of specparams

The SDFLABEL construct annotates to specparams. Any expression containing one or more specparams is reevalu-
ated when annotated to from an SDF file.

This example shows SDIFABEL constructs annotating to specparams in a Verilog module. The specparams are used
in procedural delays to control when the clock transitions. The BEBEL construct annotates the values diiigh
anddlow , thereby setting the period and duty cycle of the clock.

SDF file:

(LABEL
(ABSOLUTE

(dhigh 60)

(dlow 40)))

Verilog file:

module clock(clk);
output clk;
reg clk;
specparamdhigh=0, dlow=0;
initial clk = 0;
always
begin
#dhigh clk = 1; // Clock remains low for time dlow
/I before transitioning to 1
#dlow clk = 0; // Clock remains high for time dhigh
/I before transitioning to 0
end;
endmodule

278 Copyright 2000 IEEE. All rights reserved. Section 16
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

This example shows a specparam in an expression of a specify path. THeABEE construct can be used to change
the value of the specparam and cause reevaluation of the expression:

specparamcap = 0;

specify
(A=>2)=1.4*cap+0.7;
endspecify

16.2.4 SDF annotation of interconnect delays

SDF interconnect delay annotation differs from annotation of other constructs described above in that there exists no
corresponding Verilog declaration to which to annotate. In Verilog simulation, interconnect delays are an abstraction
that represents the signal propagation delay from an output or inout module port to an input or inout module port. The
INTERCONNECTonstruct includes a source, a load, and delay values, while@RTandNETDELAYconstructs

include only a load and delay values. Interconnect delays can only be annotated between module ports, never between
primitive pins. Table 16-3 shows how the SDF interconnect constructs Eh&Ysection are annotated:

Table 16-3—SDF annotation of interconnect delays

SDF Construct Verilog annotated structure
(PORT.. Interconnect delay
(NETDELAY: Interconnect delay
(INTERCONNECT Interconnect delay

1only OVI SDF version 1.0, 2.0, and 2.1, and IEEE SDF version 4.0
Interconnect delays can be annotated to both single source and multi-source nets.

When annotating RORTconstruct, the SDF annotator shall search for the port and if it exists shall annotate an inter-
connect delay to that port which shall represent the delay from all sources on the net to that port.

When annotating AIETDELAYconstruct, the SDF annotator shall check to see if it is annotating to a port or a net. If

it is a port then the SDF annotator shall annotate an interconnect delay to that port. If it is a net then it shall annotate
an interconnect delay to all load ports connected to that net. If the port or net has more than one source then the delay
shall represent the delay from all sourdd&TDELAYdelays can only be annotated to input or inout module ports, or

to nets.

In the case of multi-source nets, unique delays can be annotated between each source/load pairlbSiEdRthe
CONNECTonstruct. When annotating this construct, the SDF annotator shall find the source port and the load port,
and if both exist it shall annotate an interconnect delay between the two. If the source port is not found, or if the
source port and the load port are not actually on the same net, then a warning message is issued, but the delay to the
load port is annotated anyway. If this happens for a load port that is part of a multi-source net, then the delay is treated
as if it were the delay from all source ports, which is the same as the annotation behavi®O®RTalelay. Source

ports shall be output or input ports, while load ports shall be input or inout ports.

Interconnect delays share many of the characteristics of specify path delays. The same rules for specify path delays
for filling in missing delays and pulse limits also apply for interconnect delays. Interconnect delays have twelve tran-
sition delays, and unique reject and error pulse limits are associated with each of the twelve. An unlimited number of
future schedules are permitted.

In a Verilog module, a reference to an annotated port, wherever it occurs, whetbrmoititor and $display
statements or in expressions, shall provide the delayed signal value. A reference to the source shall yield the unde-

Section 16 Copyright 2000 IEEE. All rights reserved. 279
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

layed signal value, while a reference to the load shall yield the delayed signal value. In general, references to the sig-
nal value hierarchically before the load shall yield the undelayed signal value, while references to the signal at or
hierarchically after the load shall yield the delayed signal value. An annotation to a hierarchical port shall affect all
connected ports at higher or lower hierarchical levels, depending on the direction of annotation. An annotation from a
source port shall be interpreted as being from all sources hierarchically higher or lower than that source port.

Up-hierarchy annotations shall be properly handled. This situation arises when the load is hierarchically above the
source. The delay to all ports hierarchically above the load or which connect to the net at points hierarchically above
the load is the same as the delay to that load.

Down-hierarchy annotation shall also be properly handled. This situation arises when the source is hierarchically
above the load. The delay to the load is interpreted as being from all ports at or above the source or which connect to
the net at points hierarchically above the source.

Hierarchically overlapping annotations are permitted. This occurs when annotations to or from the same port take
place at different hierarchical levels, and therefore do not correspond to the same hierarchical subset of ports. In this
example, the firstNTERCONNECBtatement annotates to all ports of the net that are at or hierarchically within
i53/selmode , while the second annotates to a smaller subset of ports, only those at or hierarchicallyi&®hin

u2l/in

(INTERCONNECT i14/u5/out i53/selmode (1.43) (2.17))
(INTERCONNECT i14/u5/out i53/u21/in (1.58) (1.92))

Overlapping annotations can occur in many different ways, particularly on multi-source/multi-load nets, and SDF
annotation shall properly resolve all the interactions.

16.3 Multiple annotations

SDF annotation is an ordered process. The constructs from the SDF file are annotated in their order of occurrence.
This means that annotation of an SDF construct can be changed by annotation of a subsequent construct that either
modifies(INCREMENT) or overwrites{tABSOLUTE) it. These do not have to be the same construct. This example

first annotates pulse limits to 8OPATH, then annotates the enti@PATH, thereby overwriting the pulse limits that

were just annotated:

(DELAY
(ABSOLUTE
(PATHPULSE A Z (2.1) (3.4))
(IOPATH A Z (3.5) (6.1))

Overwriting the pulse limits can be avoided by using empty parentheses to hold the current values of the pulse limits:

(DELAY
(ABSOLUTE
(PATHPULSE A Z (2.1) (3.4))
(IOPATHA Z((3.5) () 0) ((6.1) 0 0))

The above annotation can be simplified into a single statement like this:
(DELAY

(ABSOLUTE
(IOPATH A Z ((3.5) (2.1) (3.4)) ((6.1) (2.1) (3.4)))

A PORTannotation followed by alNTERCONNEC&nnotation to the same load shall cause only the delay from the
INTERCONNECT ource to be affected. For this net with three sources and a single load, the delay from all sources

280 Copyright 2000 IEEE. All rights reserved. Section 16
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

exceptil3/out remainsg :

(DELAY
(ABSOLUTE
(PORT i15/in (6))
(INTERCONNECT i13/out i15/in (5))

An INTERCONNEC&nnotation followed by #ORTannotation shall cause the TERCONNEC&nnotation to be
overwritten. Here, the delays from all sources to the load shall be&ome

(DELAY
(ABSOLUTE
(INTERCONNECT i13/out i15/in (5))
(PORT i15/in (6))

16.4 Multiple SDF files

More than one SDF file can be annotated. Each call t&$iaé_annotatetask annotates the design with timing infor-
mation from an SDF file. Annotated values either modiffyGREMENTY or overwrite ABSOLUTEvalues from ear-

lier SDF files. Different regions of a design can be annotated from different SDF files by specifying the region’s
hierarchy scope as the second argumefistth annotate

16.5 Pulse limit annotation

For SDF annotation of delays (not timing constraints), the default values annotated for pulse limits shall be calculated
using the percentage settings for the reject and error limits. By default these limi80%tebut they can be modified
through invocation options. For example, assuming invocation options have set the reject 4i6%t &md the error

limit to 80% this SDF construct shall annotate a delay,dd reject limit of2, and an error limit of:

(DELAY
(ABSOLUTE
(IOPATH A Z (5))

Given that the specify path delay was origin@Ij\this annotation results in a delaysoénd pulse limits 00:

(DELAY
(ABSOLUTE
(IOPATHA Z((5) 0 0))

Annotations iINNCREMENTmMode can result in pulse limits less thanin which case they shall be adjustedtd-or
example, if the specify path pulse limits were B®tlthis annotation results inCavalue for both pulse limits:

(DELAY
(INCREMENT
(IOPATH A Z () (-4) (-5)))

There are two SDF constructs that annotate only to pulse liIPAIHPULSEandPATHPULSEPERCENThey do
not affect the delay. WheRATHPULSEsets the pulse limits to values greater than the delay Verilog shall exhibit the
same behavior as if the pulse limits had been set equal to the delay.

16.6 SDF to Verilog delay value mapping
Verilog specify paths and interconnects can have unique delays for up to twelve state transitions (see 14.3.1). All

other constructs, such as gate primitives and continuous assignments, can have only three state transition delays (see

Section 16 Copyright 2000 IEEE. All rights reserved. 281
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

7.14).

For Verilog specify path and interconnect delays, the number of transition delay values provided by SDF might be
less than twelve.

Table 16-4 shows how fewer than twelve SDF delays are extended to be twelve delays. The Verilog transition types

are shown down the left hand side, while the number of SDF delays provided is shown across the top. The SDF values
are given the named throughvl2.

Table 16-4—SDF to Verilog delay value mapping

Number of SDF delay values provided
Verilog transition
1 value 2 values 3 values 6 values 12 values

0->1 vl vl vl vl vl
1->0 vl v2 v2 v2 v2
0->z vl vl v3 v3 v3
z->1 vl vl vl v4 v4
1>z vl v2 v3 VS VS
z->0 vl v2 v2 V6 V6
0->x vl vl min(v1,v3) min(v1,v3) v7
x->1 vl vl vl max(v1l,v4) v8
1->x vl v2 min(v2,v3) min(v2,v5) v9
x->0 vl v2 v2 max(v2,v6) v10
X->Z vl max(vl,v2) v3 max(v3,v5) vlil
Z->X vl min(v1,v2) min(v1,v2) min(v4,v6) v12

For other delays that can have at most three values, the expansion of less than three SDF delays into three Verilog
delays is covered in Table 7-9. More than three SDF delays are reduced to three Verilog delays by simply ignoring the
extra delays. The delay to the-state is created from the minimum of the other three delays.

282 Copyright 2000 IEEE. All rights reserved. Section 16
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 17

System tasks and functions

This section describes system tasks and functions that are considered part of the Verilog HDL. These system tasks
and functions are divided into ten categories as follows:

Display tasks [17.1] PLA modeling tasks [17.5]
$display $strobe $as

. yncandarray $async$and$plane
Sdisplayb $strobeb $async$nand$array $async$nand$plane
$g!sp:ayh $strogeh $async$or$array $async$or$plane
$displayo $strobeo $async$nor$array $async$norplane
imon!torb 2wr[teb $sync$andsarray $sync$and$plane
$mon!torh $wr!teh $sync$nands$array $sync$nand$plane
$m82:t8:0 $m:igo $sync$or$array $sync$or$plane
Smonitoroff $monitoron $syncSnor$array $sync$nor$plane
File I/O tasks [17.2] Stochastic analysis tasks [17.6]
$fclose $fopen $q_initialize $g_add
$fdisplay $fstrobe $q_remove $q_full
$fdisplayb $fstrobeb $q_exam
$fdisplayh $fstrobeh -
$fdisplayo $fstrobeo
$fgetré Y $ungetc Simulation time functions [17.7]
$fflush $ferror $realtime $stime
$fgets $rewind $time
$fmonitor $fwrite
$fmonitorb $fwriteb
$fmonitorh $fwriteh Conversion functions [17.8]
$fmonitoro $fwriteo . .
$readmemb $readmemh git;g?toreal $$;:§ialtoblts
Pswrite $Bswriteb . :
$swriteo $swriteh $signed $unsigned
$sformat $sdf _annotate
$fscanf $sscanf Probabilistic distribution functions [17.9]
$fread $ftell) i .
$fseek $dist_chi_square $dist_erlang

$dist_exponential $dist_normal

. dist_poisson dist_t
Timescale tasks [17.3] idist_ﬁniform $$}and6m
$printtimescale $timeformat -
Simulation control tasks [17.4] Command line input [17.10]

$finish

$stop

$test$plusargs

$value$plusargs

These utility tasks and functions provide some broadly useful capabilities. The following clauses describe the behav-
ior of these tasks and functions. Additional tasks for value change dump (VCD) are described in Section 18.

Section 17 Copyright 2000 IEEE. All rights reserved. 283

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

17.1 Display system tasks

The display group of system tasks are divided into three categories: the display and write tasks, strobed monitoring
tasks, and continuous monitoring tasks.

17.1.1 The display and write tasks

display_tasks ::¥Not in the Annex A BNF)
display_task_name (list_of_arguments) ;
display_task_name ::=
$display | $displayb | $displayo| $displayh
| $write | $writeb | Swriteo | $writeh

Syntax 17-1—Syntax for $display and $write system tasks

These are the main system task routines for displaying information. The two sets of tasks are identical except that
$display automatically adds a newline character to the end of its output, wheré&agritieetask does not.

The $display and $write tasks display their arguments in the same order as they appear in the argument list. Each
argument can be a quoted string, an expression that returns a value, or a null argument.

The contents of string arguments are output literally except when certain escape sequences are inserted to display spe-
cial characters or to specify the display format for a subsequent expression.

Escape sequences are inserted into a string in three ways:

— The special character \ indicates that the character to follow is a literal or nonprintable character (see Table 17-
1).

— The special charactébindicates that the next character should be interpreted as a format specification that
establishes the display format for a subsequent expression argument (see Table 17-2). Fecheaabter
that appears in a string, a corresponding expression argument shall be supplied after the string.

— The special character strifig¥ndicates the display of the percent sign chardé(see Table 17-1).

Any null argument produces a single space character in the display. (A null argument is characterized by two adjacent
commas in the argument list.)

The$display task, when invoked without arguments, simply prints a newline characterrite task supplied with-
out parameters prints nothing at all.

17.1.1.1 Escape sequences for special characters

The escape sequences given in Table 17-1, when included in a string argument, cause special characters to be
displayed.

284 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 17-1—Escape sequences for printing special characters

Argument Description
\n The newline character
\t The tab character
\\ The \ character
\" The " character
\dadd A character specified by 1 to 3 octal digitg
%% The % character
Example:
module disp;
initial begin
$display("\\t\Wn\"\123");

end

endmodule

\ \

"g

17.1.1.2 Format specifications

Table 17-2 shows the escape sequences used for format specifications. Each escape sequence, when included in a
string argument, specifies the display format for a subsequent expression. F&ehahacter (excep¥or that

appears in a string, a corresponding expression shall follow the string in the argument list. The value of the expression
replaces the format specification when the string is displayed.

Any expression argument that has no corresponding format specification is displayed using the default decimal for-
mat in $display and $write, binary format in$displayb and $writeb, octal format in$displayo and $writeo, and
hexadecimal format iidisplayh and$writeh.

Table 17-2—Escape sequences for format specifications

Argument Description
%h or %H Display in hexadecimal format
%d or %D Display in decimal format
%o0 or %0 Display in octal format
%Db or %B Display in binary format
%c or %C Display in ASCII character format
%I or %L Display library binding information
%V or %V Display net signal strength
Section 17 Copyright 2000 IEEE. All rights reserved. 285

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 17-2—Escape sequences for format specifications (continued)

%m or %M Display hierarchical name
%s or %S Display as a string

%t or %T Display in current time format
%u or %U Unformatted 2 value data

%z or %Z Unformatted 4 value data

The formatting specificatio®ol (or %l) is defined for displaying the library information of the specific module. This
information shall be displayed &ddibrary. cell' corresponding to the library name the current module instance was
extracted from and the cell name of the current module instance. See Section 13 for information on libraries and con-
figuring designs.

The formatting specificatiofou(or %V is defined for writing data without formatting (binary values). The applica-

tion shall transfer the 2 value binary representation of the specified data to the output stream. This escape sequence
may be used with any of the existing display system tasks, althfwglite =~ should be the preferred one to use.

Any unknown or high-impedance bits in the source shall be treated as zero. This formatting specifier is intended to be
used to support transferring data to and from external programs that have no concegrtd. Applications that

require preservation of andz are encouraged to use #tz1/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same endian order
as if the PLI was used, and the C language write(2) system call was used). The data will be written in units of 32 bits
with the word containing the LSB written first.

NOTE—For POSIX applications: It may be necessary to open files for unformatted 1/0 widtttherb+, or w+b specifiers, to
avoid the systems implementation of 1/O altering patterns in the unformatted stream that match special characters.

The formatting specificatiofoz (or %2 is defined for writing data without formatting (binary values). The applica-
tion shall transfer the 4 value binary representation of the specified data to the output stream. This escape sequence
may be used with any of the existing display system tasks, altifwgte should be the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external programs that recog-
nize and support the conceptofandz. Applications that do not require the preservatiox @ndz are encouraged
to use thé&ou 1/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same endian order
as if the PLI was used, and the data were i &pi_vecval structure (See 27.14, Figure 27-8), and the C lan-
guagewrite(2) system call was used to write the structure to disk). The data will be written in units of the native
size of an integer on the machine, which is typically 32 bits.

NOTE—For POSIX applications: It may be necessary to open files for unformatted 1/0 withltherb+ or w+b specifiers, to
avoid the systems implementation of 1/O altering patterns in the unformatted stream that match special characters.

The format specifications in Table 17-3 are used with real numbers and have the full formatting capabilities available
in the C language. For example, the format specificeitd®.3g specifies a minimum field width of 10 with 3 frac-
tional digits.

286 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 17-3—Format specifications for real numbers

Argument Description

%e or %E Display ‘real’ in an exponential format

%f or %F Display ‘real’ in a decimal format

%g or %G | Display ‘real’ in exponential or decimal format, which
ever format results in the shorter printed output

The net signal strength, hierarchical name, and string format specifications are described in 17.1.1.5 through 17.1.1.7.

The %t format specification works with th&timeformat system task to specify a uniform time unit, time precision,
and format for reporting timing information from various modules that use different time units and precisions. The
$timeformat task is described in 17.3.2.

Example:

module disp;

reg [31:0] rval;

pulldown (pd);

initial begin

rval = 101;

$display("rval = %h hex %d decimal”,rval,rval);
$display("rval = %0 octal\nrval = %b bin",rval,rval);
$display("rval has %c ascii character value",rval);
$display("pd strength value is %v",pd);
$display(“current scope is %m");
$display("%s is ascii value for 101",101);
$display("simulation time is %t", $time);

end

endmodule

rval = 00000065 hex 101 decimal

rval = 00000000145 octal

rval = 00000000000000000000000001100101 bin
rval has e ascii character value

pd strength value is StX

current scope is disp

e is ascii value for 101

simulation time is 0

17.1.1.3 Size of displayed data

For expression arguments, the values written to the output file (or terminal) are sized automatically.

For example, the result of a 12-bit expression would be allocated three characters when displayed in hexadecimal for-
mat and four characters when displayed in decimal format, since the largest possible value for the expression is FFF

(hexadecimal) and 4095 (decimal).

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other radices, leading zeros
are always displayed.

Section 17 Copyright 2000 IEEE. All rights reserved. 287
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The automatic sizing of displayed data may be overridden by inserting a zero betwééaththecter and the letter
that indicates the radix, as shown in the following example.

$display("d=%0h a=%0h", data, addr);

Example:

module printval,

reg [11:0] r1;

initial begin

rl =10;

$display("Printing with maximum size - :%d: :%h:", r1,rl);
$display("Printing with minimum size - :%0d: :%0h:", r1,r1);

end

endmodule

Printing with maximum size - : 10: :00a:
Printing with minimum size - :10: :a:

In this example, the result of a 12-bit expression is displayed. The first cidlisplay uses the standard format spec-

ifier syntax and produces results requiring four and three columns for the decimal and hexadecimal radices, respec-

tively. The seconddisplay call uses théo0form of the format specifier syntax and produces results requiring two
columns and one column, respectively.

17.1.1.4 Unknown and high impedance values

When the result of an expression contains an unknown or high impedance value, the following rules apply to display-

ing that value.
In decimal $69 format

— If all bits are at the unknown value, a single lowercasbaracter is displayed.

— If all bits are at the high impedance value, a single loweca$@aracter is displayed.

— If some, but not all, bits are at the unknown value, the uppeXcalsaracter is displayed.

— If some, but not all, bits are at the high impedance value, the upp&rchaeacter is displayed.
— Decimal numerals always appear right-justified in a fixed-width field.

In hexadecimal%Hh and octal %09 formats

— Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is represented as a sin-

gle octal digit.
— If all bits in a group are at the unknown value, a lowergasedisplayed for that digit.
— If all bits in a group are at a high impedance state, a lowezcasgrinted for that digit.
— If some, but not all, bits in a group are unknown, an uppeXasdisplayed for that digit.

— If some, but not all, bits in a group are at a high impedance state, then an uppéiisagisplayed for that
digit.

In binary @b format, each bit is printed separately using the chardetérsx, andz.

288 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

Example:

STATEMENT RESULT
$display("%d", 1’bx); X
$display("%h", 14’bx01010); xxXa

$display("%h %0", 12'b001xxx101x01,
12’b001xxx101x01); XXX 1x5X

17.1.1.5 Strength format

IEEE

Std P1364-2000 (Draft 5)

The %vformat specification is used to display the strength of scalar nets. Fof&agpecification that appears in a

string, a corresponding scalar reference shall follow the string in the argument list.

The strength of a scalar net is reported in a three-character format. The first two characters indicate the strength. The
third character indicates the current logic value of the scalar and may be any one of the values given in Table 17-4.

Table 17-4—Logic value component of strength format

Argument Description
0 For a logic 0 value
1 For a logic 1 value

X For an unknown value

Z For a high impedance value

L For a logic 0 or high impedance valu
H For a logic 1 or high impedance valy

4]

D

The first two characters—the strength characters—are either a two-letter mnemonic or a pair of decimal digits. Usu-
ally, a mnemonic is used to indicate strength information; however, in less typical cases, a pair of decimal digits may
be used to indicate a range of strength levels. Table 17-5 shows the mnemonics used to represent the various strength

levels.
Table 17-5—Mnemonics for strength levels
Mnemonic Strength name Strength level
Su Supply drive
St Strong drive
Pu Pull drive
La Large capacitor
We Weak drive
Me Medium capacitor
Section 17 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

289

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Table 17-5—Mnemonics for strength levels (continued)

Mnemonic Strength name Strength level
Sm Small capacitor 1
Hi High impedance 0

Note that there are four driving strengths and three charge storage strengths. The driving strengths are associated with
gate outputs and continuous assignment outputs. The charge storage strengths are associatédragttyhe net.
(See Section 7 for strength modeling.)

For the logic value® and1, a mnemonic is used when there is no range of strengths in the signal. Otherwise, the
logic value is preceded by two decimal digits, which indicate the maximum and minimum strength levels.

For the unknown value, a mnemonic is used when bottOtlaed 1 strength components are at the same strength
level. Otherwise, the unknown valieis preceded by two decimal digits, which indicate hand1 strength levels
respectively.

The high impedance strength cannot have a known logic value; the only logic value allowed for thiZlevel is
For the valuesL andH, a mnemonic is always used to indicate the strength level.
Examples:

always

#15 $display($time,,"group=%b signals=%v %v %v" {s1,s2,s3}, s1, s2, s3);

The example below shows the output that might result from such a call, while Table 17-6 explains the various
strength formats that appear in the output.

0 group=111 signals=St1 Pul St1

15 group=011 signals=Pu0 Pul St1
30 group=0xz signals=520 PuH Hiz
45 group=0xx signals=Pu0 65X StX
60 group=000 signals=Me0 St0 St0

Table 17-6—Explanation of strength formats

Argument Description
Stl Means a strong driving 1 value
PuO Means a pull driving 0 value
Hiz Means the high-impedance state
Me0 Means a 0 charge storage of medium capacitor strength
StX Means a strong driving unknown value
290 Copyright 2000 IEEE. All rights reserved. Section 17

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 17-6—Explanation of strength formats (continued)

Argument Description
PuH Means a pull driving strength of 1 or high-impedance vajue
65X Means an unknown value with a strong driving 0 compongnt

and a pull driving 1 component

520 Means an 0 value with a range of possible strength from pull
driving to medium capacitor

17.1.1.6 Hierarchical name format

The%nformat specifier does not accept an argument. Instead, it causes the display task to print the hierarchical name
of the module, task, function, or named block that invokes the system task containing the format specifier. This is use-
ful when there are many instances of the module that calls the system task. One obvious application is timing check
messages in a flip-flop or latch module; #eformat specifier will pinpoint the module instance responsible for gen-
erating the timing check message.

17.1.1.7 String format

The%sformat specifier is used to print ASCII codes as characters. For%asbecification that appears in a string,

a corresponding parameter shall follow the string in the argument list. The associated argument is interpreted as a
sequence of 8-bit hexadecimal ASCII codes, with each 8 bits representing a single character. If the argument is a vari-
able, its value should be right-justified so that the rightmost bit of the value is the least-significant bit of the last char-
acter in the string. No termination character or value is required at the end of a string, and leading zeros are never
printed.

17.1.2 Strobed monitoring

strobe_tasks ::€Not in the Annex A BNF)
strobe_task_namist_of _argument3;

strobe_task_name ::=
$strobe | $strobeb | $strobeo| $strobeh

Syntax 17-2—Syntax for $strobe system tasks

The system tasfstrobe provides the ability to display simulation data at a selected time. That time is the end of the
current simulation time, when all the simulation events that have occurred for that simulation time, just before simu-
lation time is advanced. The arguments for this task are specified in exactly the same manner &kifsplingsys-

tem task—including the use of escape sequences for special characters and format specifications (see 17.1.1).

Example:

forever @(negedgeclock)
$strobe ("At time %d, data is %h", $time,data);

In this example$strobe will write the time and data information to the standard output and the log file at each nega-
tive edge of the clock. The action will occur just before simulation time is advanced and after all other events at that
time have occurred, so that the data written is sure to be the correct data for that simulation time.

Section 17 Copyright 2000 IEEE. All rights reserved. 291
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

17.1.3 Continuous monitoring

monitor_tasks ::£¥Not in the Annex A BNF)
monitor_task_name([list_of argument$] ;
| $monitoron ;
| $monitoroff ;
monitor_task _name ::=
$monitor | $monitorb | $monitoro | $monitorh

Syntax 17-3—Syntax for $monitor system tasks

The$monitor task provides the ability to monitor and display the values of any variables or expressions specified as
arguments to the task. The arguments for this task are specified in exactly the same manner &difpléysystem
task—including the use of escape sequences for special characters and format specifications (see 17.1.1).

When a$monitor task is invoked with one or more arguments, the simulator sets up a mechanism whereby each time
a variable or an expression in the argument list changes value—with the exceptior$ofitbgbstime or $realtime

system functions—the entire argument list is displayed at the end of the time step as if reporte@idigtagy task.

If two or more arguments change value at the same time, only one display is produced that shows the new values.

Only one$monitor display list can be active at any one time; however, a fiewnitor task with a new display list
may be issued any number of times during simulation.

The$monitoron and$monitoroff tasks control a monitor flag that enables and disables the monitoringsriisei-

toroff to turn off the flag and disable monitoring. THmonitoron system task can be used to turn on the flag so that
monitoring is enabled and the most recent calboonitor can resume its display. A call ttmonitoron shall pro-

duce a display immediately after it is invoked, regardless of whether a value change has taken place; this is used to
establish the initial values at the beginning of a monitoring session. By default, the monitor flag is turned on at the
beginning of simulation.

17.2 File input-output system tasks and functions
The system tasks and functions for file-based operations are divided into three categories:

— Functions and tasks that open and close files

— Tasks that output values into files

— Tasks that output values into variables

— Tasks and functions that read values from files and load into variables or memories

17.2.1 Opening and closing files

file_open_function ::Not in the Annex A BNF)
integer multi_channel_descripter $fopen (" file_name");
| integer fd = $fopen (" file_name", type);
file_close_task ::=
$fclose (multi_channel_descriptr
| $fclose (fd);

Syntax 17-4—Syntax for $fopen and $fclose system tasks

292 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The function$fopen opens the file specified as tfilename argument and returns either a 32 bit multi channel
descriptor, or a 32 bit file descriptor, determined by the absence or presencyeé tirgument.

filenameis a character string, or a reg containing a character string that names the file to be opened.

type is a character string, or a reg containing a character string of one of the following forms in the table below, which
indicates how the file should be openedyife is omitted, the file is opened for writing, and a multi channel descrip-

tor mcd is returned. Ittype is supplied, the file is opened as specified by the value of type, and a file desftiptor
returned.

The multi channel descriptancd is a 32 bit reg in which a single bit is set indicating which file is opened. The least
significant bit (bit0) of a mcd always refers to the standard output. Output is directed to two or more files opened
with multi channel descriptors by bitwise oring together tiveids and writing to the resultant value.

The most significant bit (bit 32) of a multi channel descriptor is reserved, and will always be cleared, limiting an
implementation to at most 31 files opened for output via multi channel descriptors.

The file descriptofd is a 32 bit value. The most significant bit (bit 32) ofca is reserved, and shall always be set;

this allows implementations of the file input and output functions to determine how the file was opened. The remain-
ing bits hold a small number indicating what file is opened. Three file descriptors are pre opened; BEp e
STDOUT and STDERR, which have the value32'h8000_0000 , 32'h8000_0001 and32'h8000_0002 |,
respectivelySTDIN is pre opened for reading, aBAIDOUT andSTDERR are pre opened for append.

Unlike multi channel descriptors, file descriptors can not be combined via bitwise or in order to direct output to mul-
tiple files. Instead, files are opened via file descriptor for input, output, input and output, as well as for append opera-
tions, based on the valuetgpe, according to the following table:

Table 17-7—Types for file descriptors

Argument Description

“r' or "rb" open for reading

w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing
“r+", "r+b", or "rb+" open for update (reading and writing)

"W+, "w+b", or "wb+" | truncate or create for update

"at+", "a+b", or "ab+" append; open or create for update at end-of-file

If a file can not be opened (either the file doesn't exist, andjespecified is "r", "rb", "r+", "r+b", or "rb+", or the
permissions do not allow the file to be opened at that path, a zero is returned for eitherdloe thefd . Applica-
tions may calferror to determine the cause of the most recent error (see 17.2.7).

The "b" in the above types exists to distinguish binary files from text files. Many systems (such as Unix) make no dis-
tinction between binary and text files, and on these systems the "b" is ignored. However, some systems (such as
machines running NT or Windows) will perform data mappings on certain binary values written to and read from files
that are opened for text access.

The $fclosesystem tasks closes the file specifiedfthyor closes the file(s) specified by the multi channel descriptor
mcd. No further output to or input from any file descriptor(s) closedbigloseis allowed. Active$fmonitor and/or
$fstrobe operations on a file descriptor or multi channel descriptor are implicitly cancelled Bfcknseoperation.
The$fopenfunction shall reuse channels that have been closed.

Section 17 Copyright 2000 IEEE. All rights reserved. 293
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

NOTE—The number of simultaneous input and output channels that may be open at any one time is dependent on the operating
system. Some operating systems may not support opening files for update.

17.2.2 File output system tasks

file_output_tasks ::€Not in the Annex A BNF)

file_output_task _namemulti_channel_descriptodist_of arguments$;

| file_output_task_namefd , list_of _arguments ;
file_output_task name ::=

$fdisplay | $fdisplayb | $fdisplayh | $fdisplayo

| $fwrite | $fwriteb | $fwriteh | $fwriteo

| $fstrobe | $fstrobeb | $fstrobeh | $fstrobeo

| $fmonitor | $fmonitorb | $fmonitorh | $fmonitoro

Syntax 17-5—Syntax for file output system tasks

Each of the four formatted display task$eisplay, $write, $monitor, and$strobe—has a counterpart that writes to
specific files as opposed to the standard output. These counterpart &fdisplay, $fwrite, $fmonitor, and
$fstrobe—accept the same type of arguments as the tasks upon which they are based, with one exception: The first
parameter shall be either a multi channel descriptor or a file descriptor, which indicates where to direct the file output.
Multi channel descriptors are described in detail in 17.2.1. A multichannel descriptor is either a variable or the result
of an expression that takes the form of a 32-bit unsigned integer value.

The $fstrobe and$fmonitor system tasks work just like their counterpafistrobe and$monitor, except that they
write to files using the multi channel descriptor for control. Unfiaonitor, any number of$fmonitor tasks can be
set up to be simultaneously active. However, there is no counterghmdaitoron and$monitoroff tasks. The task
$fcloseis used to cancel an acti$éstrobe or $fmonitor task.

Example:

This example shows how to set up multi channel descriptors. In this example, three different channels are opened
using the$fopenfunction. The three multi channel descriptors that are returned by the function are then combined in

a bit-wise or operation and assigned to the integer variabssages . Themessages variable can then be

used as the first parameter in a file output task to direct output to all three channels at once. To create a descriptor that
directs output to the standard output as well,tiessages variable is ait-wise logicalor with the constant,

which effectively enables chanril

294 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
integer
messages, broadcast,
cpu_chann, alu_chann, mem_chann;
initial begin

cpu_chann = $fopen("cpu.dat");
if (cpu_chann == 0) $finish;
alu chann= $fopen("alu.dat");
if (alu_chann == 0) $finish;
mem_chann = $fopen("mem.dat");
if (mem_chann == 0) $finish;
messages = cpu_chann | alu_chann | mem_chann;
/I broadcast includes standard output
broadcast = 1 | messages;

end

endmodule

The following file output tasks show how the channels opened in the preceding example might be used:

$fdisplay(broadcast, "system reset at time %d", $time);

$fdisplay(messages, "Error occurred on address bus",
" at time %d, address = %h", $time, address);

forever @(posedgeclock)
$fdisplay(alu_chann, "acc= %h f=%h a=%h b=%h", acc, f, a, b);

17.2.3 Formatting data to a string

string_output_tasks ::Not in the Annex A BNF)

string_output_tasks_nanf@utput_reglist_of arguments;
string_output_task_name ::=

$swrite | $swriteb | $swriteh | Sswriteo
variable_format_string_output_task ::=

$sformat (output_regformat list_of arguments,

Syntax 17-6—Syntax for formatting data tasks

The syntax for the string output system tasks is

$swrite(output_reg list_of arguments
$sformat(output_reg format_string list_of arguments
length = $sformat(output_reg format_string list_of_arguments

The $swrite family of tasks are based on ti¥éwrite family of tasks, and accept the same type of arguments as the
tasks upon which they are based, with one exception: The first paramé&=mwtive shall be a reg variable to which
the resulting string shall be written, instead of a variable specifying the file to which to write the resulting string.

Section 17 Copyright 2000 IEEE. All rights reserved. 295
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The variableoutput_regis assigned using the Verilog’s string assignment to variable rules, as specified in 4.2.3.
The system tasksformat is similar to the system taglswrite , with a one major difference.

Unlike the display and write family of output system tasksformat always interprets its second argument, and

only its second argument as a format string. This format argument can be a static string, such as "data is %d™, or can
be a reg variable whose content is interpreted as the format string. No other arguments are interpreted as format
strings.$sformat supports all the format specifiers supporte@digplay , as documented in 17.1.1.2.

The remaining arguments §sformat are processed using any format specifiers irfomat_string until all such

format specifiers are used up. If not enough arguments are supplied for the format specifiers, or too many are sup-
plied, then the application shall issue a warning, and continue execution. The application, if possible, may statically
determine a mismatch in format specifiers and number of arguments, and issue a compile time error message.

NOTE—If theformat_stringis a reg, it may not be possible to determine its value at compile time.
The variableoutput_regis assigned using the Verilog’s string assignment to variable rules, as specified in 4.2.3.

17.2.4 Reading data from a file

Files opened using file descriptors may be read from, and only those files opendgpeitif either the "r" or "r+"

values. See 17.2.1 for more information about opening files.
17.2.4.1 Reading a character at a time
c= $fgetc(fd);

Read a byte from the file specified iy . If an error occurs reading from the file, theris set to EOF (-1). Care
should be taken to define the width of the reg which gets the return valbfgetcto be wider than 8 bits so that the
return of EOF (-1) may be determined from a return of a byte with the value Oxff. Applications ma§feabr to
determine the cause of the most recent error (see 17.2.7).

code = $ungetc(c, fd);

Insert the character specified byinto the buffer specified by file descriptfit . The charactec will be returned by

the next$fgetccall on that file descriptor. The file itself is unchanged. Note that the features of the underlying imple-
mentation of fileio on the host system will limit the number of characters that may be pushed back onto a stream.
Note also that operations likifseekmight erase any pushed back characters. If an error occurs pushing a character
onto a file descriptor, thetode is set to EOF. Otherwiseode is set to zero. Applications may c&lferror to deter-

mine the cause of the most recent error (see 17.2.7).

17.2.4.2 Reading a line at a time
integer code = $fgets(str, fd);

Read characters from the file specifiedfdyinto the regstr until eitherstr is filled, or a newline character is read
and transferred tetr , or an end-of-file condition is encounteredstf is not an integral number of bytes in length,
the most significant partial byte is not used in order to determine the size.

If an error occurs reading from the file, theade is set to zero. Otherwise the number of characters read is returned
in code . Applications may cal$ferror to determine the cause of the most recent error (see below).

17.2.4.3 Reading formatted data

integer code = $fscanf(fd, format, args);
integer code = $sscanf(str, format, args);
296 Copyright 2000 IEEE. All rights reserved. Section 17

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

$fscanfreads from the file descriptft .
$sscanfreads from the restr .

Both functions read characters, interprets them according to a format, and stores the results in its arguments. Both
expect as arguments a control strifggmat , and a set of arguments specifying where to place the results. If there

are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while arguments
remain, the excess arguments are ignored.

If an argument is too small to hold the converted input, then in general, the least significant bits are transferred. Argu-
ments of any length that is supported by Verilog may be used. However if the destinati@ai®arealtime then the

value +Inf (or -Inf) is transferred. The format may be a string constant or a reg containing a string constant. The string
contains conversion specifications, which direct the conversion of input into the arguments. The control string may
contain

a) White-space characters (blanks, tabs, new-lines, or form-feeds) that, except in one case described below,
cause input to be read up to the next non-white-space character.

b) An ordinary character (not %) that must match the next character of the input stream.

c) Conversion specifications consisting of the chara#en optional assignment suppression charattea
decimal digit string that specifies an optional numerical maximum field width, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable specified in
the corresponding argument unless assignment suppression was indicated by the ¢hardtiisrcase no argument
shall be supplied.

The suppression of assignment provides a way of describing an input field that is to be skipped. An input field is
defined as a string of non-space characters; it extends to the next inappropriate character or until the maximum field
width, if one is specified, is exhausted. For all descriptors except the character ¢, white space leading an input field is
ignored.

% A single % is expected in the input at this point; no assignment is done.

b Matches a binary number, consisting of a sequence from the set 0,1,X,x,Z,z,? and _.

o] Matches a octal number, consisting of a sequence of characters from the set 0,1,2,3,4,5,6,7,X,x,Z,z,? and _.
d Matches an optionally signed decimal number, consisting of the optional sign from the set + or -, followed

by a sequence of characters from the set 0,1,2,3,4,5,6,7,8,9 and _, or a single value from the set x,X,z,Z,?.

horx Matches a hexadecimal number, consisting of a sequence of characters from the set
0,1,2,3,4,5,6,7,8,9,a,A,b,B,c,C,d,D,e,E,f,Fx,X,z,Z,? and _.

fe org Matches a floating point number. The format of a floating point number is an optional sign (either + or -),
followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal point character
(), then an optional exponent part including e or E followed by an optional sign, followed by a string of dig-
its from the set 0,1,2,3,4,5,6,7,8,9.

% Matches a net signal strength, consisting of three character sequence as specified in 17.1.1.5. This conver-
sion is not extremely useful, as strength values are really only usefully assigned to ngtscamdcan only
assign values to regs (if assigned to regs, the values are converted to the 4 value equivalent).

t Matches a floating point number. The format of a floating point number is an optional sign (either + or -),
followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal point character
(), then an optional exponent part including e or E followed by an optional sign, followed by a string of dig-
its from the set 0,1,2,3,4,5,6,7,8,9. The value matched is then scaled and rounded according to the current

Section 17 Copyright 2000 IEEE. All rights reserved. 297
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

time scale as set timeformat. For example, if the timescale is “timescale 1ns/100ps and the time format
is $timeformat(-3,2," ms",10);, then a value read wigsscan{'10.345", "%:t", t) would return 10350000.0.

c Matches a single character, whose 8 bit ASCII value is returned.
S Matches a string, which is a sequence of non white space characters.
u Matches unformatted (binary) data. The application shall transfer sufficient data from the input to fill the tar-

get reg. Typically the data is obtained from a matcl$fgrite ("%u" ,data), or from an external applica-
tion written in another programming language such as C, Perl or FORTRAN.

The application shall transfer the 2 value binary data from the input stream to the destination reg, expanding
the data to the four value format. This escape sequence may be used with any of the existing input system
tasks, althouglfscanf should be the preferred one to use. As the input data can not repxesent it is

not possible to obtain ax or z in the result reg. This formatting specifier is intended to be used to support
transferring data to and from external programs that have no concephdf .

Applications that require preservationxofindz are encouraged to use iz i/o format specification.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the same
endian order as if the PLI was used, and the C langeag¢2) system call was used).

For POSIX applications: It may be necessary to open files for unformatted 1/0 with the "rb", "rb+" or "r+b"
specifiers, to avoid the systems implementation of 1/O altering patterns in the unformatted stream that match
special characters.

The formatting specificatiofoz (or %7 is defined for reading data without formatting (binary values). The
application shall transfer the 4 value binary representation of the specified data from the input stream to the
destination reg. This escape sequence may be used with any of the existing input system tasks, although
$fscanf should be the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external programs
that recognize and support the concept @indz . Applications that do not require the preservatiox @nd
z are encouraged to use #te1 i/o format specification.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the same
endian order as if the PLI was used, and the data were $nv@i_vecval structure (See 27.14,
Figure 27-8), and the C language read(2) system call was used to read the data from disk).

For POSIX applications: It may be necessary to open files for unformatted 1/0 with the "rb", "rb+" or "r+b"
specifiers, to avoid the systems implementation of 1/O altering patterns in the unformatted stream that match
special characters.

m Returns the current hierarchical path as a string. Does not read data from the input file or str argument. If an
invalid conversion character follows ththe results of the operation are implementation dependent.

If the format string, or thatr argument tdbsscanfcontains unknown bitsx(or z) then the system task shall return
EOF.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any characters match-
ing the current directive have been read (other than leading white space, where permitted), execution of the current
directive terminates with an input failure; otherwise, unless execution of the current directive is terminated with a
matching failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left unread in the input
stream. Trailing white space (including new-line characters) is left unread unless matched by a directive. The success
of literal matches and suppressed assignments is not directly determinable.

298 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

The number of successfully matched and assigned input items is returoedean this number can be 0 in the event

of an early matching failure between an input character and the control string. If the input ends before the first match-
ing failure or conversion, EOF is returned. Applications may $&dror to determine the cause of the most recent
error (see below).

17.2.4.4 Reading binary data

integer code = $fread(myreg, fd);

integer code = $fread(mem, fd);

integer code = $fread(mem, fd, start);
integer code = $fread(mem, fd, start, count);
integer code = $fread(mem, fd, , count);

Read a binary data from the file specifieddyinto the regnyreg or the memorynem

Start is an optional argument. If presestart will be used as the starting location in the memory. If not present
the least significant location in the memory shall be used.

Count is an optional argument. If presemmpunt will be the maximum number of locations memthat will be
loaded. If not supplied the memory will be filled with what data is available.

Start andcount are be ignored fBfread is loading a reg.

$fread shall store data into a memory starting with the lowest numbered location, continuing up to the higher loca-
tion. For the memory declarag[10:20], the first location loaded will bap[10], next will beup[11], up toup[20].

For the memory declaredown[20:10], the first location loaded will balown[10], then down[11], down to
down[20].

start is the word offset from the lowest element in the memory. §tlart = 2 and the memoryp[10:20], the
first data would be loaded ap[12]. For the memorglown[20:10], the first location loaded would lown[12], then
down[13].

The data in the file shall be read byte by byte to fulfill the request. An 8-bit wide memory is loaded using one byte per
memory word, while a 9-bit wide memory is loaded using 2 bytes per memory word. The data is read from the file in
a big endian manner; the first byte read is used to fill the most significant location in the memory element. If the mem-
ory width is not evenly divisible by 8 (8, 16, 24, 32), not all data in the file will be loaded into memory because of
truncation.

The data loaded from the file is taken as "two value" data. A bit set in the data is interpretédarsdabit not set is
interpreted as @. It is not possible to read a valuexobr z using$fread.

If an error occurs reading from the file, theade is set to zero. Otherwise the number of characters read is returned
in code. Applications may cafferror to determine the cause of the most recent error (see 17.2.7).

Note that there is not a "binary" mode and a "ASCII" mode; one may freely intermingle binary and formatted read
commands from the same file.

17.2.5 File positioning
integerpos = $ftell (fd);

Returns inpos the offset from the beginning of the file of the current byte of theffllevhich will be read or written
by a subsequent operation on that file descriptor.

This value may be used by subsequéfiseekcalls to reposition the file to this point. Note that any repositioning will
cancel any$ungetcoperations. If an error occurs EOF is returned. Applications may$¢aitor to determine the
cause of the most recent error (see 17.2.7).

Section 17 Copyright 2000 IEEE. All rights reserved. 299
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

code = $fseek(fd, offset, operation);
code = $rewind (fd);

Sets the position of the next input or output operation on the file specifiéd byhe new position is at the signed
distance offset bytes from the beginning, from the current position, or from the end of the file, according to an opera-
tion value of 0, 1 and 2 as follows:

— 0 set position equal to offset bytes
— 1 set position to current location plus offset

— 2 set position to EOF plus offset
$rewind is equivalent t&$fseek(fd,0,0) ;
Repositioning the current file position witfseekor $rewind shall cancel anungetcoperations.

$fseek()allows the file position indicator to be set beyond the end of the existing data in the file. If data is later writ-
ten at this point, subsequent reads of data in the gap will return zero until data is actually written into tfeagip.
by itself, does not extend the size of the file.

When a file is opened for append (that is, whgpe is "a", or "a+"), it is impossible to overwrite information
already in the file$fseekmay be used to reposition the file pointer to any position in the file, but when output is writ-
ten to the file, the current file pointer is disregarded. All output is written at the end of the file and causes the file
pointer to be repositioned at the end of the output.

If an error occurs repositioning the file, thende is set to -1. Otherwiseode is set to 0. Applications may call
$ferror to determine the cause of the most recent error (see 17.2.7).

17.2.6 Flushing output

$fflush (med);
$fflush (fd);
S$fflush ();

Writes any buffered output to the file(s) specifiedrhgd, the file specified byd or if $fflush is invoked with no
arguments, writes any buffered output to all open files.

17.2.7 1/O error status

Should any error be detected by one of the fileio routines, an error code is returned. Often this is sufficient for normal
operation; (i.e., if the opening of a optional configuration file fails, the application typically would simply continue
using default values.) However sometimes it is useful to obtain more information about the error for correct applica-
tion operation. In this case tBéerror function may be used:

integer errno = $ferror (fd, str);

A string description of type of error encountered by the most recent file I/O operation is writtestintevhich
should be at least 640 bits wide. The integral value of the error code is retureethan . If the most recent opera-
tion did not result in an error, than the value returned will be zero, and tht reghall be cleared.

300 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

17.2.8 Loading memory data from a file

load_memory_tasks ::fNot in the Annex A BNF)
$readmemb (" file_name", memory_name [start_addr [finish_addr]]) ;
| sreadmemh (" file_name"', memory_name [start_addr [finish_addr]]) ;

Syntax 17-7—Syntax for memory load system tasks

Two system tasks-$readmemb and $readmemh—read and load data from a specified text file into a specified
memory. Either task may be executed at any time during simulation. The text file to be read shall contain only the fol-
lowing:

— White space (spaces, new lines, tabs, and form-feeds)
— Comments (both types of comment are allowed)
— Binary or hexadecimal numbers

The numbers shall have neither the length nor the base format specifiefirdaaimemb each number shall be
binary. For$readmemh the numbers shall be hexadecimal. The unknown valuer), the high impedance value

(z or 2), and the underscore (_) can be used in specifying a number as in a Verilog HDL source description. White
space and/or comments shall be used to separate the numbers.

In the following discussion, the term “address” refers to an index into the array that models the memory.

As the file is read, each number encountered is assigned to a successive word element of the memory. Addressing is
controlled both by specifying start and/or finish addresses in the system task invocation and by specifying addresses
in the data file.

When addresses appear in the data file, the format is an “at” char@fetlowed by a hexadecimal number as fol-
lows:

@hh...h

Both uppercase and lowercase digits are allowed in the number. No white space is allowed betv@andhke
number. As many address specifications as needed within the data file may be used. When the system task encounters
an address specification, it loads subsequent data starting at that memory address.

If no addressing information is specified within the system task, and no address specifications appear within the data
file, then the default start address is the left-hand address given in the declaration of the memory. Consecutive words
are loaded until either the memory is full or the data file is completely read. If the start address is specified in the task
without the finish address, then loading starts at the specified start address and continues towards the right-hand
address given in the declaration of the memory.

If both start and finish addresses are specified as parameters to the task, then loading begins at the start address and
continues toward the finish address, regardless of how the addresses are specified in the memory declaration.

When addressing information is specified both in the system task and in the data file, the addresses in the data file
shall be within the address range specified by the system task parameters; otherwise, an error message is issued and
the load operation is terminated.

A warning message is issued if the number of data words in the file differs from the number of words in the range

implied by the start through finish addresses.

Section 17 Copyright 2000 IEEE. All rights reserved. 301
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:
reg [7:0] mem[1:256];
Given this declaration, each of the following statements will load datanieman a different manner:

initial $readmemh("mem.data”, mem);
initial $readmemh("mem.data”, mem, 16);
initial $readmemh("mem.data”, mem, 128, 1);

The first statement will load up the memory at simulation thn&arting at the memory addressThe second state-
ment will begin loading at address 16 and continue on towards address 256. For the third and final statement, loading
will begin at address 128 and continue down towards adtiress

In the third case, when loading is complete, a final check is performed to ensure that exactly 128 numbers are con-
tained in the file. If the check fails, a warning message is issued.

17.2.9 Loading timing data from an SDF file

The syntax for th&sdf_annotatesystem task is shown in Syntax 17-8.

sdf_annotate_task :@®ot in the Annex A BNF)
$sdf _annotate ('sdf _file" [, [module_instance] [[" config_file"]
[,["log_file" T[,[" mtm_spet]
[,["scale factors][,["scale_type 1111111);

Syntax 17-8—Syntax for $sdf_annotate system task

The$sdf_annotatesystem task reads timing data from an SDF file into a specified region of the design.

sdf_file is a character string, or a reg containing a character string naming the file to be opened.

module_instancés an optional argument specifying the scope to which to annotate the information in the SDF file.
The SDF annotator uses the hierarchy level of the specified instance for running the annotation.
Array indices are permitted. If thenodule_instanceot specified, the SDF Annotator uses the
module containing the call to th&sdf_annotate system task as thenodule_instancefor
annotation.

config_file is an optional character string argument providing the name of a configuration file. Information in
this file can be used to provide detailed control over many aspects of annotation.

log_file is an optional character string argument providing the name of the log file used during SDF
annotation. Each individual annotation of timing data from the SDF file results in an entry in the
log file.

mtm_spec is an optional character string argument specifying which member ohihéyp /maxtriples will

be annotated. The legal values for this string are described in Table 17-8. This overrides any
MTM_SPEReywords in the configuration file.

302 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 17-8—mtm spec argument

Keyword Description
MAXIMUM Annotate the maximum value
MINIMUM Annotate the minimum value

TOOL_CONTROWKefault)

Annotate the value as selected by
the simulator

TYPICAL

Annotate the typical value

scale_factors is an optional character string argument specifying the scale factors to be used while annotating
timing values. For examplél.6:1.4:1.2" causes minimum values to be multiplied by,
typical values byl.4 , and maximum values bi.2 . The default values are.0:1.0:1.0 . The
scale_factorargument overrides ar§CALE_FACTORS&eywords in the configuration file.

scale_type is an optional character string argument specifying how the scale factors should be applied to the
min /typ /max triples. The legal values for this string are shown in Table 17-9. This overrides any
SCALE_TYPEkeywords in the configuration file.

Table 17-9—scale type argument

Keyword

Description

FROM_MAXIMUM

Apply scale factors to maximum value

FROM_MINIMUM

Apply scale factors to minimum value

FROM_MTHdefault)

Apply scale factors to min/typ/max
values

FROM_TYPICAL

Apply scale factors to typical value

17.3 Timescale system tasks

The following system tasks display and set timescale information:

a) S$printtimescale

b) $timeformat

17.3.1 $printtimescale

The$printtimescale system task displays the time unit and precision for a particular module. The syntax for the sys-

tem task is shown in Syntax 17-9.

Section 17 Copyright 2000 IEEE. All rights reserved. 303
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

printtimescale_task ::éNot in the Annex A BNF)
$printtimescale [(hierarchical_identifiej] ;

Syntax 17-9—Syntax for $printtimescale

This system task can be specified with or without an argument.

— When no argument is specifigdprinttimescale displays the time unit and precision of the module that is the
current scope.

— When an argument is specifiegirinttimescale displays the time unit and precision of the module passed to
it.

The timescale information appears in the following format:

Time scale of (module_name) is unit / precision

Example:

‘timescalel ms/1 us

module a_dat;

initial
$printtimescale(b_dat.cl);

endmodule

‘timescalel0 fs/1 fs
module b_dat;

c datcl ();
endmodule

‘timescalel ns/1 ns
module c_dat;

endmodule

In this example, module_dat invokes the$printtimescale system task to display timescale information about
another module_dat , which is instantiated in moduke dat .

The information about_dat is displayed in the following format:
Time scale of (b_dat.cl) is 1ns/ 1ns
17.3.2 $timeformat

The syntax fofstimeformat system task is shown in Syntax 17-10.

304 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

timeformat_task ::¥Not in the Annex A BNF)
$timeformat [(units_number precision_numbersuffix_string, minimum_field_width)] ;

Syntax 17-10—Syntax for $timeformat

The$timeformat system task performs the following two functions:

— It specifies how théot format specification reports time information for therite, $display, $strobe,
$monitor, $fwrite, $fdisplay, $fstrobe, and$fmonitor group of system tasks.

— It specifies the time unit for delays entered interactively.

The units number argument shall be an integer in the range@rton15. This argument represents the time unit as
shown in Table 17-10.

Table 17-10—$timeformat units_number arguments

Unit number Time unit Unit number Time unit
0 1s -8 10 ns

-1 100 ms -9 1ns

-2 10 ms -10 100 ps
-3 1ms -11 10 ps

-4 100 us -12 1ps

-5 10 us -13 100 fs

-6 1lus -14 10 fs

-7 100 ns -15 1fs

TheS$timeformat system task performs the following two operations:

— It sets the time unit for all later-entered delays entered interactively.

— It sets the time unit, precision humber, suffix string, and minimum field width fo¥eallormats specified in
all modules that follow in the source description until anotieneformat system task is invoked.

The defaultstimeformat system task arguments are given in Table 17-11.

Table 17-11—$timeformat default value for arguments

Argument Default
units_number The smallest time precision argument of alltttreescalecompiler
directives in the source description
precision_number 0
suffix_string A null character string

minimum_field_width | 20

Section 17 Copyright 2000 IEEE. All rights reserved. 305
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

The following example shows the use %t with the $timeformat system task to specify a uniform time unit, time
precision, and format for timing information.

‘timescalel ms/1 ns
module cntrl;
initial

$timeformat(-9, 5, " ns", 10);
endmodule

‘timescalel fs/1 fs

module al_dat;

regini;

integer file;

buf #10000000 (01,inl);

initial begin
file = $fopen("al.dat");
#00000000 $fmonitor (file,"%m: %t in1=%d 01=%h", $realtime,inl,0l);
#10000000 inl = 0;
#10000000 inl = 1;

end

endmodule

‘timescalel ps/1 ps

module a2_dat;

regin2;

integer file2;

buf #10000 (02,in2);

initial begin
file2= $fopen("a2.dat");
#00000 S$fmonitor (file2,"%m: %t in2=%d 02=%h", $realtime,in2,02);
#10000 in2 = 0;
#10000 in2 = 1;

end

endmodule

The contents of filal.dat are as follows:

al_dat: 0.00000 ns in1=x 01=x

al dat: 10.00000 ns in1= 0 01=x
al dat: 20.00000 ns in1=1 01=0
al dat: 30.00000 ns in1=1 01=1

The contents of fil@2.dat are as follows:

a2_dat; 0.00000 ns in2=x 02=x

a2_dat: 10.00000 ns in2=0 02=x
a2_dat: 20.00000 ns in2=1 02=0
a2_dat: 30.00000 ns in2=1 02=1

In this example, the times of events written to the files by $fraonitor system task in modulesal dat and

a2_dat are reported as multiples &f ns—even though the time units for these modulesards andl1 ps

306 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

respectively—because the first argument of $timeformat system task is9 and the%t format specification is
included in the arguments ®&fmonitor. This time information is reported after the module names with five frac-
tional digits, followed by ams character string in a space wide enough for 10 ASCII characters.

17.4 Simulation control system tasks

There are two simulation control system tasks:

a) S$finish
b) $stop
17.4.1 $finish

Syntax 17-11 shows the syntax f&finish system task.

finish_task ::=5(Not in the Annex A BNF)
$finish[(n)];

Syntax 17-11—Syntax for $finish

The $finish system task simply makes the simulator exit and pass control back to the host operating system. If an
expression is supplied to this task, then its value determines the diagnostic messages that are printed before the
prompt is issued. If no argument is supplied, then a value of 1 is taken as the default.

Table 17-12—Diagnostics for $finish

Parameter value Diagnostic message
0 Prints nothing
1 Prints simulation time and location
2 Prints simulation time, location, and statistics about the mempory
and CPU time used in simulation

17.4.2 $stop

The syntax fofstop system task is shown in Syntax 17-12.

stop_task ::¥Not in the Annex A BNF)
$stop[(n)];

Syntax 17-12—Syntax for $stop

The $stop system task causes simulation to be suspended. This task takes an optional expression édgamant (
2) that determines what type of diagnostic message is printed. The amount of diagnostic messages output increases
with the value of the optional argument passe$stop.

Section 17 Copyright 2000 IEEE. All rights reserved. 307
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

17.5 PLA modeling system tasks
The modeling of PLA devices is provided in the Verilog HDL by a group of system tasks. This clause describes the

syntax and use of these system tasks and the formats of the logic array personality file.The syntax for PLA modeling
system task is shown in Syntax 17-13.

pla_system_task ::£¥Not in the Annex A BNF)
$array_typé&logic$format(memory_type input_terms output_terms ;
array_type ::=
sync|async
logic ::=
and | or | nand | nor
format ::=
array | plane
input_terms ::=
expression
output_terms ::=
variable_Ivalue

Syntax 17-13 —Syntax for PLA modeling system task

NOTE—The input terms can be nets or variables whereas the output terms shall only be variables.

The PLA syntax allows for the system tasks as shown in Table 17-13.

Table 17-13—PLA modeling system tasks

$asyncSand$array $sync$andsarray $async$and$plane $sync$and$plane
$async$nandsarray $sync$nand$array $async$nand$plane $sync$nandS$plane
$async$orsarray $sync$or$array $async$or$plane $sync$or$plane
$asyncnor$array $sync$nor$array $async$nor$plane $sync$nor$plane

17.5.1 Array types

The modeling of both synchronous and asynchronous arrays is provided by the PLA system tasks. The synchronous
forms control the time at which the logic array will be evaluated and the outputs will be updated. For the asynchro-
nous forms, the evaluations are automatically performed whenever an input term changes value or any word in the
personality memory is changed.

For both the synchronous and asynchronous forms, the output terms are updated without any delay.

Examples:
An example of an asynchronous system call is as follows:

wire al, a2, a3, a4, a5, a6, av;
reg bl, b2, b3;

wire [1:7] awire;

reg [1:3] breg;

Copyright 2000 IEEE. All rights reserved. Section 17

This is an unapproved IEEE Standards Draft, subject to change.

308

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

$async$and$arraymem,{al,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
ggsyncandarra3(mem,awire, breg);
An example of a synchronous system call is as follows:
$sync$or$planémem {al,a2,a3,a4,a5,a6,a7}, {b1l,b2,b3});
17.5.2 Array logic types
The logic arrays are modeled with and, or, nand, and nor logic planes. This applies to all array types and formats.
Examples:
An example of a nor plane system call is as follows:
$async$nor$planémem,{al,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
An example of a nand plane system call is as follows:
$syncSnand$planémem,{al,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

17.5.3 Logic array personality declaration and loading

The logic array personality is declared as an array of regs that is as wide as the number of input terms and as deep as
the number of output terms.

The personality of the logic array is normally loaded into the memory from a text data file using the system tasks
$readmembor $readmemh Alternatively, the personality data may be written directly into the memory using the
procedural assignment statements. PLA personalities may be changed dynamically at any time during simulation
simply by changing the contents of the memory. The new personality will be reflected on the outputs of the logic
array at the next evaluation.
Example:
The following example shows a logic array witlinput terms andnoutput terms.

reg [1:n] mem[1:m];

NOTE—Put PLA input terms, output terms, and memory in ascending order, as shown in examples in this clause.

17.5.4 Logic array personality formats

Two separate personality formats are supported by the Verilog HDL and are differentiated by using either an array
system call or a plane system call. The array system call allowsXasrd in the memory that has been declared. A
1 means take the input value an@ means do not take the input value.

The plane system call complies with the University of California at Berkeley format for Espresso. Each bit of the data
stored in the array has the following meaning:

0 Take the complemented input value

1 Take the true input value

X Take the “worst case” of the input value

Section 17 Copyright 2000 IEEE. All rights reserved. 309

This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
z Don’t-care; the input value is of no significance

? Same ag

Examples:

Example 1-Fhe following example illustrates an array with logic equations:

bl=al&a2
b2=a3 &a4 & a5
b3 =a5 & a6 & a7

The PLA personality is as follows:

1100000 in mem[1]
0011100 in mem[2]
0000111 in mem[3]

The module for the PLA is as follows:

module async_array(al,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input al, a2, a3, a4, a5, a6, a7 ;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration for array personality
reg bl, b2, b3;
initial begin
Il setup the personality from the file array.dat
$readmeml(“array.dat", mem);
Il setup an asynchronous logic array with the input
I/l and output terms expressed as concatenations
$async$and$arraymem,{al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});
end
endmodule

Where the filarray.dat contains the binary data for the PLA personality:
1100000
0011100
0000111

A synchronous version of this example has the following description:

310 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section 17

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module sync_array(al,a2,a3,a4,a5,a6,a7,b1,b2,b3,clk);
input al, a2, a3, a4, a5, a6, a7, clk;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration
reg bl, b2, b3;
initial begin
I/ setup the personality
$readmeml("array.dat”, mem);
I/ setup a synchronous logic array to be evaluated
/I when a positive edge on the clock occurs
forever @(posedge clk)
$async$andsarraymem,{al,a2,a3,a4,a5,a6,a7},{bl,b2,b3});
end
endmodule

Example 2-An example of the usage of the plane format tasks follows. The logical function of this PLA is shown
first, followed by the PLA personality in the new format, the Verilog HDL description using#syncandplane
system task, and finally the result of running the simulation.

The logical function of the PLA is as follows:

b[1] = a[1] & ~a[2];
b[2] = a[3];

b[3] = ~a[1] & ~a[3];
b[4] = 1,

The PLA personality is as follows:

3'b10?
3'b?71
3'b0?0
3'b???

Section 17 Copyright 2000 IEEE. All rights reserved. 311
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module pla;
“definerows 4
“define cols 3
reg [1: cols] a, mem[1: rows];
reg [1:"rows] b;
initial begin
/I PLA system call
$async$and$Splanémem,a[1:3],b[1:4]);
mem[1] = 3'b107?;
mem[2] = 3'b??1;
mem[3] = 3'b07?0;
mem[4] = 3'b???;
/ stimulus and display
#10 a = 3'b111;
#10 $displayb(a, " ->", b);
#10 a = 3'b000;
#10 $displayb(a, " ->", b);
#10 a = 3'bxxx;
#10 $displayb(a, " ->", b);
#10 a = 3'b101;
#10 $displayb(a, " ->", b);
end
endmodule

The output is as follows:

111 -> 0101
000 -> 0011
XXX -> XXX1
101 -> 1101

17.6 Stochastic analysis tasks

This clause describes a set of system tasks and functions that manage queues and generate random numbers with spe-
cific distributions. These tasks facilitate implementation of stochastic queueing models.

The set of tasks and functions that create and manage queues follow:

$q_initialize (g_id, q_type, max_length, status) ;
$g_add(qg_id, job_id, inform_id, status) ;
$g_remove(g_id, job_id, inform_id, status) ;

$q_full (g_id, status) ;

$g_exam(q_id, q_stat_code, q_stat_value, status) ;

17.6.1 $q_initialize

The $q_initialize system task creates new queues. Ghiel parameter is an integer input that shall uniquely iden-
tify the new queue. Thg_type parameter is an integer input. The value ofthéype parameter specifies the type

312 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

of the queue as shown in Table 17-14.

Table 17-14—Types of queues of $g_type values

g_type value Type of queue

1 first-in, first-out

2 last-in, first-out

The maximum length parameter is an integer input that specifies the maximum number of entries that will be allowed
on the queue. The success or failure of the creation of the queue is returned as an integer value in status. The error
conditions and corresponding values of status are described in Table 17-14.

17.6.2 $q_add

The $g_addsystem task places an entry on a queue.dhid parameter is an integer input that indicates to which
gueue to add the entry. Tfob_id parameter is an integer input that identifies the job.

Theinform_id parameter is an integer input that is associated with the queue entry. Its meaning is user-defined.
For exampleinform_id parameter can represent execution time for an entry in a CPU model. The status parame-
ter reports on the success of the operation or error conditions as described in Table 17-14.

17.6.3 $q_remove

The $q_removesystem task receives an entry from a queue. hid parameter is an integer input that indicates

from which queue to remove. Theb_id parameter is an integer output that identifies the entry being removed.
Theinform_id parameter is an integer output that the queue manager stored &grindd Its meaning is user-

defined. The status parameter reports on the success of the operation or error conditions as described in Table 17-14.

17.6.4 $q_full

The$q_full system function checks whether there is room for another entry on a queue. It @when the queue
is not full andl when the queue is full.

17.6.5 $g_exam

The $g_examsystem task provides statistical information about activity at the quguiel . It returns a value in
g_stat_value depending on the information requestedginstat code . The values ofy_stat_code and
the corresponding information returnedjinstat_value are described in Table 17-15.

Table 17-15—Parameter values for $g_exam system task

Value requested in Information received back
g_stat_code from q_stat value

1 Current queue length

2 Mean interarrival time

3 Maximum queue length

4 Shortest wait time ever

5 Longest wait time for jobs still in the queue

6 Average wait time in the queue

Section 17 Copyright 2000 IEEE. All rights reserved. 313
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

17.6.6 Status codes

All of the queue management tasks and functions return an output status parameter. The status parameter values and
corresponding information are described in Table 17-16.

Table 17-16—Status parameter values

Statu\s/;s;zmeter What it means

0 OK

1 Queue full, cannot add

2 Undefined q_id

3 Queue empty, cannot remove

4 Unsupported queue type, cannot create queue
5 Specified length <= 0, cannot create queug

6 Duplicate g_id, cannot create queue

7 Not enough memory, cannot create queue

17.7 Simulation time system functions

The following system functions provide access to current simulation time:
$time Pstime $realtime

17.7.1 $time

The syntax fofstime system function is shown in Syntax 17-14.

time_function ::5(Not in the Annex A BNF)
$time

Syntax 17-14—Syntax for $time

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the module that
invoked it.

314 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:

‘timescalel0 ns/1 ns
module test;
reg set;
parameter p = 1.55;
initial begin
$monitor($time,,"set=",set);
#p set = 0;
#p set = 1,
end
endmodule

/I The output from this example is as follows:
/I 0 set=x
/I 2 set=0
/I 3 set=1

In this example, the reget is assigned the valugat simulation time 16 ns, and the valliat simulation time 32 ns.
Note that these times do not match the times reporte$tinye. The time values returned by t&me system func-
tion are determined by the following steps:

a) The simulation times 16ns and 32 ns are scaldd@oand 3.2 because the time unit for the module is 10 ns,
so time values reported by this module are multiples of 10 ns.

b) The valuel.6 isroundedt®, and3.2 isrounded to 3 because tléme system function returns an integer.
The time precision does not cause rounding of these values.

17.7.2 $stime

The syntax fofsstime system function is shown in Syntax 17-15.

stime_function ::Not in the Annex A BNF)
$stime

Syntax 17-15—Syntax for $stime

The$stime system function returns an unsigned integer that is a 32-bit time, scaled to the timescale unit of the mod-
ule that invoked it. If the actual simulation time does not fit in 32 bits, the low order 32 bits of the current simulation
time are returned.

17.7.3 $realtime

The syntax foffrealtime system function is shown in Syntax 17-16.

realtime_function ::=$realtime (Not in the Annex A BNF)

Syntax 17-16—Syntax for $realtime

Section 17 Copyright 2000 IEEE. All rights reserved. 315
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The $realtime system function returns a real number time that, $kene, is scaled to the time unit of the module
that invoked it.

Example:

‘timescalel0 ns/1 ns

module test;

reg set;

parameter p = 1.55;

initial begin
$monitor($realtime,,"set=",set);
#p set = 0;
#p set = 1,

end

endmodule

/I The output from this example is as follows:
/l 0 set=x

/1 1.6 set=0
/1 3.2 set=1

In this example, the event times in the et are multiples of 10 ns because 10 ns is the time unit of the module.
They are real numbers beca$sealtime returns a real number.

17.8 Conversion functions

The following functions handleeal values:

integer $rtoi(real_val) ;

real $itor (int_val) ;

[63:0] $realtobits(real_val) ;

real $hitstoreal(bit_val) ;
$rtoi converts real values to integers by truncating the real value (for example, 123.45 becomes 123)
$itor converts integers to real values (for example, 123 becomes 123.0)
$realtobits passes bit patterns across module ports; converts from a real number to the 64-bit representation

(vector) of that real number

$bitstoreal is the reverse drealtobits; converts from the bit pattern to a real number.

The real numbers accepted or generated by these functions shall conformBE&Eh&td 754-198B1] representa-
tion of the real number. The conversion shall round the result to the nearest valid representation.

Example:

The following example shows how tBeealtobits and$bitstoreal functions are used in port connections:

316 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module driver (net_r);

output net_r;

real r;

wire [64:1] net_r = $realtobits(r);
endmodule

module receiver (net_r);

input net_r;

wire [64:1] net_r;

real r;

initial assignr= $bitstoreal(net_r);
endmodule

See 4.5 for a description $6ignedand$unsigned

17.9 Probabilistic distribution functions

There are a set of random number generators that return integer values distributed according to standard probabilistic
functions.

17.9.1 $random function

The syntax for the system functi$random is shown in Syntax 17-17.

random_function ::£¥Not in the Annex A BNF)
$random [(seed)] ;

Syntax 17-17—Syntax for $random

The system functio$random provides a mechanism for generating random numbers. The function returns a new
32-bit random number each time it is called. The random number is a signed integer; it can be positive or negative.
For further information on probabilistic random number generators, see 17.9.2.

Theseed parameter controls the numbers tBeatndom returns such that different seeds generate different random
streams. Theeed parameter shall be either a reg, an integer, or a time variable. The seed value should be assigned to
this variable prior to callingrandom.

Examples:

Example 1-Where b is greater thdh the expressiof$random % b) gives a number in the following range:
[(-b+1): (b-1)]. The following code fragment shows an example of random number generation between
-59 and 59:

reg [23:0] rand;
rand = $random % 60;

Example 2-Fhe following example shows how adding the concatenation operator to the preceding example gives
rand a positive value frord to 59.

Section 17 Copyright 2000 IEEE. All rights reserved. 317
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

reg [23:0] rand;
rand ={ $random} % 60;

17.9.2 $dist_ functions

dist_functions ::Not in the Annex A BNF)
$dist_uniform (seed , start, end) ;
| $dist_normal (seed , mean , standard_deviation) ;
| $dist_exponential (seed , mean) ;
| $dist_poisson (seed , mean) ;
| $dist_chi_square (seed , degree_of_freedom) ;
| $dist_t (seed , degree_of freedom) ;
| $dist_erlang (seed , k_stage , mean) ;

Syntax 17-18—Syntax for the probabilistic distribution functions

All parameters to the system functions are integer values. Fexghenential , poisson , chi-square ,t, and
erlang functions, the parameters mean, degree of freedonk_atalge shall be greater thah

Each of these functions returns a pseudo-random number whose characteristics are described by the function name.
That is,$dist_uniform returns random numbers uniformly distributed in the interval specified by its parameters.

For each system function, the seed parameter is an in-out parameter; that is, a value is passed to the function and a dif-
ferent value is returned. The system functions will always return the same value given theeggind his facilitates
debugging by making the operation of the system repeatable. The argument for the seed parameter should be an inte-
ger variable that is initialized by the user and only updated by the system function. This will ensure that the desired
distribution is achieved.

In the $dist_uniform function, the start and end parameters are integer inputs that bound the values returned. The
start value should be smaller than the end value.

The mean parameter, used®uist normal, $dist_exponentia) $dist_poissonand$dist_erlang is an integer input
that causes the average value returned by the function to approach the value specified.

The standard deviation parameter used with§tist_normal function is an integer input that helps determine the
shape of the density function. Larger numbers for standard deviation will spread the returned values over a wider
range.

The degree of freedom parameter used withfitiist_chi_squareand$dist_t functions is an integer input that helps
determine the shape of the density function. Larger numbers will spread the returned values over a wider range.

17.9.3 Algorithm for probabilistic distribution functions

Table 17-17 shows the Verilog probabilistic distribution functions listed with their corresponding C functions.

Table 17-17—Verilog to C function cross-listing

Verilog function C function
$dist_uniform rtl_dist_uniform
$dist_normal rtl_dist_normal
$dist_exponential rtl_dist_exponential
318 Copyright 2000 IEEE. All rights reserved. Section 17

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Table 17-17—Verilog to C function cross-listing (continued)

Verilog function C function
$dist_poisson rtl_dist_poisson
$dist_chi_square rtl_dist_chi_square
$dist_t rtl_dist_t
$dist_erlang rtl_dist_erlang
$random rtl_dist_uniform(seed,

LONG_MIN, LONG_MAX)

The algorithm for these functions is defined by the following C code.

/*

* Algorithm for probabilistic distribution functions.

* |EEE Std 1364-2000 Verilog Hardware Description Language (HDL).
*/

#include <limits.h>

static double uniform(long *seed, long start, long end);
static double normal(long *seed, long mean, long deviation);
static double exponential(long *seed, long mean);

static long poisson(long *seed, long mean);

static double chi_square(long *seed, long deg_of free);
static double t(long *seed, long deg_of free);

static double erlangian(long *seed, long k, long mean);

long

rtl_dist_chi_square(seed, df)
long *seed;
long df;

{

double r;
long i;

if (df>0)
{

r=chi_square(seed,df);
if (r>=0)

i=(long)(r+0.5);
else
r=-r;
i=(long)(r+0.5);

}

}
else

Section 17 Copyright 2000 IEEE. All rights reserved. 319
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

{

print_error("WARNING: Chi_square distribution must have positive

degree of freedom\n");
i=0;
}

return (i);

}

long
rtl_dist_erlang(seed, k, mean)
long *seed;
long k, mean;
{
doubler;
long i;

if (k>0)
{
r=erlangian(seed,k,mean);
if (r>=0)

i=(long)(r+0.5);
}

{
r=-r;
i=(long)(r+0.5);
i=-i;
}
}
else
{
print_error("WARNING: k-stage erlangian distribution must have
positive k\n");

else

i=0;
}

return (i);

}

long
rtl_dist_exponential(seed, mean)
long *seed;
long mean;
{
double r;
long i;

if (mean>0)

{

r=exponential(seed,mean);
if (r>=0)

320 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

i=(long)(r+0.5);

else

r=-r;
i=(long)(r+0.5);
i=-i;
}
}
else
{
print_error("WARNING: Exponential distribution must have a
positive mean\n");
i=0;
}

return (i);

}

long

rtl_dist_normal(seed, mean, sd)
long *seed;
long mean, sd;

double r;
long i;

r=normal(seed,mean,sd);
if(r>=0)
{
i=(long)(r+0.5);
}
else
{
r=-r
i=(long)(r+0.5);
i =-i;

}

return (i);

}

long

rtl_dist_poisson(seed, mean)
long *seed;
long mean;

{

long i;

if (mean>0)

{

i=poisson(seed,mean);

}

else

Section 17 Copyright 2000 IEEE. All rights reserved. 321
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

{

print_error("WARNING: Poisson distribution must have a positive
mean\n");
i=0;
}
return (i);

}

long
rtl_dist_t(seed, df)
long *seed;
long df;
{
double r;
long i;

if (df>0)

r=t(seed,df);
if (r>=0)
{

i=(long)(r+0.5);
}

{
r=-r
i=(long)(r+0.5);
i=-i
}
}
else
{
print_error("WARNING: t distribution must have positive degree
of freedom\n");

else

i=0;
}
return (i);
}
long
rtl_dist_uniform(seed, start, end)
long *seed;
long start, end,
{
double r;
long i;
if (start >= end) return(start);
if (end!= LONG_MAX)
{
end++;
r = uniform(seed, start, end);
if (r>=0)
322 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

Section 17

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

{
i=(long)r,;
}
else
i = (long) (r-1);
}
if (i<start) i = start;
if (i>=end)i= end-1;
}
else if(start'=LONG_MIN)
{
start--;
r = uniform(seed, start,
if (r>=0)
{
i=(long)r,;
}
else
i = (long) (r-1);
if (i<=start) i = start+1,
if (i> endi= end,
}
else
{
r =(uniform(seed,start,
r =r*4294967296.0-2147483648.0;
if (r>=0)
{
i=(long)r,;
}
else
i = (long) (r-1);
}
return (i);
}
static double
uniform(seed, start, end)

{

Section 17

long *seed, start, end,

union u_s

{

float s;
unsigned stemp;

ty;

double d = 0.00000011920928955078125;
double a,b,c;

IEEE

Std P1364-2000 (Draft 5)

end) + 1.0;

end)+2147483648.0)/4294967295.0=;

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

323

IEEE

Std P1364-2000 (Draft 5)

324

if ((*seed) ==0)
*seed = 259341593;

if (start >= end)

{

a=0.0;

b =2147483647.0;
}

else
{

a = (double) start;

b = (double)
}

*seed = 69069 * (*seed) + 1;
u.stemp = *seed;

/*

* This relies on IEEE floating point format

*/

u.stemp = (u.stemp >> 9) | 0x3f800000;

¢ = (double) u.s;

¢ = c+(c*d);
c=((b-a)*(c-1.0)+a;

return (c);

static double
normal(seed,mean,deviation)
long *seed,mean,deviation;

{

}

double v1,v2,s;
double log(), sqrt();

s=1.0;
while((s >=1.0) || (s == 0.0))
{
v1 = uniform(seed,-1,1);
v2 = uniform(seed,-1,1);
S=v1l*vl+v2*v2,
}
s = vl * sqgrt(-2.0 * log(s) / s);
v1 = (double) deviation;
v2 = (double) mean;
return(s * vl + v2);

static double
exponential(seed,mean)
long *seed,mean,;

double log(),n;
n = uniform(seed,0,1);

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Section 17

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

if(n 1= 0)
{

n = -log(n) * mean;

return(n);

}

static long
poisson(seed,mean)
long *seed,mean;
{
long n;
double p,q;
double exp();

n=0;

g = -(double)mean;

p = exp(q);

g = uniform(seed,0,1);
while(p < q)

n++;

g = uniform(seed,0,1) * q;
}
return(n);

}

static double
chi_square(seed,deg_of free)
long *seed,deg_of free;
{
double x;
long k;
if(deg_of free % 2)
{
X = normal(seed,0,1);
X=X*X;
}
else
{
x =0.0;

}
double log(),n;

n = uniform(seed,0,1);
if(n 1= 0)
{

n = -log(n) * mean;

return(n);

}

static long
poisson(seed,mean)
long *seed,mean;

Section 17

Copyright 2000 IEEE. All rights reserved.

IEEE
Std P1364-2000 (Draft 5)

325

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

{
long n;
double p,q;
double exp();

n=0;
g = -(double)mean;

p = exp(q);
g = uniform(seed,0,1);
while(p < q)

n++;

g = uniform(seed,0,1) * q;
}
return(n);

}

static double
chi_square(seed,deg_of free)
long *seed,deg_of free;

double x;
long k;
if(deg_of_free % 2)
{
X = normal(seed,0,1);
X=X*X;
}
else
{
x =0.0;
}
static double
t(seed,deg_of free)
long *seed,deg_of free;
{
double sqrt(),x;
double chi2 = chi_square(seed,deg_of free);
double div = chi2 / (double)deg_of_free;
double root = sqgrt(div);
X = normal(seed,0,1) / root;
return(x);

}

static double
erlangian(seed,k,mean)
long *seed,k,mean;

double x,log(),a,b;
long i;

x=1.0;
for (i=1;i<=k;i++)

326 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

{

X = X * uniform(seed,0,1);

}

a=(double)mean;
b=(double)k;
x=-a*log(x)/b;
return(x);

17.10 Command line input

An alternative to reading a file to obtain information for use in the simulation is specifying information with the com-
mand to invoke the simulator. This information is in the form of a optional argument provided to the simulation.
These arguments are visually distinguished from other simulator arguments by the starting with tthg gitasgcter.

These arguments, referred to belovwphksargs are accessible through the following system functions.
17.10.1 $test$plusargs (string)

This system function searches the list of plusargs for the provided string. The plusargs present on the command line
are searched in the order provided. If the prefix of one of the supplied plusargs matches all characters in the provided
string, a non-zero integer is returned. If no plusarg from the command line matches the string provided, the integer
value zero@) is returned.

Examples:
Run simulator with commane:HELLO

The Verilog code is:

initial begin
if ($testSplusargg"'HELLO™)) $display("Hello argument found.")
if ($test$plusargg'HE")) $display("The HE subset string is
detected.");
if ($test$plusargg'H")) $display("Argument starting with H found.");
if ($test$plusarg¢"HELLO HERE")) $display("Long argument.");
if ($test$plusargg'HI™)) $display("Simple greeting.");
if ($testSplusargg'LO")) $display("Does not match.");
end

This would produce the following output:

Hello argument found.
The HE subset string is detected.
Argument starting with H found.

17.10.2 $value$plusargs (user_string, variable)

This system function searches the list of plusargs (likebtiest$plusargssystem function) for a user specified plus-

arg string. The string is specified in the first argument to the system function as either a string or a register which is
interpreted as a string. If the string is found, the remainder of the string is converted to the type specified in the
user_stringand the resulting value stored in the variable provided. If a string is found, the function returns a non-zero

integer. If no string is found matching, the function returns the integer value zero and the variable provided is not
modified. No warnings shall be generated when the function returng0zero (

Section 17 Copyright 2000 IEEE. All rights reserved. 327
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Theuser_stringshall be of the form” plusarg_string format_strirlg The format strings are the same as$desplay
system tasks. These are the only valid ones (upper and lower case as well as @ feadisgre valid):

%d decimal conversion
%0 octal conversion
%h hexadecimal conversion

%b binary conversion

%e real exponential conversion

%f real decimal conversion

%g real decimal or exponential conversion
%s string (no conversion)

The first string, from the list oplusargsprovided to the simuator, which matches fhiasarg_stringportion of the
user_stringspecified shall be thelusargstring available for conversion. The remainder string of the matchlingr

arg (the remainder is the part of thusargstring after the portion which matches the uggtssarg_string shall be
converted from a string into the format indicated by the format string and stored in the variable provided. If there is no
remainding string, the value stored into the variable shall either be @z&noan empty string value.

If the size of the variable is larger than the value after conversion, the value stored i zpaalfied to the width of

the variable. If the variable can not contain the value after conversion, the value shall be truncated. If the value is neg-
ative, the value shall be considered larger than the variable provided. If characters exist in the string available for con-
version, which are illegal for the specified conversion, the variable shall be written with théxalue

Examples:
+FINISH=10000 +TESTNAME=this_test +FREQ+5.6666 +FREQUENCY +TEST12

/I Get clock to terminate simulation if specified.
real frequency;
reg 8*32:1 testname;
integer stop_clock;
if ($value$plusargg"FINISH=%d", stop_clock))
begin
repeat (stop_clock) @(posedgeclk);
$finish;
end

/I Get testname from plusarg.
if ($value$plusargg' TESTNAME=%s", testname))
begin
$display("Running test %0s.", testname);
startTest();
end

/I Get frequency from command line; set default if not specified.
if (! $value$plusarg$'FREQ+%0F", frequency))
frequency = 8.33333; // 166MHz;

forever
begin
#frequency clk = 0;
#frequency clk = 1;
end

reg [64*8:1] pstring;
pstring = "+TEST%d";

328 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

if ($value$plusarggpstring, test[31:0))
begin
$display("Running test number %0d.", test);
startTest();
end

This code would have the following effects:

— The variabldest would get the valu&l12 .

— The variablestop_clock obtains the valug0000 .

— The variabldestname obtains the valuthis_test

— The variablefrequency obtains the valu®.6666 ; note the finaplusarg+FREQUENCYoes not affect
the value of the variableequency.

The output is:

Running test this_test.
Running test number 12.

Section 17 Copyright 2000 IEEE. All rights reserved. 329
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

330 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 18

Value change dump (VCD) files

A value change dump (VCD) fileontains information about value changes on selected variables in the design stored
by value change dump system tasks. Two types of VCD files exist:

a) Four state: to represent variable chang@s in x, andz with no strength information.

b) Extended: to represent variable changes in all states and strength information.

This section describes how to generate both types of VCD files and their format.

18.1 Creating the four state value change dump file
The steps involved in creating the four state VCD file are listed below and illustrated in Figure 18-1.

a) Insert the VCD system tasks in the Verilog source file to define the dump file name and to specify the
variables to be dumped.

b) Run the simulation.

Verilog Source File Four State VCD File
initial dumpl.dump

_ (Header
Sdumpfile(“*dumpl.dump”); Information)

User
Postprocessing

simulation (Node

$dum.pvars(...) Information)

(Value
Changes)

Figure 18-1—Creating the four state VCD file

A VCD file is an ASCII file which contains header information, variable definitions, and the value changes for all
variables specified in the task calls.

Several system tasks can be inserted in the source description to create and control the VCD file.

Section 18 Copyright 2000 IEEE. All rights reserved. 331
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

18.1.1 Specifying the name of the dump file ($dumpfile)

The$dumpfile task shall be used to specify the name of the VCD file. The syntax for the task is given in Syntax 18-1.

dumpfile_task ::XNot in the Annex A BNF)
$dumpfile (filename) ;

Syntax 18-1—Syntax for $dumpfile task

Thefilenamesyntax is given in Syntax 18-2.

filename ::=(Not in the Annex A BNF)
literal_string
| variable
| expression

Syntax 18-2—Syntax for filename

Thefilenameis optional and defaults to the literal strithigmp.ved if not specified.
Example:
initial $dumpfile ("modulel.dump");
18.1.2 Specifying the variables to be dumped ($dumpvars)
The$dumpvarstask shall be used to list which variables to dump into the file specifiegtibynpfile. The$dump-
vars task can be invoked as often as desired throughout the model (for example, within various blocks), but the exe-

cution of all thebdumpvars tasks shall be at the same simulation time.

The $dumpvars task can be used with or without arguments. The syntax for$thempvars task is given in
Syntax 18-3.

dumpvars_task ::fNot in the Annex A BNF)
$dumpvars ;
| $dumpvars (levels[, list_of _modules_or_variables) }
list_of _modules_or_variables :(Not in the Annex A BNF)
module_or_variable {module_or_variable }
module_or_variable ::=
module_identifier
| variable_identifier

Syntax 18-3—Syntax for $dumpvars task

When invoked with no argumentdumpvars dumps all the variables in the model to the VCD file.

332 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

When thesdumpvarstask is specified with arguments, the first argument indicates how heaelgof the hierarchy

below each specified module instance to dump to the VCD file. Subsequent arguments specify which scopes of the
model to dump to the VCD file. These arguments can specify entire modules or individual variables within a module.
Setting the first argument @ causes a dump of all variables in the specified module and in all module instances
below the specified module. The argum@rapplies only to subsequent arguments which specify module instances,
and not to individual variables.

Examples:

Example 1

$dumpvars (1, top);

Because the first argument idathis invocation dumps all variables within the modtde ; it does not dump vari-
ables in any of the modules instantiated by mothpe.

Example 2
$dumpvars (0, top);

In this example, th&dumpvars task shall dump all variables in the moditg and in all module instances below
moduletop in the hierarchy.

Example 3-This example shows how telumpvars task can specify both modules and individual variables:
$dumpvars (0, top.mod1, top.mod2.netl);

This call shall dump all variables in moduteodl and in all module instances belawodl, along with variable

netl in modulemod2. The argumen® applies only to the module instant@p.modl and not to the individual

variabletop.mod2.netl

18.1.3 Stopping and resuming the dump ($dumpoff/Sdumpon)

Executing thebdumpvars task causes the value change dumping to start at the end of the current simulation time

unit. To suspend the dump, tlelumpoff task can be invoked. To resume the dump, $dempon task can be
invoked. The syntax of these two tasks is given in Syntax 18-4.

dumpoff_task ::Not in the Annex A BNF)
$dumpoff ;

dumpon_task ::¥Not in the Annex A BNF)
$dumpon ;

Syntax 18-4—Syntax for $dumpoff and $dumpon tasks

When thesdumpoff task is executed, a checkpoint is made in which every selected variable is dumped\zdzn
When thesdumpontask is later executed, each variable is dumped with its value at that time. In the interval between
$dumpoff and$dumpon, no value changes are dumped.

The $dumpoff and$dumpon tasks provide the mechanism to control the simulation period during which the dump
shall take place.

Section 18 Copyright 2000 IEEE. All rights reserved. 333
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:
initial begin
#10 $dumpvars(. . .);
#200 $dumpoff;
#800 $dumpon;

#900 $dumpoff;
end

This example starts the value change dump after 10 time units, stops it 200 time units later (at time 210), restarts it
again 800 time units later (at time 1010), and stops it 900 time units later (at time 1910).

18.1.4 Generating a checkpoint ($dumpall)

The$dumpall task creates a checkpoint in the VCD file which shows the current value of all selected variables. The
syntax is given in Syntax 18-5.

dumpall_task ::£Not in the Annex A BNF)
$dumpall ;

Syntax 18-5—Syntax for $dumpall task

When dumping is enabled, the value change dumper records the values of the variables which change during each
time increment. Values of variables which do not change during a time increment are not dumped.

18.1.5 Limiting the size of the dump file ($dumplimit)

The$dumplimit task can be used to set the size of the VCD file. The syntax for this task is given in Syntax 18-6.

dumplimit_task ::5(Not in the Annex A BNF)
$dumplimit (filesize) ;

Syntax 18-6—Syntax fro $dumplimit task

Thefilesizeargument which specifies the maximum size of the VCD file in bytes. When the size of VCD file reaches
this number of bytes, the dumping stops and a comment is inserted in the VCD file indicating the dump limit was
reached.

18.1.6 Reading the dump file during simulation ($dumpflush)
The $dumpflush task can be used to empty the VCD file buffer of the operating system to ensure all the data in that

buffer is stored in the VCD file. After executing®dumpflush task, dumping is resumed as before so no value
changes are lost. The syntax for the task is given in Syntax 18-7.

334 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

dumpflush_task ::£¥Not in the Annex A BNF)
$dumpflush ;

Syntax 18-7—Syntax for $dumpflush task

A common application is to caidumpflush to update the dump file so an application program can read the VCD file
during a simulation.

Examples:

Example 1-Fhis example shows how t$elumpflush task can be used in a Verilog HDL source file:

initial begin
$dumpvars ;

$dumpflush ;
$(applications program) ;

end

Example 2—Fhe following is a simple source description example to produce a VCD file.

In this example, the name of the dump filesexilog.dump . It dumps value changes for all variables in the model.
Dumping begins when an evetid_dump occurs. The dumping continues for 500 clock cycles, then stops and waits

for the evendo_dump to be triggered again. At every 10000 time steps, the current values of all VCD variables are
dumped.

Section 18 Copyright 2000 IEEE. All rights reserved. 335
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

module dump;
eventdo_dump;

initial $dumpfile ("verilog.dump");
initial @ do_dump
$dumpvars; //dump variables in the design

always @do_dump /lto begin the dump at event do_dump

begin
$dumpon; /Ino effect the first time through
repeat (500) @(posedgeclock); //dump for 500 cycles
$dumpoff; /Istop the dump

end

initial @ (do_dump)
forever #10000 $dumpall; //checkpoint all variables
endmodule

18.2 Format of the four state VCD file

The dump file is structured in a free format. White space is used to separate commands and to make the file easily
readable by a text editor.

18.2.1 Syntax of the four state VCD file

The syntax of the four state VCD file is given in Syntax 18-8.

336 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

value_change_dump_definitions (Mot in the Annex A BNF)
{ declaration_command ¥ simulation_command }
declaration_command ::=
declaration_keyword
[command_text]
$end
simulation_command ::=
simulation_keyword { value_change$end
| Scomment[comment_text$end
| simulation_time
| value_change
declaration_keyword ::=
$comment| $date | $enddefinitions| $scope| $timescale| Supscope
| $var | $version
simulation_keyword ::=
$dumpall | $dumpoff | $dumpon | Sdumpvars
simulation_time ::=
decimal_number
value_change ::=
scalar_value_change
| vector_value_change
scalar_value_change ::=
value identifier_code
value ::=
O]1|x|X]|z]|z
vector_value_change ::=
b binary_number identifier_code
| B binary_number identifier_code
| r real_number identifier_code
| R real_number identifier_code
identifier_code ::=
{ ASCII characte

Syntax 18-8—Syntax of the output four state VCD file

The VCD file starts with header information giving the date, the version number of the simulator used for the simula-
tion, and the timescale used. Next, the file contains definitions of the scope and type of variables being dumped, fol-
lowed by the actual value changes at each simulation time increment. Only the variables which change value during a
time increment are listed.

The simulation time recorded in VCD file is the absolute value of the simulation time for the changes in variable val-
ues which follow.

Value changes for real variables are specified by real numbers.Value changes for all other variables are specified in
binary format by0, 1, x, orz values. Strength information and memories are not dumped.

A real number is dumped usind#.16g printf() format. This preserves the precision of that number by output-
ting all 53 bits in the mantissa of a 64-bEEE Std 754-198%B1] double-precision number. Application programs
can read a real number usingogformat toscanf()

Section 18 Copyright 2000 IEEE. All rights reserved. 337
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The value change dumper generates character identifier codes to represent variables. The identifier code is a code
composed of the printable characters which are in the ASCII character set from ! to ~ (decimal 33 to 126).

NOTES

1—The VCD format does not support a mechanism to dpaup of a vector. For example, bits 8 to 15 (8:15) of a 16-bit vector
cannot be dumped in VCD file; instead, the entire vector (0:15) has to be dumped. In addition, expressions, such as a + b, cannot
be dumped in the VCD file.

2— Data in the VCD file is case sensitive.
18.2.2 Formats of variable values

Variables can be either scalars or vectors. Each type is dumped in its own format. Dumps of value changes to scalar
variables shall not have any white space between the value and the identifier code.

Dumps of value changes to vectors shall not have any white space between the base letter and the value digits, but
they shall have one white space between the value digits and the identifier code.

The output format for each value is right-justified. Vector values appear in the shortest form possible: redundant bit
values which result from left-extending values to fill a particular vector size are eliminated.

The rules for left-extending vector values are given in Table 18-1.

Table 18-1—Rules for left-extending vector values

When the value is VCD left-extends with
1 0
0 0
4 4
X X

Table 18-2 shows how the VCD can shorten values.

Table 18-2—How the VCD can shorten values

The binary value

Extends to fill a

Appears in the

4-bit reg as VCD file as
10 0010 b10
X10 XX10 bX10
ZX0 ZZX0 bzX0
0X10 0X10 b0X10

Events are dumped in the same format as scalars; for exafripte For events, however, the value (1 in this exam-
ple) is irrelevant. Only the identifier cod&%4 in this example) is significant. It appears in the VCD file as a marker to
indicate the event was triggered during the time step.

338 Copyright 2000 IEEE. All rights reserved. Section 18

This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

Examples:

1*@ No space between the value 1 and the identifier code *@

b1100x01z (k No space between the b and 1100x01z,
but a space between b1100x01z and (k

18.2.3 Description of keyword commands

IEEE
Std P1364-2000 (Draft 5)

The general information in the VCD file is presented as a series of sections surrounded by keywords. Keyword com-
mands provide a means of inserting information in the VCD file. Keyword commands can be inserted either by the

dumper or manually.

This sub clause deals with the keyword commands given in Table 18-3.

Table 18-3—Keyword commands

Declaration keywords

Simulation keywords

$comment $timescale $dumpall
$date $upscope $dumpoff
$enddefinitions $var $dumpon
$scope $version $dumpvars

18.2.3.1 $comment

The$commentsection provides a means of inserting a comment in the VCD file. The syntax for the section is given

in Syntax 18-9.

vcd_declaration_comment :(&ot in the Annex A BNF)
$commentcomment_texsend

Syntax 18-9—Syntax for $comment section

Examples:

$comment This is a single-line comment

$comment This is a
multiple-line comment
$end

18.2.3.2 $date

$end

The $date section indicates the date on which the VCD file was generated.The syntax for the section is given in

Syntax 18-10.

Section 18 Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

339

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

vcd_declaration_date ot in the Annex A BNF)
$datedate_textbend

Syntax 18-10—Syntax for $date section

Example:
$date
June 25, 1989 09:24:35
$end
18.2.3.3 $enddefinitions

The $enddefinitions section marks the end of the header information and definitions.The syntax for the section is
given in Syntax 18-11.

vcd_declaration_enddefinitions (Mot in the Annex A BNF)
$enddefinitions $end

Syntax 18-11—Syntax for $enddefinitions section

18.2.3.4 $scope

The $scope section defines the scope of the variables being dumped.The syntax for the section is given in
Syntax 18-12.

vcd_declaration_scope :(Not in the Annex A BNF)

$scopescope_typscope identifier$end
scope_type =

begin

| fork

| function

| module

| task

Syntax 18-12—Syntax for $scope section

The scope type indicates one of the following scopes:

module Top-level module and module instances
task Tasks
function Functions
begin Named sequential blocks
fork Named parallel blocks
340 Copyright 2000 IEEE. All rights reserved. Section 18

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

Example:
$scope
module top
$end
18.2.3.5 $timescale

The $timescalekeyword specifies what timescale was used for the simulation.The syntax for the keyword is given in
Syntax 18-13.

vcd_declaration_timescale :(Not in the Annex A BNF)
$timescale time_number time_unit $end
time_number ::=
1110|100
time_unit ::=
s|ms|us|ns|ps|fs

Syntax 18-13—Syntax for $timescale

Example:
$timescale 10 ns $end
18.2.3.6 $upscope

The $upscopesection indicates a change of scope to the next higher level in the design hierarchy. The syntax for the
section is given in Syntax 18-14.

vcd_declaration_upscope (Not in the Annex A BNF)
$upscope $end

Syntax 18-14—Syntax for $upscope section

18.2.3.7 $version

The$versionsection indicates which version of the VCD writer was used to produce the VCD file afiddiapfile
system task used to create the file. If a variable or an expression was used to spddépangewithin $dumpfile,
the unevaluated variable or expression literal shall appear ifivbsion string. The syntax for th@version section
is given in Syntax 18-15.

vcd_declaration_version :@ot in the Annex A BNF)
$versionversion_text system_tasknd

Syntax 18-15—Syntax for $version section

Section 18 Copyright 2000 IEEE. All rights reserved. 341
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

Example:

$version
VERILOG-SIMULATOR 1.0a
$dumpfile(“*dump1.dump”)
$end

18.2.3.8 $var

The $var section prints the names and identifier codes of the variables being dumped. The syntax for the section is
given in Syntax 18-16.

vcd_declaration_vars ot in the Annex A BNF)
$var var_type size identifier_code referenc&end
var_type ::=
event|integer | parameter | real | reg | supplyO | supplyl | time
| tri |triand |trior |trireg |triO |tril |wand | wire |wor
size =
decimal_number
reference ::=
identifier [bit_selectindex]
| identifier[msb index: Isb_index]
index ::=
decimal_number

Syntax 18-16—Syntax for $var section

Size specifies how many bits are in the variable.
The identifier code specifies the name of the variable using printable ASCII characters, as previously described.

a) The msb index indicates the most significant index; the Isb index indicates the least significant index.

b) More than one reference name can be mapped to the same identifier code. For example, net1l0 and netl5 can
be interconnected in the circuit and therefore have the same identifier code.

¢) The individual bits of vector nets can be dumped individually.

d) The identifier is the name of the variable being dumped in the model.
Example:

$var
integer 32 (2 index
$end

18.2.3.9 $dumpall
The $dumpall keyword specifies current values of all variables dumped. The syntax for the keyword is given in

Syntax 18-17.

342 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

ved_simulation_dumpall ::fNot in the Annex A BNF)
$dumpall { value_changes $end

Syntax 18-17—Syntax for $dumpall keyword

Example:
$dumpall 1*@ x4 0*$ bx (k $end
18.2.3.10 $dumpoff

The $dumpoff keyword indicates all variables dumped with X values. The syntax for the keyword is given in
Syntax 18-18.

ved_simulation_dumpoff ::€Not in the Annex A BNF)
$dumpoff { value_changes $end

Syntax 18-18—Syntax for $dumpoff keyword

Example:
$dumpoff x*@ x*# x*$ bx (k $end
18.2.3.11 $dumpon

The $dumpon keyword indicates resumption of dumping and lists current values of all variables dumped. The syn-
tax for the keyword is given in Syntax 18-19.

ved_simulation_dumpon ::@Not in the Annex A BNF)
$dumpon{ value_changes $end

Syntax 18-19—Syntax for $dumpon keyword

Example:
$dumpon x*@ O*# x*$ bl (k $end
18.2.3.12 $dumpvars

The section beginning witBidumpvars keyword lists initial values of all variables dumped. The syntax for the key-
word is given in Syntax 18-20.

Section 18 Copyright 2000 IEEE. All rights reserved. 343
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

ved_simulation_dumpvars :@ot in the Annex A BNF)
$dumpvars{ value_changes $end

Syntax 18-20—Syntax for $dumpvars keyword

Example:

$dumpvars x*@ z*$ b0 (k $end

344 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

18.2.4 Four state VCD file format example

IEEE
Std P1364-2000 (Draft 5)

The following example illustrates the format of the four state VCD file.

$date June 26, 1989 10:05:41
$end
$version VERILOG-SIMULATOR 1.0a
$end
$timescale 1 ns
$end
$scope moduldop $end
$scope modulenl $end
$var trireg 1 *@ netl $end
$var trireg 1 *# net2 $end
$var trireg 1 *$ net3 $end
$upscope $end
$scope taskl $end
$var reg 32 (k accumulator[31:0] $end
$var integer 32 {2 index $end
$upscope $end
$upscope $end
$enddefinitions $end
$comment
Note: $dumpvars was executed at time '#500'.
All initial values are dumped at this time.

$end
#500 (Continued from left column)
$dumpvars
@ P bz (k
e b1111000101z01x {2
X*$ $Er]d
#540
bx (k 1%¢
bx {2
$end #1000
#505 $dumpoff
0*@ X*@
14 X*#
14§ x'$
b102x1110x11100 (k EX (';
b1111000101z01x {2 x{
#510 $end
0*$ #2000
#520 $dumpon
1%$ 2@
#530 1
0*$ 0*$
bz (k bo (k
#535 gx 2
* * * en
$dumpall 0*@ 1*# 0*$ #2010
1*$
(Continued in right column)
Section 18 Copyright 2000 IEEE. All rights reserved. 345

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

18.3 Creating the extended value change dump file

IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The steps involved in creating the extended VCD file are listed below and illustrated in Figure 18-2.

Verilog Source File

initial

Sdumpports(“dump2.dump”);

Extegded \VVCD File
ump2.dump

(Header
Information)

simulation

(Node
Information)

(Value
Changes)

User
Postprocessing

Figure 18-2—Creating the extended VCD file

a) Insert the extended VCD system tasks in the Verilog source file to define the dump file name and to specify

the variables to be dumped.

b) Run the simulation.

The four state VCD file rules and syntax apply to the extended VCD file unless otherwise stated in this section.

18.3.1 Specifying the dumpfile name and the ports to be dumped ($dumpports)

The $dumpports task shall be used to specify the name of the VCD file and the ports to be dumped. The syntax for

the task is given in Syntax 18-21.

scope_list :;:=

| variable
| expression

dumpports_task ::fNot in the Annex A BNF)
$dumpports (scope_list file_pathnams ;

module_identifier {, module_identfier }

file_pathname ::=
literal_string

Syntax 18-21—Syntax for $dumpports task

Where the arguments are optional and are defined as:

scope_list one or more module identifiers. Only modules are allowed (not variables). If more than one
module_identifielis specified, they shall be separated by a comma. Pathnames to modules are
allowed, using the period hierarchy separator. Literal strings are not allowed for the

module_identifier

If no scope_liswalue is provided, the scope shall be the module from widimpports is called.

346

Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

file_pathname can be a double quoted pathname (literal string), a reg type variable, or an expression which
denotes the file which shall contain the port VCD information. Ifiif® pathnamés provided, the
file shall be written to the current working directory with the nathenpports.vcdIf that file
already exists, it shall be silently overwritten. All file writing checks shall be made by the simulator
(write rights, correct pathname, etc.) and appropriate errors or warnings issued.

The following rules apply to the use of the $dumpports system task:

— All the ports in the model from the point of tfslumpports call are considered primary 1/O pins and shall be
included in the VCD file. However, any ports which exist in instantiations betope_listare not dumped.

— If no arguments are specified for the ta$8umpports; and $dumpports() are allowed. In both of these cases,
the default values for the arguments shall be used.

— Ifthe first argument is null, a comma shall be used before specifying the second argument in the argument list.

— Each scope specified in tlezope_listshall be unique. If multiple calls t8dumpports are specified, the
scope_listvalues in these calls shall also be unique.

— The$dumpports task can be used in source code which also contaiggltmepvars task.

— When$dumpports executes, the associated value change dumping shall start at the end of the current simula-
tion time unit.

— The$dumpports task can be invoked multiple times throughout the model, but the execution$tfaihp-
ports tasks shall be at the same simulation time. Specifying the dden@athnamemultiple times is not
allowed.

18.3.2 Stopping and resuming the dump ($dumpportsoff/$dumpportson)

The $dumpportsoff and$dumpportson system tasks provide a means to control the simulation period for dumping
port values. The syntax for these system tasks is given in Syntax 18-22.

dumpportsoff_task ::£Not in the Annex A BNF)
$dumpportsoff (file_pathname ;

dumpportson_task ::=
$dumpportson (file_pathnamg ;
file_pathname ::=
literal_string
| variable
| expression

Syntax 18-22—Syntax for $dumpportsoff and $dumpportson system tasks

Thefile_pathnamergument can be a double quoted pathname (literal string), a reg type variable, or an expression
which denotes thile_pathnamespecified in thé&dumpports system task.

$dumpportsoff. When this task is executed, a checkpoint is made irfitaepathnamevhere each specified port is
dumped with an X value. Port values are no longer dumped from that simulation time forwfiled.dathnamés not
specified, all dumping to files opened$gumpports calls shall be suspended.

$dumpportson. When this task is executed, all ports specified by the assockalaahpports call shall have their
values dumped. This system task is typically used to resume dumping after the execubdmngiportsoff. If
file_pathnames not specified, dumping shall resume for all files specifie@diympports calls, if dumping to those
files was stopped.

If $dumpportsonis executed while ports are already being dumpefildopathnamethe system task is ignored. If

Section 18 Copyright 2000 IEEE. All rights reserved. 347
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

$dumpportsoff is executed while port dumping is already suspendefildopathnamethe system task is ignored.
18.3.3 Generating a checkpoint ($dumpportsall)
The $dumpportsall system task creates a checkpoint in the VCD file which shows the value of all selected ports at

that time in the simulation, regardless of whether the port values have changed since the last timestep. The syntax for
this system task is given in Syntax 18-23.

dumpportsall_task ::Not in the Annex A BNF)
$dumpportsall (file_pathname ;
file_pathname ::=
literal_string
| variable
| expression

Syntax 18-23—Syntax for $dumpportsall system task

Thefile_pathnamergument can be a double quoted pathname (literal string), a reg type variable, or an expression
which denotes thele_pathnamespecified in th&dumpports system task.

If the file_pathnames not specified, checkpointing occurs for all files opened by cabdumpports.
18.3.4 Limiting the size of the dump file ($dumpportslimit)

The $dumpportslimit system task allows control of the VCD file size. The syntax for this system task is given in
Syntax 18-24.

dumpportslimit_task ::¥Not in the Annex A BNF)

$dumpportslimit (filesize, file_pathnamsg ;
file_size ::=

integer
file_pathname ::=

literal_string
| variable
| expression

Syntax 18-24—Syntax for $dumpportslimit system task

Thefilesizeargument is required and it specifies the maximum size in bytes for the assd@tpdthnameWhen
thisfilesizeis reached, the dumping stops and a comment is insertefilmtpathnameéndicating the size limit was
attained.

Thefile_pathnamergument can be a double quoted pathname (literal string), a reg type variable, or an expression
which denotes théle_pathnamespecified in th&dumpports system task.

If the file_pathnamaes not specified, thélesizelimit applies to all files opened for dumping due to callspsump-

ports.

348 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

18.3.5 Reading the dump file during simulation ($dumpportsflush)

To facilitate performance, simulators often buffer VCD output and write to the file at intervals, instead of line by line.
The $dumpportsflush system task writes all port values to the associated file, clearing a simulator’s VCD bulffer.

The syntax for this system task is given in Syntax 18-25.

dumpportsflush_task ::Not in the Annex A BNF)
$dumpportsflush (file_pathname ;
file_pathname ::=
literal_string
| variable
| expression

Syntax 18-25—Syntax for $dumpportsflush system task

Thefile_pathnamergument can be a double quoted pathname (literal string), a reg type variable, or an expression
which denotes thile_pathnamespecified in th&dumpports system task.

If the file_pathnamés not specified, the VCD buffers shall be flushed for all files opened by cétlsntpports.
18.3.6 Description of keyword commands

The general information in the extended VCD file is presented as a series of sections surrounded by keywords. Key-
word commands provide a means of inserting information in the extended VCD file. Keyword commands can be
inserted either by the dumper or manually. Extended VCD provides one additional keyword command to that of the
four state VCD.

18.3.6.1 $vcdclose

The $vcdclosekeyword indicates the final simulation time at the time the extended VCD file is closed. This allows
accurate recording of the end simulation time, regardless of the state of signal changes, in order to assist parsers
which require this information. The syntax for the keyword is given in Syntax 18-26.

vcdclose_task ::fNot in the Annex A BNF)
$vedclosefinal_simulation_timebend

Syntax 18-26—Syntax for $vcdclose keyword

Example:
$vcdclose#t13000 $end
18.3.7 General rules for extended VCD system tasks
For each extended VCD system task, the following rules apply:

Section 18 Copyright 2000 IEEE. All rights reserved. 349
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

— Ifafile_pathnamés specified which does not matcliile_pathnamepecified in égdumpports call, the con-
trol task shall be ignored.

— If no arguments are specified for the tasks which have only optional arguments, the system task name can be
used with no arguments or the name followed by () can be specified. For exadplepportsflush; or
$dumpportsflush(). In both of these cases, the default actions for the arguments shall be executed.

18.4 Format of the extended VCD file

The format of the extended VCD file is similar to that of the four state VCD file, as it is also structured in a free for-
mat. White space is used to separate commands and to make the file easily readable by a text editor.

18.4.1 Syntax of the extended VCD file

The syntax of the extended VCD file is given in Syntax 18-27. A four state VCD construct name which matches an
extended VCD construct shall be considered equivalent, except if precedet|.by an

350 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE

IEEE

value_change_dump_definitions ::={declaration_command} {simulation_commarhd}

declaration_command ::= declaration_keyword [command_$extil

simulation_command ::éNot in the Annex A BNF)
simulation_keyword { value_change$end
| Scomment[comment_text}send
| simulation_time
| value_change
* declaration_keyword ::=
$comment| $date | $enddefinitions| $scope| $timescale| Supscope| $var
| $vcdclose] $version
command_text ::=

comment_text | close_text | date_section | scope_section | timescale_section

| var_section | version_section

* simulation_keyword ::%dumpports | $dumpportsoff | Sdumpportson |
$dumpportsall

simulation_time ::=#decimal_number

value_change ::= value identifier_code

value ::=pport_valuel_strength_componenit strength_component
port_value ::= input_value | output_value | unknown_direction_value
input_value :=D |U|N |Z |d |u

output_value & |H | X |T |l |h
unknown_direction_value ::&|1|?|F|A]a|B|b|C|c|f
strength_component :&|1]2|3]4|5]6|7

* identifier_code ::={integet

comment_text ::=ASCIl_characteyr

close_text ::final_simulation_time

date_section ::= date_text

date_text :: =lay month date time year

scope_section ::= scope_typeope identifier

* scope_type ::module

timescale_section ::= number time_unit

number ::=1| 10| 100

time_unit ::=fs |ps|ns|us|ms|s

var_section ::= var_type size identifier_code reference

* var_type ::=port

* size ::=1| vector_index

vector_index ::§ msb index: Isb_index]

index ::=decimal_number

* reference ::9port_identifier

identifier ::= {printable_ASCII_charactér

version_section ::= version_text

* version_text ::=version identifier {dumpports_command}

dumpports_command ::=
$dumpports (scope identifier, string_literal
| variable
| expression

Section 18

Syntax 18-27—Syntax of the output extended VCD file

Copyright 2000 IEEE. All rights reserved.
This is an unapproved IEEE Standards Draft, subject to change.

Std P1364-2000 (Draft 5)

351

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The extended VCD file starts with header information giving the date, the version number of the simulator used for
the simulation, and the timescale used. Next, the file contains definitions of the scope of the ports being dumped, fol-
lowed by the actual value changes at each simulation time increment. Only the ports which change value during a
time increment are listed.

The simulation time recorded in the extended VCD file is the absolute value of the simulation time for the changes in
port values which follow.

Value changes for all ports are specified in binary forma&,ldy x, orz values and include strength information.

A real number is dumped usind&.16g printf() format. This preserves the precision of that number by output-
ting all 53 bits in the mantissa of a 64-bEEE Std 754-198%B1] double-precision number. Application programs
can read a real number usingogformat toscanf()

NOTES

1—The extended VCD format does not support a mechanism to gamtpf a vector. For example, bits 8 to 15 (8:15) of a 16-bit
vector cannot be dumped in VCD file; instead, the entire vector (0:15) has to be dumped. In addition, expressions, such as a + b,
cannot be dumped in the VCD file.

2— Data in the extended VCD file is case sensitive.

18.4.2 Extended VCD node information

The node information section (also referred to as the variable definitions section) is affectedtyrimgoorts task
as Syntax 18-28 shows.

$var var_type sizes identifier_code referenckend
var_type ::5(Not in the Annex A BNF)
port
size ;=
1
| vector_index
vector_index ::=
[mshb index: Isb_index]
index ::=
decimal_number
identifier_code ::=
integer
reference ::=
port_identifier

Syntax 18-28—Syntax of extended VCD node information

Where the constructs are defined as:

var_type the keyworg@ort. No other keyword is allowed.

size a decimal number indicating the number of bits in the port. If the port is a single bit, the value shall
bel. If the port is a bus, the actual index is printed. Thebindicates the most significant index;
Isb the least significant index.

352 Copyright 2000 IEEE. All rights reserved. Section 18
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

identifier_code an integer preceded<$which starts at zero and ascends in one unit increments for each port, in
the order found in the module declaration.

reference identifier indicating the port name.
Example

module test_device(count_out, carry, data, reset)
output count_out, carry ;
input [0:3] data;
input reset;
initial
begin
$dumpports(testbench.DUT, "testoutput.vcd");
end
This example produces the following node information in the VCD file:

$scope modulgestbench.DUT $end

$var port 1<0 count_out $end
$var port 1<1 carry $end
$var port [0:3] <2 data $end
$var port 1<3 reset $end

$upscope $end

At least one space shall separate each syntactical element. However, the formatting of the information is the choice of
the simulator vendor. All four state VCD syntax rules fortbetor_indexapply.

If the vector_indexappears in the port declaration, this shall be the index dumped. {fetbt®r_indexs not in the
port declaration, thevector_indexin the net or reg declaration matching the port name shall be dumped. If no
vector_indexs found, the port is considered scalar (1 bit wide).
Concatenated ports shall appear in the extended VCD file as separate entries.
Example
module addbit ({A, b}, ci, sum, co);
input A, b, ci;
output sum, co;
The VCD file output looks like:
$scope moduleaddbit $end
$varport 1<0A $end
$varport 1<1b $end
$var port 1 <2 ci $end
$enddefinitions $end

18.4.3 Value changes

The value change section of the VCD file is also affectefdoynpports, as Syntax 18-29 shows.

Section 18 Copyright 2000 IEEE. All rights reserved. 353
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

pport_value 0 _strength_componentl strength_component identifier_code

Syntax 18-29—Syntax of value change section

Where the constructs are defined as:

p key character which indicates a port. There is no space betwegianldetheport_value
port_value state character (described below).

0_strength_component one of the 8 Verilog strengths which indicatesdtiengthO specification for the port.
1_strength_component one of the 8 Verilog strengths which indicatesdtiengthl specification for the port.

The Verilog strength values are (append keyword @it 1 as appropriate for the strength component):

highz

small

medium

weak

large

pull

strong

supply

identifier_code the integer preceded by<heharacter as defined in tear construct for the port.

No b~ WwWNEO

18.4.3.1 State characters

The following state information is listed in terms of input values from a test fixture, the output values of the device
under test (DUT), and the states representing unknown direction:

INPUT (TESTFIXTURE)

low

high

unknown

tri-state

low (two or more drivers active)
high (two or more drivers active)

CAOANZCO

OUTPUT (DUT)

low

high

unknown (don't care)

tri-state

low (two or more drivers active)
high (two or more drivers active)

o T HAXIr

UNKNOWN DIRECTION

0 low (both input and output are active withvalue)
1 high (both input and output are active witivalue)
? unknown
354 Copyright 2000 IEEE. All rights reserved. Section 18

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

tri-state (input and output unconnected)
unknown (inpu0 and outputl)

unknown (inpu0 and outpuk)

unknown (inputl and outpuD)

unknown (inputl and outpuk)

unknown (inputX and outpuD)

unknown (inputX and outputl)

unknown (input and output tri-stated)

O OTCTC WY >T

18.4.3.2 Drivers

Where drivers are considered only in terms of primitives, continuous assignments, and procedural continuous assign-
ments. Valué/1 means both input and output are active with vadite . 0 and1 are conflict states. The following
rules apply to conflicts:

— If both input and output are driving the same value with the same range of strength, then this is a conflict. The
resolved value i8/1 and the strength is the stronger of the two.

— Ifthe input is driving a strong strength (range) and the output is driving a weak strength (range), the resolved
value is d/u and the strength is the strength of the input.

— If the input is driving a weak strength (range) and the output is driving a strong strength (range), then the
resolved value is I/h and the strength is the strength of the output.

Where range is:

— Strength supply to5 (large) - strong strength
— Strengthd to 1 - weak strength

18.4.4 Extended VCD file format example
The following example illustrates the format of the extended VCD file.
A module declaration:
module adder(data0, datal, data2, data3, carry, as, rdn, reset, test,
write);
inout data0, datal, data2, data3;

output carry;
input as, rdn, reset, test, write;

And the resulting VCD fragment:

$scope modulgestbench.adder_instance $end
$var port 1<0 data0 $end
$var port 1<1 datal $end
$var port 1<2 data2 $end
$var port 1<3 data3 $end
$var port 1<4 carry $end
$var port 1<5 as $end
$var port 1<6 rdn $end
$var port 1<7 reset $end

$var port 1<8 test $end
$var port 1<9 write $end
$upscope $end

Section 18 Copyright 2000 IEEE. All rights reserved. 355

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

$enddefinitions $end
#0
$dumpports
pX 6 6 <0
pX 6 6 <1
pX 6 6 <2
pX 6 6 <3
pX 6 6 <4
pN 6 6 <5
pN 6 6 <6
pu 06 <7
pD 6 0 <8
pN 6 6 <9
$end
#180
pH 0 6 <4
#200000
pD 6 0 <5
pu 0 6 <6
pD 6 0 <9
#200500
pf 0 0 <0
pf 0 0 <1
pf 0 0 <2
pf 0 0 <3
356 Copyright 2000 IEEE. All rights reserved. Section 18

This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

Section 19

Compiler directives

All Verilog compiler directives are preceded by thé €haracter. This character is called accent grave. It is different

from the character (), which is the single quote character. The scope of compiler directives extends from the point
where it is processed, across all files processed, to the point where another compiler directive supersedes it or the pro-
cessing completes.

This section describes the following compiler directives:

“celldefine [19.1]
“default_nettype [19.2]
“define [19.3]
“else [19.4]
“elsif [19.4]
“endcelldefine [19.1]
“endif [19.4]
“ifdef [19.4]
“ifndef [19.4]
“include [19.5]
“line [19.7]
‘nounconnected_drive [19.9]
“resetall [19.6]
“timescale [19.8]
‘unconnected_drive [19.9]
“undef [19.3]

19.1 “celldefine and “endcelldefine

The directivescelldefineand endcelldefinetag modules as cell modules. Cells are used by certain PLI routines for
applications, such as delay calculations. It is advisable to pair'eatilefinewith an endcelldefine More than one
of these pairs may appear in a single source description.

These directives may appear anywhere in the source description, but it is recommended that the directives be speci-
fied outside the module definition.

19.2 “default_nettype

The directive default_nettypecontrols the net type created for implicit net declarations (see 3.5). It can be used only
outside of module definitions. It affects all modules that follow the directive, even across source file boundaries. Mul-
tiple “default_nettypedirectives are allowed. The latest occurrence of this directive in the source controls the type of
nets that will be implicitly declared. Syntax 19-1 contains the syntax of the directive.

default_nettype_compiler_directive :(Not in the Annex A BNF)
“default_nettypenet_type

net_type ::=wire |tri |tri0 |wand |triand |wor |trior |trireg |none

Syntax 19-1—Syntax for default nettype compiler directive

Section 19 Copyright 2000 IEEE. All rights reserved. 357
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

When no'default_nettypedirective is present or if theesetall directive is specified, implicit nets are of typsre.
When the default_nettypeis set tonone, all nets must be explicitly declared. If a net is not explicitly declared, an
error is generated.

19.3 “define and “undef

A text macro substitution facility has been provided so that meaningful names can be used to represent commonly
used pieces of text. For example, in the situation where a constant number is repetitively used throughout a descrip-
tion, a text macro would be useful in that only one place in the source description would need to be altered if the value

of the constant needed to be changed.

19.3.1 “define

The directive define creates a macro for text substitution. This directive can be used both inside and outside module
definitions. After a text macro is defined, it can be used in the source description by using the (°) character, followed
by the macro name. The compiler shall substitute the text of the macro for the ‘siramgo_name . All compiler
directives shall be considered predefined macro names; it shall be illegal to redefine a compiler directive as a macro
name.

A text macro can be defined with arguments. This allows the macro to be customized for each use individually.

The syntax for text macro definitions is given in Syntax 19-2.

text_macro_definition ::¥Not in the Annex A BNF)
“definetext_macro_name macro_text
text_macro_name ::=
text_macro_identifier (list_of formal_arguments]
list_of formal_arguments ::=
formal_argumentidentifier {, formal_argumentidentifier }
text_macro_identifier ::€From Annex A - A.9.3)
simple_identifier

Syntax 19-2—Syntax for text macro definition

The macro text can be any arbitrary text specified on the same line as the text macro name. If more than one line is

necessary to specify the text, the newline shall be preceded by a backslash (). The first newline not preceded by a
backslash shall end the macro text. The newline preceded by a backslash shall be replaced in the expanded macro
with a newline (but without the preceding backslash character).

When formal arguments are used to define a text macro, the scope of the formal argument shall extend up to the end
of the macro text. A formal argument can be used in the macro text in the same manner as an identifier.

If a one-line comment (that is, a comment specified with the characters //) is included in the text, then the comment
shall not become part of the substituted text. The macro text can be blank, in which case the text macro is defined to
be empty, and no text is substituted when the macro is used.

The syntax for using a text macro is given in Syntax 19-3.

358 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

text_macro_usage :fNot in the Annex A BNF)

“text_macroidentifier [(list_of_actual_argumenjq
list_of actual_arguments ::=

actual_argument {actual_argument }
actual_argument ::=

expression

Syntax 19-3—Syntax for text macro usage

For a macro without arguments, the text shall be substituted “as is” for every occurretegtofnacro_name
However, a text macro with one or more arguments shall be expanded by substituting each formal argument with the
expression used as the actual argument in the macro usage.

Once a text macro name has been defined, it can be used anywhere in a source description; that is, there are no scope
restrictions. Text macros can be defined and used interactively. The text macro name shall be a simple identifier.

The text specified for macro text shall not be split across the following lexical tokens:

— Comments
— Numbers
— Strings

— ldentifiers
— Keywords
— Operators

Examples:

“define wordsize 8
reg [1:'wordsize] data;

/ldefine a nand with variable delay
“define var_nand(dly) nand #dly

‘var_nand(2) gl121 (g21, n10, nll);
“var_nand(5) g122 (922, n10, nll);

The following is illegal syntax because it is split across a string:

“define first_half "start of string
$display(‘first_half end of string");

NOTES

1—Each actual argument is substituted for the corresponding formal argument literally. Therefore, when an expression is used as
an actual argument, the expression will be substituted in its entirety. This may cause an expression to be evaluated more than once
if the formal argument was used more than once in the macro text. For example,

“define max(a,b)((a) > (b) ? (a) : (b))
n= "max(p+q, r+s) ;

will expand as

Section 19 Copyright 2000 IEEE. All rights reserved. 359
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

n = ((pt+q) > (r+s)) ? (p+q) : (r+s) ;
Here, the larger of the two expressions p + g and r + s will be evaluated
twice.

2—The word define is known as a compiler directive keyword, and it is not part of the normal set of keywords. Thus, normal iden-
tifiers in a Verilog HDL source description can be the same as compiler directive keywords (although this is not recommended).
The following problems should be considered:

a) Text macro names may not be the same as compiler directive keywords.

b) Text macro names can re-use names being used as ordinary identifiers. For exsigmdé,name and
‘signal_name are different.

c) Redefinition of text macros is allowed; the latest definition of a particular text macro read by the compiler prevails when
the macro name is encountered in the source text.

19.3.2 “undef

The directive undef shall undefine a previously defined text macro. An attempt to undefine a text macro that was not
previously defined using aefine compiler directive can result in a warning. The syntax fandef compiler direc-
tive is given in Syntax 19-4.

undefine_compiler_directive ::Not in the Annex A BNF)
‘undef text_macro_identifier

Syntax 19-4—Syntax for undef compiler directive

An undefined text macro has no value.

19.4 "ifdef, “else, “elsif, “endif , “ifndef

These conditional compilation compiler directives are used to include optionally lines of a Verilog HDL source
description during compilation. Th&def compiler directive checks for the definition otext_macro_name . If

the text_ macro_name is defined, then the lines following théifdef directive are included. If the
text_macro_name s not defined and aielsedirective exists, then this source is compiled. Tifiedef compiler
directive checks for the definition ofteaxt_macro_name . If the text_macro_name is not defined, then the
lines following the'ifndef directive are included. If theext_macro_name s defined and arelsedirective exists,

then this source is compiled.

If the “elsif directive exists (instead of thelsg the compiler checks for the definition of thext macro_name

If the name exists the lines following thelsif directive are included. Thelsif directive is equivalent to the compiler
directive sequencelse “ifdef... “endif. This directive does not need a correspondigdif directive. This directive
must be preceded by afdef or “ifndef directive.

These directives may appear anywhere in the source description.

Situations where théfdef, “else "elsif, “endif, and’ifndef compiler directives may be useful include:

— Selecting different representations of a module such as behavioral, structural, or switch level
— Choosing different timing or structural information
— Selecting different stimulus for a given run

The’ifdef, “else “elsif, *endif, and’ifndef compiler directives have the syntax shown in Syntax 19-5.

360 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

conditional_compilation_directive ::@Not in the Annex A BNF)
ifdef_directive
| ifndef_directive
ifdef_directive ::=
‘ifdef text_macro_identifier
ifdef_group_of _lines
{ “elsiftext_macro_identifier elsif_group_of_lines }
["elseelse_group_of lines|]
“endif
ifndef_directive ::=
“ifndef text_macro_identifier
ifndef_group_of lines
{ “elsiftext_macro_identifier elsif_group_of lines }
["elseelse_group_of lines]
“endif

Syntax 19-5—Syntax for conditional compilation directives

The text_macro_identifier is a Verilog HDL simple_identifier The ifdef_group_of lines ,
ifndef_group_of lines , elsif_group_of_lines and theelse_group_of lines are parts of a
Verilog HDL source description. Thelseand elsif compiler directives and all of the groups of lines are optional.

The ifdef, “else “elsif, and endif compiler directives work together in the following manner:

— When an'ifdef is encountered, thiédef text macro identifier is tested to see if it is defined as a text macro
name usingdefine within the Verilog HDL source description.

— Ifthe theifdef text macro identifier is defined, tlillef group of lines is compiled as part of the descrip-
tion and if there aréelseor “elsif compiler directives, these compiler directives and corresponding groups of
lines are ignored.

— Iftheifdef text macro identifier has not been defined,fihef group of lines is ignored.

— Ifthere is an'elsif compiler directive, thelsif text macro identifier is tested to see if it is defined as a text
macro name usinglefine within the Verilog HDL source description.

— Iftheelsif text macro identifier is defined, thesif group of lines is compiled as part of the description
and if there are otheelsif or “elsecompiler directives, the othéelsif or “elsedirectives and corresponding
groups of lines are ignored.

— Ifthe firstelsif text macro identifier has not been defined, thedisit group of lines is ignored.

— If there are multiple elsif compiler directives, they are evaluated like the fiedsif compiler directive in the
order they are written in the Verilog HDL source description.

— If there is anelsecompiler directive, thelse group of lines is compiled as part of the description.

— Although the names of compiler directives are contained in the same name space as text macro names, the
names of compiler directives are considered not to be definéfdiély “ifndef, and elsif.

The’ifndef, "else "elsif, and endif compiler directives work together in the following manner:

— When an’ifndef is encountered, théndef text macro identifier is tested to see if it is defined as a text
macro name usinglefine within the Verilog HDL source description.

— If the ifndef text macro identifier is not defined, thimdef group of lines is compiled as part of the
description and if there arelseor “elsif compiler directives, these compiler directives and corresponding
groups of lines are ignored.

— Iftheifndef text macro identifier is defined, tiiadef group of lines is ignored.

— If there is an'elsif compiler directive, thelsif text macro identifier is tested to see if it is defined as a text
macro name usinglefine within the Verilog HDL source description.

Section 19 Copyright 2000 IEEE. All rights reserved. 361
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

— Iftheelsif text macro identifier is defined, tlesif group of lines is compiled as part of the description
and if there are otheelsif or “elsecompiler directives, the othéelsif or "elsedirectives and corresponding
groups of lines are ignored.
— Ifthe firstelsif ~ text macro identifier has not been defined, thedlsst group of lines is ignored.
— If there are multiple elsif compiler directives, they are evaluated like the fiessif compiler directive in the
order they are written in the Verilog HDL source description.
— If there is anelsecompiler directive, thelse group of lines is compiled as part of the description.
— Although the names of compiler directives are contained in the same name space as text macro names, the
names of compiler directives are considered not to be definéfdiéfy “ifndef, and elseif

Nesting of ifdef, “ifndef, “else “elsif, and endif compiler directives shall be permitted.

NOTE—Any group of lines that the compiler ignores still has to follow the Verilog HDL lexical conventions for white space, com-
ments, numbers, strings, identifiers, keywords, and operators.

Examples:

Example 1-Fhe example below shows a simple usage ofifaief directive for conditional compilation. If the identi-
fierbehavioral is defined, a continuous net assignment will be compiled in; otherwissagate will be instan-
tiated.

module and_op (a, b, c);
output a;
input b, c;

“ifdef behavioral
wirea=b &c;
“else
and al (a,b,c);
“endif

endmodule

Example 2—Fhe following example shows usage of nested conditional compilation directives.

362 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.

IEEE

THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

module test(out);
output out;
“define wow
“define nest_one
“define second_nest
“define nest_two
“ifdef wow
initial $display (“wow is defined”);
“ifdef nest_one
initial $display (“nest_one is defined”);
“ifdef nest_two
initial $display (“nest_two is defined”);
“else
initial $display (“nest_two is not defined”);
“endif
“else
initial $display (“nest_one is not defined”);
“endif
“else
initial $display (“wow is not defined”);
“ifdef second_nest
initial $display (“nest_two is defined”);
“else
initial $display (“nest_two is not defined”);
“endif
“endif
endmodule

Example 3—Fhe following example shows usage of chained nested conditional compilation directives.

module test;
“ifdef first_block
“ifndef second_nest
initial $display (“first_block is defined”);
“else
initial $display (“first_block and second_nest defined”);
“endif
“elsif second_block
initial $display (“second_block defined, first_block is not”);
“else
“ifndef last_result
initial $display (“first_block, second_block, last_result
not defined.”);
“elsifreal_last
initial $display (“first_block, second_block not defined,
last_result and real_last defined.”);

“else
initial $display (“Only last_result defined!”);
“endif
“endif
endmodule
Section 19 Copyright 2000 IEEE. All rights reserved.

This is an unapproved IEEE Standards Draft, subject to change.

363

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

19.5 “include

The file inclusion {include) compiler directive is used to insert the entire contents of a source file in another file dur-
ing compilation. The result is as though the contents of the included source file appear in placenuftlde com-

piler directive. Theinclude compiler directive can be used to include global or commonly used definitions and tasks
without encapsulating repeated code within module boundaries.

Advantages of using thénclude compiler directive include the following:

— Providing an integral part of configuration management
— Improving the organization of Verilog HDL source descriptions
— Facilitating the maintenance of Verilog HDL source descriptions

The syntax for théinclude compiler directive is given in Syntax 19-6.

include_compiler_directive ::fNot in the Annex A BNF)
‘include "filenamé'

Syntax 19-6—Syntax for include compiler directive

The compiler directivéinclude can be specified anywhere within the Verilog HDL description. filemameis the
name of the file to be included in the source file. fllamamecan be a full or relative path name.

Only white space or a comment may appear on the same line axthde compiler directive.

A file included in the source using thaclude compiler directive may contain othénclude compiler directives.
The number of nesting levels for included files shall be finite.

Examples:

Examples of legal comments for theclude compiler directive are as follows:
“include "parts/count.v"
“include "fileB"

“include "fileB" // including fileB

NOTE—Implementations may limit the maximum number of levels to which include files can be nested, but the limit shall be at
least 15.

19.6 “resetall

When'resetall compiler directive is encountered during compilation, all compiler directives are set to the default val-
ues. This is useful for ensuring that only those directives that are desired in compiling a particular source file are
active.

The recommended usage is to plamesetall at the beginning of each source text file, followed immediately by the
directives desired in the file.

19.7 “line

The compiler is expected to maintain the current line and the filename of the file being compiled. The line number

364 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

(line) compiler directive is used to reset the current line number and filename of the current file to the line number
and filename presented. This can be used to reflect the location in an original file; if the actual source file has been
modified by addition or reduction of lines. After specifying the new line number or file name, the compiler can cor-
rectly refer to the original source file location. For example error messages, source code debugging, etc. can direct the
user to the actual original line.

The syntax for théline compiler directive is given in Syntax 19-7.

line_compiler_directive ::¥Not in the Annex A BNF)
“line number' filename' level

Syntax 19-7—Syntax for line compiler directive

The directive can be specified anywhere within the Verilog HDL source description. The number parameter is the
new line number of the next line. The filename parameter is the new name of the file. The filename can be a full or rel-
ative path name. The level parameter indicates whether an include file has been entered [Yahreiixclude file is

exited (value i®), or neither has been done (valu8)s

The results of this directive are not affected by the compiler directesetall. As the compiler processes the remain-

der of the file and new files, the line number shall be incremented as each line is read and the filename shall be
updated to the new current file being processed. When beginning to read include files, the current line and filename
shall be stored for restoration at the termination of the include file. The updated line number and filename information
shall be available for PLI access. The mechanism of library searching is not affected by the effects of the “line com-
piler directive.

19.8 “timescale

This directive specifies the time unit and time precision of the modules that follow it. The time unit is the unit of mea-
surement for time values such as the simulation time and delay values.

To use modules with different time units in the same design, the following timescale constructs are useful:

— The ‘timescalecompiler directive to specify the unit of measurement for time and precision of time in the
modules in the design

— The $printtimescale system task to display the time unit and precision of a module

— The$time and$realtime system functions, thgtimeformat system task, and tHét format specification to
specify how time information is reported

The timescalecompiler directive specifies the unit of measurement for time and delay values and the degree of accu-
racy for delays in all modules that follow this directive until anottierescalecompiler directive is read.

The syntax for thétimescaledirective is given in Syntax 19-8.

timescale_compiler_directive :(ot in the Annex A BNF)
‘timescaletime_unit/ time_precision

Syntax 19-8—Syntax for timescale compiler directive

Thetime_unit argument specifies the unit of measurement for times and delays.

Section 19 Copyright 2000 IEEE. All rights reserved. 365
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

The time_precision argument specifies how delay values are rounded before being used in simulation. The val-
ues used are accurate to within the unit of timespecified here, even if there is a simallgarecision argument
elsewhere in the design. The smalléste_precision argument of all thétimescalecompiler directives in the
design determines the precision of the time unit of the simulation.

The time_precision argument shall be at least as precise astithe_unit argument; it cannot specify a
longer unit of time thatime_unit

The integers in these arguments specify an order of magnitude for the size of the value; the valid integers are 1, 10,
and 100. The character strings represent units of measurement; the valid character stgngs, ai€ ns, ps, andfs.

The units of measurement specified by these character strings are given in Table 19-1.

Table 19-1—Arguments of time_precision

Chs?rriizter Unit of measurement
s seconds
ms milliseconds
us microseconds
ns nanoseconds
ps picoseconds
fs femtoseconds

Examples:
The following example shows how this directive is used
‘timescalel ns/1 ps
Here, all time values in the modules that follow the directive are multiples of 1 ns becausaehanit argument
is “1 ns”. Delays are rounded to real numbers with three decimal places—or precise to within one thousandth of a
nanosecond—because tivae_precision argument is “1 ps,” or one thousandth of a nanosecond.
Consider the following example:

“timescalel0 us/ 100 ns

The time values in the modules that follow this directive are multiples0ofis because théme_unit argument
is “10 us”. Delays are rounded to within one tenth of a microsecond becausienthgrecision argument is
“100 ns,” or one tenth of a microsecond.

The following example shows imescaledirective in the context of a module:

366 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

‘timescalel0 ns/1 ns
module test;

reg set;

parameter d = 1.55;

initial begin
#d set = 0;
#d set =1,

end

endmodule

The'timescale 10 ns / 1 ns compiler directive specifies that the time unit for module test is 10 ns. As a result,

the time values in the module are multiples of 10 ns, rounded to the nearest 1 ns and, therefore, the value stored in
parameted is scaled to a delay of 16 ns. This means that the value 0 is assignedstet rey simulation time 16 ns

(1.6x 10 ns), and the value 1 at simulation time 32 ns.

Parameted retains its value no matter what timescale is in effect.
These simulation times are determined as follows:

a) The value of parametdris rounded from 1.55 to 1.6 according to the time precision.

b) The time unit of the module is 10 ns, and the precision is 1 ns, so the delay of pardrisetealed from 1.6
to 16.

¢) The assignment of O to rexpt is scheduled at simulation time 16 ns and the assignment of 1 at simulation
time 32 ns. The time values are not rounded when the assignments are scheduled.

19.9 "unconnected_drive and "nounconnected_drive

All unconnected input ports of a module appearing between the directivesonnected_drive and
“nounconnected_driveare pulled up or pulled down instead of the normal default.

The directive' unconnected_drivetakes one of two argumentspuill or pull0. Whenpulll is specified, all uncon-
nected input ports are automatically pulled up. WipeiO is specified, unconnected ports are pulled down. These
directives shall be specified in pairs, and outside of the module declarations.

Section 19 Copyright 2000 IEEE. All rights reserved. 367
This is an unapproved IEEE Standards Draft, subject to change.

IEEE
Std P1364-2000 (Draft 5)

368 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.

	IEEE Standard Hardware Description Language Based on the Verilog® Hardware Description Language
	Section 1
	Overview
	1.1 Objectives of this standard
	1.2 Conventions used in this standard
	a) To the developers of tools that process the Verilog HDL, the verb “shall” denotes a requiremen...
	b) To the Verilog HDL model developer, the verb “shall” denotes that the characteristics of the V...
	c) To the Verilog HDL model user, the verb “shall” denotes that the characteristics of the models...

	1.3 Syntactic description
	a) Lowercase words, some containing embedded underscores, are used to denote syntactic categories...
	b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a req...
	c) A vertical bar separates alternative items unless it appears in boldface, in which case it sta...
	d) Square brackets enclose optional items. For example:
	e) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itse...
	f) If the name of any category starts with an italicized part, it is equivalent to the category n...

	1.4 Contents of this standard
	1) Overview This section discusses the conventions used in this standard and its contents.
	2) Lexical conventions This section describes how to specify and interpret the lexical tokens.
	3) Data types This section describes net and variable data types. This section also discusses the...
	4) Expressions This section describes the operators and operands that can be used in expressions.
	5) Scheduling semantics This section describes the scheduling semantics of the Verilog HDL.
	6) Assignments This section compares the two main types of assignment statements in the Verilog H...
	7) Gate and switch level modeling This section describes the gate and switch level primitives and...
	8) User-defined primitives (UDPs) This section describes how a primitive can be defined in the Ve...
	9) Behavioral modeling This section describes procedural assignments, procedural continuous assig...
	10) Tasks and functions This section describes tasks and functions—procedures that can be called ...
	11) Disabling of named blocks and tasks This section describes how to disable the execution of a ...
	12) Hierarchical structures This section describes how hierarchies are created in the Verilog HDL...
	13) Configuring the contents of a design This section describes how to configure the contents of ...
	14) Specify blocks This section describes how to specify timing relationships between input and o...
	15) Timing checks This section describes how timing checks are used in specify blocks to determin...
	16) Backannotation using the Standard Delay Format (SDF) This section describes syntax and semant...
	17) System tasks and functions This section describes the system tasks and functions.
	18) Value change dump (VCD) files This section describes the system tasks associated with Value C...
	19) Compiler directives This section describes the compiler directives.
	20) PLI Overview This section previews the C language procedural interface standard (Programming ...
	21) PLI TF and ACC interface mechanism This section describes the interface mechanism that provid...
	22) Using ACC routines This section describes the ACC routines in general, including how and why ...
	23) ACC routine definitions This section describes the specific ACC routines, explaining their fu...
	24) Using TF routines This section provides an overview of the types of operations that are done ...
	25) TF routine definitions This section describes the specific TF routines, explaining their func...
	26) Using VPI routines This section provides an overview of the types of operations that are done...
	27) VPI routine definitions This section describes the VPI routines.
	A Formal syntax definition This normative annex describes, using BNF, the syntax of the Verilog HDL.
	B) List of keywords This normative annex lists the Verilog HDL keywords.
	C) System tasks and functions This informative annex describes system tasks and functions that ar...
	D) Compiler directives This informative annex describes compiler directives that are frequently u...
	E) acc_user.h This normative annex provides a listing of the contents of the acc_user.h file.
	F) veriuser.h This normative annex provides a listing of the contents of the vpi_user.h file.
	G) vpi_user.h This normative annex provides a listing of the contents of the veriuser.h file.
	H) Bibliography This informative annex contains bibliographic entries pertaining to this standard.

	1.5 Header file listings
	1.6 Examples
	1.7 Prerequisites

	Section 2
	Lexical conventions
	2.1 Lexical tokens
	2.2 White space
	2.3 Comments
	2.4 Operators
	2.5 Numbers
	Syntax 2�1 —Syntax for integer and real numbers
	2.5.1 Integer constants
	2.5.2 Real constants
	2.5.3 Conversion

	2.6 Strings
	2.6.1 String variable declaration
	2.6.2 String manipulation
	2.6.3 Special characters in strings
	Table 2-1— Specifying special characters in string�

	2.7 Identifiers, keywords, and system names
	2.7.1 Escaped identifiers
	2.7.2 Generated identifiers
	2.7.3 Keywords
	2.7.4 System tasks and functions
	Syntax�2�2 —Syntax for system tasks and functions

	2.7.5 Compiler directives

	2.8 Attributes
	Syntax�2�3 —Syntax for attributes
	2.8.1 Examples
	2.8.2 Syntax
	Syntax�2�4 —Syntax for module declaration attributes
	Syntax�2�5 —Syntax for port declaration attributes
	Syntax�2�6 —Syntax for module item attributes
	Syntax�2�7 —Syntax for function port, task, and block attributes
	Syntax�2�8 —Syntax for port connection attributes
	Syntax�2�9 —Syntax for udp attributes
	Syntax�2�10 —Syntax for function and statement attributes
	Syntax�2�11 —Syntax for function call and expression attributes

	Section 3
	Data types
	3.1 Value set
	3.2 Nets and variables
	3.2.1 Net declarations
	Syntax�3�1 —Syntax for net declaration

	3.2.2 Variable declarations
	Syntax�3�2 —Syntax for variable declaration

	CAUTION
	3.3 Vectors
	3.3.1 Specifying vectors
	3.3.2 Vector net accessibility

	3.4 Strengths
	3.4.1 Charge strength
	3.4.2 Drive strength

	3.5 Implicit declarations
	3.6 Net initialization
	3.7 Net types
	Table 3-1— Net types
	3.7.1 Wire and tri nets
	Table 3-2— Truth table for wire and tri nets

	3.7.2 Wired nets
	Table 3-3— Truth table for wand and triand nets
	Table 3-4— Truth table for wor and trior nets

	3.7.3 Trireg net
	Figure�3�1— Simulation values of a trireg and its driver
	a) At simulation time 0, wire a and wire b have a value of 1. A value of 1 with a strong strength...
	b) At simulation time 10, wire a changes value to 0, disconnecting wire c from the and gate. When...

	3.7.3.1 Capacitive networks
	Figure�3�2— Simulation results of a capacitive network
	a) At simulation time 0, wire a and wire b have a value of 1. The wire c drives a value of 1 into...
	b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg_sm and trireg_me...
	c) At simulation time 20, wire c drives a value of 0 into trireg_la.
	d) At simulation time 30, wire d drives a value of 0 into trireg_me1.
	e) At simulation time 40, the value of wire a changes to 0, disconnecting trireg_la and trireg_me...
	f) At simulation time 50, the value of wire b changes to 1. This change of value in wire b connec...

	Figure�3�3— Simulation results of charge sharing
	a) At simulation time 0, the values of wire a, wire b, and wire c are 1, and wire a drives a stro...
	b) At simulation time 10, the value of wire b changes to 0, disconnecting trireg_la and trireg_sm...
	c) At simulation time 20, the value of wire c changes to 0, disconnecting trireg_sm from trireg_l...
	d) At simulation time 30, the value of wire c changes to 1, connecting the two trireg nets. These...
	e) At simulation time 40, the value of wire c changes again to 0, disconnecting trireg_sm from tr...

	3.7.3.2 Ideal capacitive state and charge decay

	3.7.4 Tri0 and tri1 nets
	Table 3-5— Truth table for tri0 net
	Table 3-6— Truth table for tri1 net

	3.7.5 Supply nets

	3.8 regs
	3.9 Integers, reals, times, and realtimes
	Syntax�3�3 —Syntax for integer, time, real, and realtime declarations
	3.9.1 Operators and real numbers
	3.9.2 Conversion

	3.10 Arrays
	3.10.1 Net arrays
	3.10.2 reg and variable arrays
	3.10.3 Memories
	3.10.3.1 Array examples
	3.10.3.1.1 Array declarations
	3.10.3.1.2 Assignment to array elements
	3.10.3.1.3 Memory differences

	3.11 Parameters
	3.11.1 Module parameters
	Syntax�3�4 —Syntax for parameter declaration

	3.11.2 Local parameters - localparam
	3.11.3 Specify parameters
	Syntax�3�5 —Syntax of the specparam declaration
	Table 3-7— Differences between specparams and parameters

	3.12 Name spaces
	Section 4
	Expressions
	4.1 Operators
	Table 4-1— Operators in the Verilog HDL�
	4.1.1 Operators with real operands
	Table 4-2— Legal operators for use in real expressions�
	Table 4-3— Operators not allowed for real expressions

	4.1.2 Binary operator precedence
	Table 4-4— Precedence rules for operators

	4.1.3 Using integer numbers in expressions
	Example:

	4.1.4 Expression evaluation order
	Example:

	4.1.5 Arithmetic operators
	Table 4-5— Arithmetic operators defined
	Table 4-6— Unary operators defined
	Example:
	Table 4-7— Examples of modulus operators�

	4.1.6 Arithmetic expressions with regs and integers
	Table 4-8— Data type interpretation by arithmetic operators
	Example:

	4.1.7 Relational operators
	Table 4-9— Definitions of the relational operators

	4.1.8 Equality operators
	Table 4-10— Definitions of the equality operators

	4.1.9 Logical operators
	4.1.10 Bit-wise operators
	Table 4-11— Bit-wise binary and operator
	Table 4-12— Bit-wise binary or operator
	Table 4-13— Bit-wise binary exclusive or operator
	Table 4-14— Bit-wise binary exclusive nor operator
	Table 4-15— Bit-wise unary negation operator

	4.1.11 Reduction operators
	Table 4-16— Reduction unary and operator
	Table 4-17— Reduction unary or operator
	Table 4-18— Reduction unary exclusive or operator
	Example:
	Table 4-19— Results of unary reduction operations

	4.1.12 Shift operators
	4.1.13 Conditional operator
	Syntax�4�1 —Syntax for conditional operator
	Table 4-20— Ambiguous condition results for conditional operator
	Example:

	4.1.14 Concatenations
	4.1.15 Event or
	Example:

	4.2 Operands
	4.2.1 Vector bit-select and part-select addressing
	4.2.2 Array and memory addressing
	4.2.3 Strings
	Example:
	4.2.3.1 String operations
	4.2.3.2 String value padding and potential problems
	4.2.3.3 Null string handling

	4.3 Minimum, typical, and maximum delay expressions
	Syntax�4�2 —Syntax for mintypmax expression

	4.4 Expression bit lengths
	4.4.1 Rules for expression bit lengths
	Table 4-21— Bit lengths resulting from self-determined expressions �

	4.4.2 An example of an expression bit-length problem
	4.4.3 Example of self-determined expressions

	4.5 Signed expressions
	Example:
	4.5.1 Rules for expression types
	4.5.2 Steps for evaluating an expression
	4.5.3 Steps for evaluating an assignment
	4.5.4 Handling X and Z in signed expressions

	Section 5
	Scheduling semantics
	5.1 Execution of a model
	5.2 Event simulation
	5.3 The stratified event queue
	1) Events that occur at the current simulation time and can be processed in any order. These are ...
	2) Events that occur at the current simulation time, but that shall be processed after all the ac...
	3) Events that have been evaluated during some previous simulation time, but that shall be assign...
	4) Events that shall be processed after all the active, inactive, and nonblocking assign update e...
	5) Events that occur at some future simulation time. These are the future events. Future events a...

	5.4 The Verilog simulation reference model
	5.4.1 Determinism
	1) Statements within a begin-end block shall be executed in the order in which they appear in tha...
	2) Nonblocking assignments shall be performed in the order the statements were executed. Consider...

	5.4.2 Nondeterminism

	5.5 Race conditions
	5.6 Scheduling implication of assignments
	5.6.1 Continuous assignment
	5.6.2 Procedural continuous assignment
	5.6.3 Blocking assignment
	5.6.4 Nonblocking assignment
	5.6.5 Switch (transistor) processing
	5.6.6 Port connections
	5.6.7 Functions and tasks

	Section 6
	Assignments
	Table 6-1— Legal left-hand side forms in assignment statements
	6.1 Continuous assignments
	Syntax�6�1 —Syntax for continuous assignment
	6.1.1 The net declaration assignment
	6.1.2 The continuous assignment statement
	a) The value of s, a bus selector input variable, is checked in the assign statement. Based on th...
	b) The setting of data net triggers the continuous assignment in the net declaration for busout. ...

	6.1.3 Delays
	a) The value of the right-hand side expression is evaluated.
	b) If this RHS value differs from the value currently scheduled to propagate to the left-hand sid...
	c) If the new RHS value equals the current left-hand side value, no event is scheduled.
	d) If the new RHS value differs from the current LHS value, a delay is calculated in the standard...

	6.1.4 Strength

	6.2 Procedural assignments
	6.2.1 Variable declaration assignment
	6.2.2 Variable declaration syntax
	Syntax�6�2 —Syntax for reg declaration assignment

	Section 7
	Gate and switch level modeling
	7.1 Gate and switch declaration syntax
	Syntax�7�1 —Syntax for gate instantiation
	7.1.1 The gate type specification
	Table 7-1— Built-in gates and switches

	7.1.2 The drive strength specification
	Table 7-2— Valid gate types for strength specifications
	Example:

	7.1.3 The delay specification
	7.1.4 The primitive instance identifier
	7.1.5 The range specification
	Example:

	7.1.6 Primitive instance connection list
	Figure�7�1— Schematic diagram of interconnections in array of instances

	7.2 and, nand, nor, or, xor, and xnor gates
	Table 7-3— Truth tables for multiple input logic gates
	Example:

	7.3 buf and not gates
	Table 7-4— Truth tables for multiple output logic gates
	Example:

	7.4 bufif1, bufif0, notif1, and notif0 gates
	Table 7-5— Truth tables for tristate logic gates
	Example:

	7.5 MOS switches
	Table 7-6— Truth tables for MOS switches
	Example:

	7.6 Bidirectional pass switches
	Example:

	7.7 CMOS switches
	Example:

	7.8 pullup and pulldown sources
	Example:

	7.9 Logic strength modeling
	a) The strength of the 0 portion of the net value, called strength0, designated as one of the fol...
	b) The strength of the 1 portion of the net value, called strength1, designated as one of the fol...
	Table 7-7— Strength levels for scalar net signal values
	Figure�7�2— Scale of strengths

	7.10 Strengths and values of combined signals
	7.10.1 Combined signals of unambiguous strength
	Figure�7�3— Combining unequal strengths

	7.10.2 Ambiguous strengths: sources and combinations
	Figure�7�4— Combination of signals of equal strength and opposite values
	Figure�7�5— Weak x signal strength
	Figure�7�6— Bufifs with control inputs of x
	Figure�7�7— Strong H range of values
	Figure�7�8— Strong L range of values
	Figure�7�9— Combined signals of ambiguous strength
	Figure�7�10— Range of strengths for an unknown signal
	Figure�7�11— Ambiguous strengths from switch networks
	Figure�7�12— Range of two strengths of a defined value
	Figure�7�13— Range of three strengths of a defined value
	Figure�7�14— Unknown value with a range of strengths
	Figure�7�15— Strong X range
	Figure�7�16— Ambiguous strength from gates
	Figure�7�17— Ambiguous strength signal from a gate
	Figure�7�18— Weak 0
	Figure�7�19— Ambiguous strength in combined gate signals

	7.10.3 Ambiguous strength signals and unambiguous signals
	a) The strength levels of the ambiguous strength signal that are greater than the strength level ...
	b) The strength levels of the ambiguous strength signal that are smaller than or equal to the str...
	c) If the operation of rule a and rule b results in a gap in strength levels because the signals ...
	Figure�7�20— Elimination of strength levels
	Figure�7�21— Result demonstrating a range and the elimination of strength levels of two values
	Figure�7�22— Result demonstrating a range and the elimination of strength levels of one value
	Figure�7�23— A range of both values

	7.10.4 Wired logic net types
	Figure�7�24— Wired logic with unambiguous strength signals
	Figure�7�25— Wired logic and ambiguous strengths

	7.11 Strength reduction by nonresistive devices
	7.12 Strength reduction by resistive devices
	Table 7-8— Strength reduction rules

	7.13 Strengths of net types
	7.13.1 tri0 and tri1 net strengths
	7.13.2 trireg strength
	7.13.3 supply0 and supply1 net strengths

	7.14 Gate and net delays
	Table 7-9— Rules for propagation delays
	7.14.1 min:typ:max delays
	7.14.2 trireg net charge decay
	7.14.2.1 The charge decay process
	a) The delay specified by charge decay time elapses and the trireg net makes a transition from 1 ...
	b) The drivers of trireg net turn on and propagate a 1, 0, or x into the trireg net.

	7.14.2.2 The delay specification for charge decay time
	Figure�7�26— Trireg net with capacitance

	Section 8
	User-defined primitives (UDPs)
	a) Combinational—modeled by a combinational UDP
	b) Sequential—modeled by a sequential UDP
	8.1 UDP definition
	Syntax�8�1 —Syntax for user-defined primitives
	8.1.1 UDP header
	8.1.2 UDP port declarations
	8.1.3 Sequential UDP initial statement
	8.1.4 UDP state table
	8.1.5 Z values in UDP
	8.1.6 Summary of symbols
	Table 8-1— UDP table symbols

	8.2 Combinational UDPs
	8.3 Level-sensitive sequential UDPs
	8.4 Edge-sensitive sequential UDPs
	8.5 Sequential UDP initialization
	Table 8-2— Initial statements in UDPs and modules�
	Figure�8�1— Module schematic and simulation times of initial value propagation

	8.6 UDP instances
	Syntax�8�2 —Syntax for UDP instances

	8.7 Mixing level-sensitive and edge-sensitive descriptions
	8.8 Level-sensitive dominance
	Table 8-3— Mixing of level�sensitive and edge�sensitive entries

	Section 9
	Behavioral modeling
	9.1 Behavioral model overview
	9.2 Procedural assignments
	9.2.1 Blocking procedural assignments
	Syntax�9�1 —Syntax for blocking assignments
	Example:

	9.2.2 The nonblocking procedural assignment
	Syntax�9�2 —Syntax for nonblocking assignments

	9.3 Procedural continuous assignments
	Syntax�9�3 —Syntax for procedural continuous assignments
	9.3.1 The assign and deassign procedural statements
	Example:

	9.3.2 The force and release procedural statements
	Example:

	9.4 Conditional statement
	Syntax�9�4 —Syntax of if statement
	9.4.1 If-else-if construct
	Syntax�9�5 —Syntax of if-else-if construct
	Example:

	9.5 Case statement
	Syntax�9�6 —Syntax for case statement
	a) The conditional expressions in the if-else-if construct are more general than comparing one ex...
	b) The case statement provides a definitive result when there are x and z values in an expression.

	9.5.1 Case statement with don’t-cares
	9.5.2 Constant expression in case statement
	Example:

	9.6 Looping statements
	a) Executes an assignment normally used to initialize a variable that controls the number of loop...
	b) Evaluates an expression—if the result is zero, the for-loop shall exit, and if it is not zero,...
	c) Executes an assignment normally used to modify the value of the loop-control variable, then re...
	Syntax�9�7 —Syntax for the looping statements

	9.7 Procedural timing controls
	Syntax�9�8 —Syntax for procedural timing control
	9.7.1 Delay control
	9.7.2 Event control
	Table 9-1— Detecting posedge and negedge
	Example:

	9.7.3 Named events
	Syntax�9�9 —Syntax for event declaration
	Syntax�9�10 —Syntax for event trigger

	9.7.4 Event or operator
	9.7.5 Implicit event_expression list
	9.7.6 Level�sensitive event control
	Syntax�9�11 —Syntax for wait statement

	9.7.7 Intra-assignment timing controls
	Syntax�9�12 —Syntax for intra-assignment delay and event control
	Table 9-2— Intra-assignment timing control equivalence�
	Figure�9�1— Repeat event control utilizing a clock edge

	9.8 Block statements
	9.8.1 Sequential blocks
	Syntax�9�13 —Syntax for the sequential block

	9.8.2 Parallel blocks
	Syntax�9�14 —Syntax for the parallel block
	Example:

	9.8.3 Block names
	9.8.4 Start and finish times

	9.9 Structured procedures
	9.9.1 Initial construct
	Syntax�9�15 —Syntax for initial construct

	9.9.2 Always construct
	Syntax�9�16 —Syntax for always construct

	Section 10
	Tasks and functions
	10.1 Distinctions between tasks and functions
	10.2 Tasks and task enabling
	10.2.1 Task declarations
	Syntax�10�1 —Syntax for task declaration

	10.2.2 Task enabling and argument passing
	Syntax�10�2 —Syntax of the task enabling statement

	10.2.3 Task memory usage and concurrent activation

	10.3 Functions and function calling
	10.3.1 Function declarations
	Syntax�10�3 —Syntax for function declaration

	10.3.2 Returning a value from a function
	10.3.3 Calling a function
	Syntax�10�4 —Syntax for function call

	10.3.4 Function rules
	a) A function definition shall not contain any time-controlled statements—that is, any statements...
	b) Functions shall not enable tasks.
	c) A function definition shall contain at least one input argument.
	d) A function definition shall not have any argument declared as output or inout.
	e) A function definition shall include an assignment of the function result value to the internal...
	f) A function shall not have any non-blocking assignments.

	10.3.5 Use of constant functions

	Section 11
	Disabling of named blocks and tasks
	Syntax�11�1 —Syntax of disable statement

	Section 12
	Hierarchical structures
	12.1 Modules
	Syntax�12�1 —Syntax for module
	12.1.1 Top�level modules
	12.1.2 Module instantiation
	Syntax�12�2 —Syntax for module instantiation

	12.1.3 Generated instantiation
	Syntax�12�3 —Syntax for generate blocks
	12.1.3.1 genvar - generate statement index variable
	Syntax�12�4 —Syntax for generate statement index variable declaration

	12.1.3.2 generate-loop
	12.1.3.3 generate-conditional
	12.1.3.4 generate-case

	12.2 Overriding module parameter values
	12.2.1 defparam statement
	Example:

	12.2.2 Module instance parameter value assignment
	12.2.2.1 Parameter value assignment by ordered list
	Example:

	12.2.2.2 Parameter value assignment by name

	12.2.3 Parameter dependence

	12.3 Ports
	12.3.1 Port definition
	Syntax�12�5 —Syntax for port

	12.3.2 List of ports
	12.3.3 Port declarations
	Syntax�12�6 —Syntax for port declarations
	Example:
	Example:

	12.3.4 Lists of ports declarations
	Example:

	12.3.5 Connecting module instance ports by ordered list
	Example:

	12.3.6 Connecting module instance ports by name
	12.3.7 Real numbers in port connections
	Example:

	12.3.8 Connecting dissimilar ports
	12.3.9 Port connection rules
	12.3.9.1 Rule 1
	12.3.9.2 Rule 2
	i) A scalar net
	ii) A vector net
	iii) A constant bit-select of a vector net
	iv) A part-select of a vector net
	v) A concatenation of the expressions listed above

	12.3.10 Net types resulting from dissimilar port connections
	12.3.10.1 Net type resolution rule
	12.3.10.2 Net type table
	Table 12-1— Net types resulting from dissimilar port connections �

	12.3.11 Connecting signed values via ports

	12.4 Hierarchical names
	Syntax�12�7 —Syntax for hierarchical path names
	Figure�12�1— Hierarchy in a model
	Figure�12�2— Hierarchical path names in a model

	12.5 Upwards name referencing
	Syntax�12�8 —Syntax for upward name referencing
	a) Look in the current module for a module instance named module_instance_name. If found, this na...
	b) Look in the parent module for a module instance named module_instance_name. If found, the item...
	c) Repeat step b), going up the hierarchy.

	Example:

	12.6 Scope rules
	Example:
	Figure�12�3— Scopes available to upward name referencing

	Section 13
	Configuring the contents of a design
	13.1 Introduction
	Example:
	13.1.1 Library notation
	Syntax 13�1 —Syntax for cell

	13.1.2 Basic configuration elements

	13.2 Libraries
	13.2.1 Specifying libraries - the library map file
	Syntax�13�2 —Syntax for declaring library in the library map file
	13.2.1.1 File path resolution
	a) File path specifications which end with an explicit filename
	b) File path specifications which end with a wildcarded filename
	c) File path specifications which end with a directory

	13.2.2 Using multiple library mapping files
	Syntax�13�3 —Syntax for include command

	13.2.3 Mapping source files to libraries

	13.3 Configurations
	13.3.1 Basic configuration syntax
	Syntax�13�4 —Syntax for configuration
	13.3.1.1 Design statement
	13.3.1.2 The default clause
	Syntax�13�5 —Syntax for default clause

	13.3.1.3 The instance clause
	Syntax�13�6 —Syntax for instance clause

	13.3.1.4 The cell clause
	Syntax�13�7 —Syntax for cell clause

	13.3.1.5 The liblist clause
	Syntax�13�8 —Syntax for liblist clause

	13.3.1.6 The use clause
	Syntax�13�9 —Syntax for use clause

	13.3.2 Hierarchical configurations

	13.4 Using libraries and configs
	13.4.1 Precompiling in a single-pass use-model
	13.4.2 Elaboration-time compiling in a single-pass use-model
	13.4.3 Precompiling using a separate compilation tool
	13.4.4 Command line considerations

	13.5 Configuration examples
	Example:
	13.5.1 Default configuration from library map file
	13.5.2 Using the default clause
	13.5.3 Using the cell clause
	13.5.4 Using the instance clause
	13.5.5 Using a hierarchical config

	13.6 Displaying library binding information
	13.7 Reserved words
	13.8 Library mapping examples
	13.8.1 Using the command line to control library searching
	13.8.2 File path specification examples
	Example:

	13.8.3 Resolving multiple path specifications
	Example:

	Section 14
	Specify blocks
	14.1 Specify block declaration
	Syntax�14�1 —Syntax of specify block
	Example:

	14.2 Module path declarations
	a) Describe the module paths
	b) Assign delays to those paths (see 14.3)
	Syntax�14�2 —Syntax of the module path declaration
	Example:
	Figure�14�1— Module path delays

	14.2.1 Module path restrictions
	14.2.2 Simple module paths
	Syntax�14�3 —Syntax for simple module path
	Example:

	14.2.3 Edge-sensitive paths
	Syntax�14�4 —Syntax of the edge-sensitive path declaration

	14.2.4 State-dependent paths
	Syntax�14�5 —Syntax of state-dependent paths
	14.2.4.1 Conditional expression
	Table 14-1— List of valid operators in state dependent path delay expression (continued)

	14.2.4.2 Simple state-dependent paths
	14.2.4.3 Edge-sensitive state-dependent paths
	14.2.4.4 The ifnone condition

	14.2.5 Full connection and parallel connection paths
	Figure�14�2— The difference between parallel and full connection paths

	14.2.6 Declaring multiple module paths in a single statement
	Example:

	14.2.7 Module path polarity
	14.2.7.1 Unknown polarity
	14.2.7.2 Positive polarity
	14.2.7.3 Negative polarity

	14.3 Assigning delays to module paths
	Syntax�14�6 —Syntax for path delay value
	Example:
	14.3.1 Specifying transition delays on module paths
	Table 14-2— Associating path delay expressions with transitions
	Example:

	14.3.2 Specifying x transition delays
	a) Transition from a known state s to x: s ’ x
	b) Transition from x to a known state s: x ’ s
	Table 14-3— Calculating delays for x transitions

	14.3.3 Delay selection

	14.4 Mixing module path delays and distributed delays
	Figure�14�3— Module path delays longer than distributed delays
	Figure�14�4— Module path delays shorter than distributed delays

	14.5 Driving wired logic
	Figure�14�5— Legal and illegal module paths
	Figure�14�6— Illegal module paths
	Figure�14�7— Legal module paths

	14.6 Detailed control of pulse filtering behavior
	Example:
	14.6.1 Specify block control of pulse limit values
	Syntax�14�7 —Syntax for PATHPULSE$ pulse control
	Example:

	14.6.2 Global control of pulse limit values
	14.6.3 SDF annotation of pulse limit values
	14.6.4 Detailed pulse control capabilities
	14.6.4.1 On-event versus on-detect pulse filtering
	Figure�14�8— On-detect -vs.- on-event
	Syntax�14�8 —Syntax for pulse style declarations

	14.6.4.2 Negative pulse detection
	Syntax�14�9 —Syntax for showcancelled declarations
	Figure�14�9— Current event cancellation problem and correction
	Figure�14�10— NAND gate with nearly simultaneous input switching where one event is scheduled pri...
	Figure�14�11— Input NAND gate with nearly simultaneous input switching with output event schedule...

	Section 15
	Timing checks
	15.1 Overview
	Syntax�15�1 —Syntax for system timing checks
	Syntax�15�2 —Syntax for check time conditions and timing check events

	15.2 Timing checks using a stability window
	a) Define a time window with respect to the reference signal using the specified limit or limits;
	b) Check the time of transition of the data signal with respect to the time window;
	c) Report a timing violation if the data signal transitions within the time window.
	15.2.1 $setup
	Syntax�15�3 —Syntax for $setup
	Table 15-1— $setup arguments

	15.2.2 $hold
	Syntax�15�4 —Syntax for $hold
	Table 15-2— $hold arguments

	15.2.3 $setuphold
	Syntax�15�5 —Syntax for $setuphold
	Table 15-3— $setuphold arguments

	15.2.4 $removal
	Syntax�15�6 —Syntax for $removal
	Table 15-4— $removal arguments

	15.2.5 $recovery
	Syntax�15�7 —Syntax for $recovery
	Table 15-5— $recovery arguments

	15.2.6 $recrem
	Syntax�15�8 —Syntax for $recrem
	Table 15-6— $recrem arguments

	15.3 Timing checks for clock and control signals
	a) Determine the elapsed time between two events;
	b) Compare the elapsed time to the specified limit;
	c) Report a timing violation if the elapsed time violates the limit.
	15.3.1 $skew
	Syntax�15�9 —Syntax for $skew
	Table 15-7— $skew arguments

	15.3.2 $timeskew
	Syntax�15�10 —Syntax for $timeskew
	Table 15-8— $timeskew arguments
	Example:
	Figure 15�1— Sample $timeskew

	15.3.3 $fullskew
	Syntax�15�11 —Syntax for $fullskew
	Table 15-9— $fullskew arguments
	Example:
	Figure 15�2— Sample $fullskew

	15.3.4 $width
	Syntax�15�12 —Syntax for $width
	Table 15-10— $width arguments
	Example:

	15.3.5 $period
	Syntax�15�13 —Syntax for $period
	Table 15-11— $period arguments�

	15.3.6 $nochange
	Syntax�15�14 —Syntax for $nochange
	Table 15-12— $nochange arguments
	Example:

	15.4 Edge-control specifiers
	Syntax�15�15 —Syntax for edge control specifier

	15.5 Notifiers: user-defined responses to timing violations
	Table 15-13— User-defined responses to timing violations
	15.5.1 Requirements for accurate simulation
	a) A timing violation shall be triggered if the signal changes in the violation window, exclusive...
	b) The value of the latched data shall be the one which is stable during the violation window, ag...

	15.5.2 Conditions in negative timing checks
	Example:
	Figure 15�3— Timing check violation windows

	15.5.3 Notifiers in negative timing checks
	15.5.4 Option behavior

	15.6 Enabling timing checks with conditioned events
	Syntax�15�16 —Syntax for controlled timing check event

	15.7 Vector signals in timing checks
	15.8 Negative timing checks
	Figure 15�4— Data constraint interval, positive setup/hold
	Figure 15�5— Data constraint interval, negative setup/hold

	Section 16
	Backannotation using the Standard Delay Format (SDF)
	16.1 The SDF annotator
	16.2 Mapping of SDF constructs to Verilog
	16.2.1 Mapping of SDF delay constructs to Verilog declarations
	Table 16-1— Mapping of SDF delay constructs to Verilog declarations

	16.2.2 Mapping of SDF timing check constructs to Verilog
	Table 16-2— Mapping of SDF timing check constructs to Verilog

	16.2.3 SDF annotation of specparams
	16.2.4 SDF annotation of interconnect delays
	Table 16-3— SDF annotation of interconnect delays

	16.3 Multiple annotations
	16.4 Multiple SDF files
	16.5 Pulse limit annotation
	16.6 SDF to Verilog delay value mapping
	Table 16-4— SDF to Verilog delay value mapping

	Section 17
	System tasks and functions
	17.1 Display system tasks
	17.1.1 The display and write tasks
	Syntax 17�1 —Syntax for $display and $write system tasks
	17.1.1.1 Escape sequences for special characters
	Table 17-1— Escape sequences for printing special characters
	Example:

	17.1.1.2 Format specifications
	Table 17-2— Escape sequences for format specifications�
	Table 17-3— Format specifications for real numbers
	Example:

	17.1.1.3 Size of displayed data
	Example:

	17.1.1.4 Unknown and high impedance values
	Example:

	17.1.1.5 Strength format
	Table 17-4— Logic value component of strength format
	Table 17-5— Mnemonics for strength levels�
	Table 17-6— Explanation of strength formats�

	17.1.1.6 Hierarchical name format
	17.1.1.7 String format

	17.1.2 Strobed monitoring
	Syntax�17�2 —Syntax for $strobe system tasks
	Example:

	17.1.3 Continuous monitoring
	Syntax�17�3 —Syntax for $monitor system tasks

	17.2 File input-output system tasks and functions
	17.2.1 Opening and closing files
	Syntax�17�4 —Syntax for $fopen and $fclose system tasks
	Table 17-7— Types for file descriptors

	17.2.2 File output system tasks
	Syntax�17�5 —Syntax for file output system tasks
	Example:

	17.2.3 Formatting data to a string
	Syntax�17�6 —Syntax for formatting data tasks

	17.2.4 Reading data from a file
	17.2.4.1 Reading a character at a time
	17.2.4.2 Reading a line at a time
	17.2.4.3 Reading formatted data
	a) White-space characters (blanks, tabs, new-lines, or form-feeds) that, except in one case descr...
	b) An ordinary character (not %) that must match the next character of the input stream.
	c) Conversion specifications consisting of the character % an optional assignment suppression cha...

	17.2.4.4 Reading binary data

	17.2.5 File positioning
	17.2.6 Flushing output
	17.2.7 I/O error status
	17.2.8 Loading memory data from a file
	Syntax�17�7 —Syntax for memory load system tasks
	Example:

	17.2.9 Loading timing data from an SDF file
	Syntax�17�8 —Syntax for $sdf_annotate system task
	Table 17-8— mtm spec argument
	Table 17-9— scale type argument

	17.3 Timescale system tasks
	a) $printtimescale
	b) $timeformat
	17.3.1 $printtimescale
	Syntax�17�9 —Syntax for $printtimescale
	Example:

	17.3.2 $timeformat
	Syntax�17�10 —Syntax for $timeformat
	Table 17-10— $timeformat units_number arguments
	Table 17-11— $timeformat default value for arguments
	Example:

	17.4 Simulation control system tasks
	a) $finish
	b) $stop
	17.4.1 $finish
	Syntax�17�11 —Syntax for $finish
	Table 17-12— Diagnostics for $finish

	17.4.2 $stop
	Syntax�17�12 —Syntax for $stop

	17.5 PLA modeling system tasks
	Syntax�17�13 —Syntax for PLA modeling system task
	Table 17-13— PLA modeling system tasks
	17.5.1 Array types
	17.5.2 Array logic types
	17.5.3 Logic array personality declaration and loading
	Example:

	17.5.4 Logic array personality formats

	17.6 Stochastic analysis tasks
	17.6.1 $q_initialize
	Table 17-14— Types of queues of $q_type values

	17.6.2 $q_add
	17.6.3 $q_remove
	17.6.4 $q_full
	17.6.5 $q_exam
	Table 17-15— Parameter values for $q_exam system task

	17.6.6 Status codes
	Table 17-16— Status parameter values

	17.7 Simulation time system functions
	17.7.1 $time
	Syntax�17�14 —Syntax for $time
	Example:
	a) The simulation times 16ns and 32 ns are scaled to 1.6 and 3.2 because the time unit for the mo...
	b) The value 1.6 is rounded to 2, and 3.2 is rounded to 3 because the $time system function retur...

	17.7.2 $stime
	Syntax�17�15 —Syntax for $stime

	17.7.3 $realtime
	Syntax�17�16 —Syntax for $realtime
	Example:

	17.8 Conversion functions
	Example:

	17.9 Probabilistic distribution functions
	17.9.1 $random function
	Syntax�17�17 —Syntax for $random

	17.9.2 $dist_ functions
	Syntax�17�18 —Syntax for the probabilistic distribution functions

	17.9.3 Algorithm for probabilistic distribution functions
	Table 17-17— Verilog to C function cross-listing�

	17.10 Command line input
	17.10.1 $test$plusargs (string)
	17.10.2 $value$plusargs (user_string, variable)

	Section 18
	Value change dump (VCD) files
	a) Four state: to represent variable changes in 0, 1, x, and z with no strength information.
	b) Extended: to represent variable changes in all states and strength information.
	18.1 Creating the four state value change dump file
	a) Insert the VCD system tasks in the Verilog source file to define the dump file name and to spe...
	b) Run the simulation.
	Figure�18�1— Creating the four state VCD file
	18.1.1 Specifying the name of the dump file ($dumpfile)
	Syntax�18�1 —Syntax for $dumpfile task
	Syntax�18�2 —Syntax for filename

	18.1.2 Specifying the variables to be dumped ($dumpvars)
	Syntax�18�3 —Syntax for $dumpvars task

	18.1.3 Stopping and resuming the dump ($dumpoff/$dumpon)
	Syntax�18�4 —Syntax for $dumpoff and $dumpon tasks

	18.1.4 Generating a checkpoint ($dumpall)
	Syntax�18�5 —Syntax for $dumpall task

	18.1.5 Limiting the size of the dump file ($dumplimit)
	Syntax�18�6 —Syntax fro $dumplimit task

	18.1.6 Reading the dump file during simulation ($dumpflush)
	Syntax�18�7 —Syntax for $dumpflush task

	18.2 Format of the four state VCD file
	18.2.1 Syntax of the four state VCD file
	Syntax�18�8 —Syntax of the output four state VCD file

	18.2.2 Formats of variable values
	Table 18-1— Rules for left-extending vector values
	Table 18-2— How the VCD can shorten values�

	18.2.3 Description of keyword commands
	Table 18-3— Keyword commands
	18.2.3.1 $comment
	Syntax�18�9 —Syntax for $comment section

	18.2.3.2 $date
	Syntax�18�10 —Syntax for $date section

	18.2.3.3 $enddefinitions
	Syntax�18�11 —Syntax for $enddefinitions section

	18.2.3.4 $scope
	Syntax�18�12 —Syntax for $scope section

	18.2.3.5 $timescale
	Syntax�18�13 —Syntax for $timescale

	18.2.3.6 $upscope
	Syntax�18�14 —Syntax for $upscope section

	18.2.3.7 $version
	Syntax�18�15 —Syntax for $version section

	18.2.3.8 $var
	Syntax�18�16 —Syntax for $var section
	a) The msb index indicates the most significant index; the lsb index indicates the least signific...
	b) More than one reference name can be mapped to the same identifier code. For example, net10 and...
	c) The individual bits of vector nets can be dumped individually.
	d) The identifier is the name of the variable being dumped in the model.

	18.2.3.9 $dumpall
	Syntax�18�17 —Syntax for $dumpall keyword

	18.2.3.10 $dumpoff
	Syntax�18�18 —Syntax for $dumpoff keyword

	18.2.3.11 $dumpon
	Syntax�18�19 —Syntax for $dumpon keyword

	18.2.3.12 $dumpvars
	Syntax�18�20 —Syntax for $dumpvars keyword

	18.2.4 Four state VCD file format example

	18.3 Creating the extended value change dump file
	Figure�18�2— Creating the extended VCD file
	a) Insert the extended VCD system tasks in the Verilog source file to define the dump file name a...
	b) Run the simulation.

	18.3.1 Specifying the dumpfile name and the ports to be dumped ($dumpports)
	Syntax�18�21 —Syntax for $dumpports task

	18.3.2 Stopping and resuming the dump ($dumpportsoff/$dumpportson)
	Syntax�18�22 —Syntax for $dumpportsoff and $dumpportson system tasks

	18.3.3 Generating a checkpoint ($dumpportsall)
	Syntax�18�23 —Syntax for $dumpportsall system task

	18.3.4 Limiting the size of the dump file ($dumpportslimit)
	Syntax�18�24 —Syntax for $dumpportslimit system task

	18.3.5 Reading the dump file during simulation ($dumpportsflush)
	Syntax�18�25 —Syntax for $dumpportsflush system task

	18.3.6 Description of keyword commands
	18.3.6.1 $vcdclose
	Syntax�18�26 —Syntax for $vcdclose keyword

	18.3.7 General rules for extended VCD system tasks

	18.4 Format of the extended VCD file
	18.4.1 Syntax of the extended VCD file
	Syntax�18�27 —Syntax of the output extended VCD file

	18.4.2 Extended VCD node information
	Syntax�18�28 —Syntax of extended VCD node information

	18.4.3 Value changes
	Syntax�18�29 —Syntax of value change section
	18.4.3.1 State characters
	18.4.3.2 Drivers

	18.4.4 Extended VCD file format example

	Section 19
	Compiler directives
	19.1 `celldefine and `endcelldefine
	19.2 `default_nettype
	Syntax 19�1 —Syntax for default nettype compiler directive

	19.3 `define and `undef
	19.3.1 `define
	Syntax 19�2 —Syntax for text macro definition
	Syntax 19�3 —Syntax for text macro usage

	19.3.2 `undef
	Syntax 19�4 —Syntax for undef compiler directive

	19.4 `ifdef, `else, `elsif, `endif, `ifndef
	Syntax 19�5 —Syntax for conditional compilation directives

	19.5 `include
	Syntax 19�6 —Syntax for include compiler directive

	19.6 `resetall
	19.7 `line
	Syntax�19�7 —Syntax for line compiler directive

	19.8 `timescale
	Syntax 19�8 —Syntax for timescale compiler directive
	Table 19-1— Arguments of time_precision
	a) The value of parameter d is rounded from 1.55 to 1.6 according to the time precision.
	b) The time unit of the module is 10 ns, and the precision is 1 ns, so the delay of parameter d i...
	c) The assignment of 0 to reg set is scheduled at simulation time 16 ns and the assignment of 1 a...

	19.9 `unconnected_drive and `nounconnected_drive

