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IEEE Standard Hardware Description
Language Based on the Verilog ®

Hardware Description Language

Section 1

Overview

1.1 Objectives of this standard

The intent of this standard is to serve as a complete specification of the Verilog® Hardware Description Language
(HDL). This document contains

— The formal syntax and semantics of all Verilog HDL constructs
— The formal syntax and semantics of Standard Delay Format (SDF) constructs
— Simulation system tasks and functions, such as text output display commands
— Compiler directives, such as text substitution macros and simulation time scaling
— The Programming Language Interface (PLI) binding mechanism
— The formal syntax and semantics of access routines, task/function routines, and Verilog procedural in

routines
— Informative usage examples
— Informative delay model for SDF
— Listings of header files for PLI

1.2 Conventions used in this standard

This standard is organized into sections, each of which focuses on some specific area of the language. There
clauses within each section to discuss individual constructs and concepts. The discussion begins with an intro
and an optional rationale for the construct or the concept, followed by syntax and semantic descriptions, follow
some examples and notes.

The verb “shall” is used through out this standard to indicate mandatory requirements, whereas the verb “can”
to indicate optional features. These verbs denote different meanings to different readers of this standard:
Section 1 Copyright 2000 IEEE. All rights reserved. 1
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a) To the developers of tools that process the Verilog HDL, the verb “shall” denotes a requirement th
standard imposes. The resulting implementation is required to enforce the requirements and to issue
if the requirement is not met by the input.

b) To the Verilog HDL model developer, the verb “shall” denotes that the characteristics of the Verilog HD
natural consequences of the language definition. The model developer is required to adhere to the co
implied by the characteristic. The verb “can” denotes optional features that the model developer can e
at discretion. If used, however, the model developer is required to follow the requirements set forth b
language definition.

c) To the Verilog HDL model user, the verb “shall” denotes that the characteristics of the models are n
consequences of the language definition. The model user can depend on the characteristics of the
implied by its Verilog HDL source text.

1.3 Syntactic description

The formal syntax of the Verilog HDL is described using Backus-Naur Form (BNF). The following convention
used:

a) Lowercase words, some containing embedded underscores, are used to denote syntactic catego
example:

module_declaration

b) Boldface words are used to denote reserved keywords, operators, and punctuation marks as a require
the syntax. These words appear in a larger font for distinction. For example:

module => ;

c) A vertical bar separates alternative items unless it appears in boldface, in which case it stands for its
example:

unary_operator ::=
+ |  - |  ! |  ~ |  & |   ~& |   | |  ~| |  ^ |  ~^ |  ^~

d) Square brackets enclose optional items. For example:

input_declaration ::=input  [range]  list_of_variables;

e) Braces enclose a repeated item unless it appears in boldface, in which case it stands for itself. The ite
appear zero or more times; the repetitions occur from left to right as with an equivalent left-recursive
Thus, the following two rules are equivalent:

list_of_param_assignments ::= param_assignment {, param_assignment }

list_of_param_assignments ::=
param_assignment

| list_of_param_assignment, param_assignment

f) If the name of any category starts with an italicized part, it is equivalent to the category name withou
italicized part. The italicized part is intended to convey some semantic information. For exam
msb_constant_expression andlsb_constant_expression are equivalent to constant_expression.

The main text usesitalicized font when a term is being defined, andconstant-width font for examples, file
names, and while referring to constants, especially0, 1, x , andz  values.
2 Copyright 2000 IEEE. All rights reserved. Section 1
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1.4 Contents of this standard

A synopsis of the sections and annexes is presented as a quick reference. There are 27 sections and 8 annex
sections and annexes A, B, E, F, and G are normative parts of this standard. Annexes C, D, and H are inclu
informative purposes only.

1) Overview
This section discusses the conventions used in this standard and its contents.

2) Lexical conventions
This section describes how to specify and interpret the lexical tokens.

3) Data types
This section describes net and variable data types. This section also discusses the parameter data
constant values and describes drive and charge strength of the values on nets.

4) Expressions
This section describes the operators and operands that can be used in expressions.

5) Scheduling semantics
This section describes the scheduling semantics of the Verilog HDL.

6) Assignments
This section compares the two main types of assignment statements in the Verilog HDL—contin
assignments and procedural assignments. It describes the continuous assignment statement th
values onto nets.

7) Gate and switch level modeling
This section describes the gate and switch level primitives and logic strength modeling.

8) User-defined primitives (UDPs)
This section describes how a primitive can be defined in the Verilog HDL and how these primitive
included in Verilog HDL models.

9) Behavioral modeling
This section describes procedural assignments, procedural continuous assignments, and behavi
guage statements.

10) Tasks and functions
This section describes tasks and functions—procedures that can be called from more than one pl
behavioral model. It describes how tasks can be used like subroutines and how functions can be
define new operators.

11) Disabling of named blocks and tasks
This section describes how to disable the execution of a task and a block of statements that has a
fied name.

12) Hierarchical structures
This section describes how hierarchies are created in the Verilog HDL and how parameter v
declared in a module can be overridden. It describes how generated instantiations can be used to
ditional or multiple instantiations in a design.

13) Configuring the contents of a design
This section describes how to configure the contents of a design.

14) Specify blocks
This section describes how to specify timing relationships between input and output ports of a mo

15) Timing checks
This section describes how timing checks are used in specify blocks to determine if signals obey th
ing constraints.

16) Backannotation using the Standard Delay Format (SDF)
This section describes syntax and semantics of Standard Delay Format (SDF) constructs.

17) System tasks and functions
This section describes the system tasks and functions.

18) Value change dump (VCD) files
This section describes the system tasks associated with Value Change Dump (VCD) file, and the
of the file.
Section 1 Copyright 2000 IEEE. All rights reserved. 3
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19) Compiler directives
This section describes the compiler directives.

20) PLI Overview
This section previews the C language procedural interface standard (Programming Language In
or PLI) and interface mechanisms that are part of the Verilog HDL.

21) PLI TF and ACC interface mechanism
This section describes the interface mechanism that provides a means for users to link PLI task/fu
(TF) routine and access (ACC) routine applications to Verilog software tools.

22) Using ACC routines
This section describes the ACC routines in general, including how and why to use them.

23) ACC routine definitions
This section describes the specific ACC routines, explaining their function, syntax, and usage.

24) Using TF routines
This section provides an overview of the types of operations that are done with the TF routines.

25) TF routine definitions
This section describes the specific TF routines, explaining their function, syntax, and usage.

26) Using VPI routines
This section provides an overview of the types of operations that are done with the Verilog Program
Interface (VPI) routines.

27) VPI routine definitions
This section describes the VPI routines.

A Formal syntax definition
This normative annex describes, using BNF, the syntax of the Verilog HDL.

B) List of keywords
This normative annex lists the Verilog HDL keywords.

C) System tasks and functions
This informative annex describes system tasks and functions that are frequently used, but that
part of the standard.

D) Compiler directives
This informative annex describes compiler directives that are frequently used, but that are not part
standard.

E) acc_user.h
This normative annex provides a listing of the contents of theacc_user.h  file.

F) veriuser.h
This normative annex provides a listing of the contents of thevpi_user.h  file.

G) vpi_user.h
This normative annex provides a listing of the contents of theveriuser.h  file.

H) Bibliography
This informative annex contains bibliographic entries pertaining to this standard.

1.5 Header file listings

The header file listings included in the annexes E, F, and G foracc_user.h, veriuser.h , andvpi_user.h
are a normative part of this standard. All compliant software tools should use the same function declarations, c
definitions, and structure definitions contained in these header file listings.

1.6 Examples

Several small examples in the Verilog HDL and the C programming language are shown throughout this sta
These examples areinformative—they are intended to illustrate the usage of Verilog HDL constructs and PLI fu
tions in a simple context and do not define the full syntax.
4 Copyright 2000 IEEE. All rights reserved. Section 1
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1.7 Prerequisites

Sections 20 through 27 and annexes E through G presuppose a working knowledge of the C programming la
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Section 2

Lexical conventions

This section describes the lexical tokens used in Verilog HDL source text and their conventions.

2.1 Lexical tokens

Verilog HDL source text files shall be a stream of lexical tokens. Alexical tokenshall consist of one or more charac
ters. The layout of tokens in a source file shall be free format—that is, spaces and newlines shall not be synta
significant other than being token separators, except for escaped identifiers (see 2.7.1).

The types of lexical tokens in the language are as follows:

— White space

— Comment

— Operator

— Number

— String

— Identifier

— Keyword

2.2 White space

White space shall contain the characters for spaces, tabs, newlines, and formfeeds. These characters shall b
except when they serve to separate other lexical tokens. However, blanks and tabs shall be considered si
characters in strings (see 2.6).

2.3 Comments

The Verilog HDL has two forms to introduce comments. Aone-line commentshall start with the two characters//
and end with a newline. Ablock commentshall start with /* and end with*/ . Block comments shall not be nested
The one-line comment token//  shall not have any special meaning in a block comment.

2.4 Operators

Operators are single-, double-, or triple-character sequences and are used in expressions. Section 4 discuss
of operators in expressions.

Unary operatorsshall appear to the left of their operand.Binary operatorsshall appear between their operands.
conditional operator shall have two operator characters that separate three operands.

2.5 Numbers

Constant numbers can be specified as integer constants or real constants.
Section 2 Copyright 2000 IEEE. All rights reserved. 7
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Syntax 2-1—Syntax for integer and real numbers

2.5.1 Integer constants

Integer constants can be specified in decimal, hexadecimal, octal, or binary format.

There are two forms to express integer constants. The first form is a simple decimal number, which shall be sp

number ::= (From Annex A - A.8.7)
decimal_number

| octal_number
| binary_number
| hex_number
| real_number

real_number1 ::=
unsigned_number. unsigned_number

| unsigned_number [ . unsigned_number ] exp [ sign ] unsigned_number
exp ::=e | E
decimal_number ::=

unsigned_number
| [ size] decimal_base unsigned_number
| [ size] decimal_base x_digit {_ }
| [ size] decimal_base z_digit {_ }

binary_number ::=
[ size] binary_base binary_value

octal_number ::=
[ size] octal_base octal_value

hex_number ::=
[ size] hex_base hex_value

sign ::=+ | -
size ::= non_zero_unsigned_number
non_zero_unsigned_number1 ::= non_zero_decimal_digit { _ | decimal_digit}
unsigned_number1 ::= decimal_digit {_ | decimal_digit }
binary_value1 ::= binary_digit {_ | binary_digit }
octal_value1 ::= octal_digit {_ | octal_digit }
hex_value1 ::= hex_digit {_ | hex_digit }
decimal_base1 ::= ' [s|S]d | ' [s|S]D
binary_base1 ::= ' [s|S]b | ' [s|S]B
octal_base1::= ' [s|S]o | ' [s|S]O
hex_base1 ::= ' [s|S]h | ' [s|S]H
non_zero_decimal_digit ::=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_digit ::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x_digit | z_digit |0 | 1
octal_digit ::= x_digit | z_digit |0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::=

x_digit | z_digit |0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X
z_digit ::=z | Z | ?

1Embedded spaces are illegal.
8 Copyright 2000 IEEE. All rights reserved. Section 2
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

eci-
lowed

hall be
its is 8,

wn (

eded by

signed
l digits

perator

l
,

shall be

rk can
iscussion
8.1.6,

e charac-
as a sequence of digits0 through9, optionally starting with a plus or minus unary operator. The second form sp
fies asize constant, which shall be composed of up to three tokens—an optional size constant, a single quote fol
by a base format character, and the digits representing the value of the number.

The first token, a size constant, shall specify the size of the constant in terms of its exact number of bits. It s
specified as a non-zero unsigned decimal number. For example, the size specification for two hexadecimal dig
because one hexadecimal digit requires 4 bits. Unsized unsigned constants where the high order bit is unknoX or
x ) or tri-state (Z or z ) are extended to the size of the expression containing the constant.

NOTE—In Verilog 1364-1995 unsized constants where the high order bit is unknown or tri-state, thex or z was only extended to
32 bits.

The second token, a base_format, shall consist of a letter specifying the base for the number, optionally prec
the single characters (or S) to indicate a signed quantity, preceded by the single quote character (’ ). Legal base spec-
ifications ared, D, h, H, o, O, b, orB, for the bases decimal, hexadecimal, octal, and binary respectively.

The use ofx  andz  in defining the value of a number is case insensitive.

The single quote and the base format character shall not be separated by any white space.

The third token, an unsigned number, shall consist of digits that are legal for the specified base format. The un
number token shall immediately follow the base format, optionally preceded by white space. The hexadecima
a to f  shall be case insensitive.

Simple decimal numbers without the size and the base format shall be treated assigned integers, whereas the numbers
specified with the base format shall be treated as signed integers if thes designator is included or asunsigned integers
if the base format only is used. Thes  designator does not affect the bit pattern specified, only its interpretation.

A plus or minus operator preceding the size constant is a unary plus or minus operator. A plus or minus o
between the base format and the number is an illegal syntax.

Negative numbers shall be represented in 2’s complement form.

An x represents theunknown valuein hexadecimal, octal, and binary constants. A z represents thehigh-impedance
value. See 3.1 for a discussion of the Verilog HDL value set. Anx shall set 4 bits to unknown in the hexadecima
base, 3 bits in the octal base, and 1 bit in the binary base. Similarly, az shall set 4 bits, 3 bits, and 1 bit, respectively
to the high-impedance value.

If the size of the unsigned number is smaller than the size specified for the constant, the unsigned number
padded to the left with zeros. If the leftmost bit in the unsigned number is anx or az , then anx or az shall be used
to pad to the left respectively.

When used in a number, the question-mark(?) character is a Verilog HDL alternative for thez character. It sets 4
bits to the high-impedance value in hexadecimal numbers, 3 bits in octal, and 1 bit in binary. The question ma
be used to enhance readability in cases where the high-impedance value is a don’t-care condition. See the d
of casezandcasexin 9.5.1. The question-mark character is also used in user-defined primitive state table. See
Table 8-1.

The underscore character (_) shall be legal anywhere in a number except as the first character. The underscor
ter is ignored. This feature can be used to break up long numbers for readability purposes.
Section 2 Copyright 2000 IEEE. All rights reserved. 9
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data type,
Examples:

Example 1—Unsized constant numbers

Example 2—Sized constant numbers

Example 3—Using sign with constant numbers

Example 4—Automatic left padding

Example 5—Using underscore character in numbers

NOTES

1—Sized negative constant numbers and sized signed constant numbers are sign-extended when assigned to a reg
regardless of whether the reg itself is signed or not.

659 // is a decimal number
’h 837FF // is a hexadecimal number
’o7460 // is an octal number
4af // is illegal (hexadecimal format requires ’h)

4’b1001 // is a 4-bit binary number
5 ’D 3 // is a 5-bit decimal number
3’b01x // is a 3-bit number with the least

// significant bit unknown
12’hx // is a 12-bit unknown number
16’hz // is a 16-bit high-impedance number

8 ’d -6 // this is illegal syntax
-8 ’d 6 // this defines the two’s complement of 6,

// held in 8 bits—equivalent to -(8’d 6)
4 ’shf // this denotes the 4-bit number ‘1111’, to

// be interpreted as a 2’s complement number,
// or ‘-1’. This is equivalent to -4’h 1

-4 ’sd15 // this is equivalent to -(-4’d 1), or ‘0001’.

reg [11:0] a, b, c, d;
initial begin

a = ’h x; // yields xxx
b = ’h 3x; // yields 03x
c = ’h z3; // yields zz3
d = ’h 0z3; // yields 0z3

end
reg [84:0]      e, f, g;

e = 'h5;        // yields {82{1'b0},3'b101}
f = 'hx;        // yields {85{1'hx}}
g = 'hz;        // yields {85{1'hz}}

27_195_000
16’b0011_0101_0001_1111
32 ’h 12ab_f001

27_195_000
16’b0011_0101_0001_1111
32 ’h 12ab_f001
10 Copyright 2000 IEEE. All rights reserved. Section 2
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2—Each of the three tokens for specifying a number may be macro substituted.

3—The number of bits that make up an unsized number (which is a simple decimal number or a number without the size sp
tion) shall be at least 32.

2.5.2 Real constants

Thereal constant numbersshall be represented as described byIEEE Std 754-1985[B1],1 an IEEE standard for dou-
ble-precision floating-point numbers.

Real numbers can be specified in either decimal notation (for example, 14.72) or in scientific notation (for exa
39e8, which indicates 39 multiplied by 10 to the eighth power). Real numbers expressed with a decimal poin
have at least one digit on each side of the decimal point.

Examples:

1.2
0.1
2394.26331
1.2E12 (the exponent symbol can be e or E)
1.30e-2
0.1e-0
23E10
29E-2
236.123_763_e-12 (underscores are ignored)

The following are invalid forms of real numbers because they do not have at least one digit on each side of th
mal point:

.12
9.
4.E3
.2e-7

2.5.3 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by
ing it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be ro
away from zero.

For example:

— The real numbers 35.7 and 35.5 both become 36 when converted to an integer and 35.2 becomes 35.

— Converting -1.5 to integer yields -2, converting 1.5 to integer yields 2.

2.6 Strings

A string is a sequence of characters enclosed by double quotes (“” ) and contained on a single line. Strings used
operands in expressions and assignments shall be treated as unsigned integer constants represented by a s
8-bit ASCII values, with one 8-bit ASCII value representing one character.

1The numbers in brackets correspond to those of the bibliography in Annex H.
Section 2 Copyright 2000 IEEE. All rights reserved. 11
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2.6.1 String variable declaration

String variables are variables of reg type (see 3.2) with width equal to the number of characters in the string
plied by 8.

Example:

To store the twelve-character string“Hello world!”  requires a reg 8 * 12, or 96 bits wide

2.6.2 String manipulation

Strings can be manipulated using the Verilog HDL operators. The value being manipulated by the operato
sequence of 8-bit ASCII values.

Example:

The output is:

Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

NOTE—When a variable is larger than required to hold a value being assigned, the contents on the left are padded with ze
the assignment. This is consistent with the padding that occurs during assignment of nonstring values. If a string is larger
destination string variable, the string is truncated to the left, and the leftmost characters will be lost.

2.6.3 Special characters in strings

Certain characters can only be used in strings when preceded by an introductory character called anescape character.
Table 2-1 lists these characters in the right-hand column, with the escape sequence that represents the chara
left-hand column.

Table 2-1—Specifying special characters in string

Escape
string

Character produced by
escape string

\n New line character

\t Tab character

\\ \ character

reg [8*12:1] stringvar;
initial begin

stringvar = "Hello world!";
end

module string_test;
reg [8*14:1] stringvar;
initial begin

stringvar = "Hello world";
$display("%s is stored as %h", stringvar,stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar,stringvar);

end
endmodule
12 Copyright 2000 IEEE. All rights reserved. Section 2
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2.7 Identifiers, keywords, and system names

An identifier is used to give an object a unique name so it can be referenced. An identifier is either asimple identifier
or anescaped identifier(see 2.7.1). Asimple identifiershall be any sequence of letters, digits, dollar signs ($), and
underscore characters (_).

The first character of a simple identifier shall not be a digit or$; it can be a letter or an underscore. Identifiers shall
case sensitive.

Example:

shiftreg_a
busa_index
error_condition
merge_ab
_bus3
n$657

NOTE—Implementations may set a limit on the maximum length of identifiers, but they shall at least be 1024 character
identifier exceeds the implementation-specified length limit, an error shall be reported.

2.7.1 Escaped identifiers

Escaped identifiersshall start with the backslash character (\ ) and end with white space (space, tab, newline). Th
provide a means of including any of the printable ASCII characters in an identifier (the decimal values 33 th
126, or 21 through 7E in hexadecimal).

Neither the leading backslash character nor the terminating white space is considered to be part of the id
Therefore, an escaped identifier\cpu3  is treated the same as a nonescaped identifiercpu3 .

Example:

\busa+index
\-clock
\***error-condition***
\net1/\net2
\{a,b}
\a*(b+c)

2.7.2 Generated identifiers

Generated identifiers are created by generate loops (see 12.1.3.2); and are a special case of identifiers in tha
be used in hierarchical names (see 12.4). A generated identifier is the named generate block identifier termina
a ([digit(s)]) string.  This identifier is used as a node name in hierarchical names (see 12.4).

\" " character

\ddd A character specified in 1–3 octal digits
(0 ≤ d ≤ 7)

Table 2-1—Specifying special characters in string  (continued)

Escape
string

Character produced by
escape string
Section 2 Copyright 2000 IEEE. All rights reserved. 13
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2.7.3 Keywords

Keywordsare predefined nonescaped identifiers that are used to define the language constructs. A Verilog HD
word preceded by an escape character is not interpreted as a keyword.

All keywords are defined in lowercase only. Annex B gives a list of all defined keywords.

2.7.4 System tasks and functions

The $ character introduces a language construct that enables development of user-defined tasks and func
name following the$ is interpreted as asystem task or asystem function.

The syntax for a system task or function is given in Syntax 2-2.

Syntax 2-2—Syntax for system tasks and functions

The $identifier system task or function can be defined in three places

— A standard set of $identifier system tasks and functions, as defined in Sections 17 and 19.
— Additional $identifier system tasks and functions defined using the PLI, as described in Section 20.
— Additional $identifier system tasks and functions defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a
task or function name. The system tasks and functions described in Section 17 are part of this standard. Ad
system tasks and functions with the $identifier construct are not part of this standard.

Example:

$display ("display a message");
$finish;

2.7.5 Compiler directives

The ` character (the ASCII value 60, called open quote or accent grave) introduces a language construct
implement compiler directives. The compiler behavior dictated by a compiler directive shall take effect as soon
compiler reads the directive. The directive shall remain in effect for the rest of the compilation unless a differen
piler directive specifies otherwise. A compiler directive in one description file can therefore control compil
behavior in multiple description files.

The `identifier compiler directive construct can be defined in two places

system_task_enable ::=(From Annex A - A.6.9)
system_task_identifier [( expression {, expression }) ] ;

system_function_call ::=(From Annex A - A.8.2)
system_function_identifier [( expression {, expression }) ]

system_function_identifier1 ::= (From Annex A - A.9.3)
$[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] }

system_task_identifier1 ::=
$[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] }

1The$ character in asystem_function_identifier or system_task_identifier shall
not be followed by white space. A system_function_identifier or
system_task_identifier  shall not be escaped.
14 Copyright 2000 IEEE. All rights reserved. Section 2
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— A standard set of `identifier compiler directives defined in Section 19.
— Additional `identifier compiler directives defined by software implementations.

Any valid identifier, including keywords already in use in contexts other than this construct, can be used as a co
directive name. The compiler directives described in Section 19 are part of this standard. Additional compiler
tives with the `identifier construct are not part of this standard.

Example:

`define wordsize 8

2.8 Attributes

With the proliferation of tools other than simulators that use Verilog HDL as their source, a mechanism is inc
for specifying properties about objects, statements and groups of statements in the HDL source that may be
various tools, including simulators, to control the operation or behavior of the tool. These properties shall be re
to as "attributes". This section specifies the syntactic mechanism that shall be used for specifying attributes,
standardizing on any particular attributes.

The syntax for specifying an attribute is shown in Syntax 2-3.

Syntax 2-3—Syntax for attributes

An attribute_instance can appear in the Verilog description as a prefix attached to a declaration, a mo
item, a statement, or a port connection. It can appear as a suffix to an operator or a Verilog function nam
expression.

If a value is not specifically assigned to the attribute or a non-zero value is assigned, then its value shall betrue . If
0 is assigned, then the attribute isfalse . For attributes that can be attached to both module definitions and mo
instantiations, the attribute value associated with the module instantiation shall override the attribute value ass
with the module definition.

attribute_instance ::=(From Annex A - A.9.1)
(*  attr_spec {, attr_spec }; *)

attr_spec ::=
attr_name= constant_expression

| attr_name
attr_name ::=

identifier
Section 2 Copyright 2000 IEEE. All rights reserved. 15
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2.8.1 Examples

Example 1—The following example shows how to attach attributes to a case statement:

(* full_case, parallee_case *)
case (foo)
<rest_of_case_statement>

or

(* full_case=1, parallee_case=1 *)
case (foo)
<rest_of_case_statement>

or

(* full_case, // no value assigned
parallee_case=1 *)

case (foo)
<rest_of_case_statement>

Example 2—To attach thefull_case  attribute, but NOT theparallel_case  attribute:

(* full_case *) // parallel_case not specified
case (foo)
<rest_of_case_statement>

or

(* full_case=1, parallel_case = 0 *)
case (foo)
<rest_of_case_statement>

Example 3—To attach an attribute to a module definition:

(* optimize_power *)
module mod1 (<port_list>);

or

(* optimize_power *)
module mod1 (<port_list>);

Example 4—To attach an attribute to a module instantiation:

(* optimize_power=0 *)
mod1 synth1 (<port_list>);

Example 5—To attach an attribute to a reg declaration:

(* fsm_state *) reg [7:0] state1;
(* fsm_state=1 *) reg [3:0] state2, state3;
reg [3:0] reg1;  // this reg does NOT have fsm_state set
(* fsm_state=0 *) reg [3:0] reg2;  // nor does this one
16 Copyright 2000 IEEE. All rights reserved. Section 2
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Example 6—To attach an attribute to an operator:

a = b + (* mode = "cla" *) c;

This sets the value for the attribute mode to be the stringcla .

Example 7—To attach an attribute to a Verilog function call:

a = add (* mode = "cla" *) (b, c);

Example 8—To attach an attribute to a conditional operator:

a = b ? (* no_glitch *) c : d;

2.8.2 Syntax

The syntax for legal statements with attributes is shown in Syntax 2-4— Syntax 2-11.

The syntax for module declaration attributes is given in Syntax 2-4.

Syntax 2-4—Syntax for module declaration attributes

The syntax for port declaration attributes is given in Syntax 2-5.

Syntax 2-5—Syntax for port declaration attributes

The syntax for module item attributes is given in Syntax 2-6.

module_declaration ::=(From Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier
[ module_parameter_port_list ] [ list_of_ports ];
{ module_item }

endmodule
        | { attribute_instance } module_keyword module_identifier

[ module_parameter_port_list ] [ list_of_port_declarations ];
{ non_port_module_item }

endmodule

port_declaration ::=(From Annex A - A.1.4)
{attribute_instance} inout_declaration

| {attribute_instance} input_declaration
| {attribute_instance} output_declaration
Section 2 Copyright 2000 IEEE. All rights reserved. 17
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Syntax 2-6—Syntax for module item attributes

The syntax for function port, task, and block attributes is given in Syntax 2-7.

Syntax 2-7—Syntax for function port, task, and block attributes

module_item ::=(From Annex A - A.1.5)
module_or_generate_item

| port_declaration
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct

non_port_module_item ::=
{ attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

function_port_list ::=(From Annex A - A.2.6)
{attribute_instance} input_declaration {, {attribute_instance } input_declaration}

task_item_declaration ::=(From Annex A - A.2.7)
block_item_declaration

| { attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

task_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

block_item_declaration ::=(From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration

| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration
18 Copyright 2000 IEEE. All rights reserved. Section 2
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The syntax for port connection attributes is given in Syntax 2-8.

Syntax 2-8—Syntax for port connection attributes

The syntax for udp attributes is given in Syntax 2-9.

Syntax 2-9—Syntax for udp attributes

The syntax for function and statement attributes is given in Syntax 2-10.

ordered_port_connection ::=(From Annex A - A.4.1)
{ attribute_instance } [ expression ]

named_port_connection ::=
{ attribute_instance }.port_identifier( [ expression ] )

udp_declaration ::=(From Annex A - A.5.1)
{ attribute_instance }primitive  udp_identifier( udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body

endprimitive
| { attribute_instance }primitive  udp_identifier( udp_declaration_port_list) ;

udp_body
endprimitive

udp_output_declaration ::=(From Annex A - A.5.2)
{ attribute_instance }output port_identifier;

| { attribute_instance }output reg port_identifier [= constant_expression ];
udp_input_declaration ::=

{ attribute_instance }input  list_of_port_identifiers;
udp_reg_declaration ::=

{ attribute_instance }reg variable_identifier;
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Syntax 2-10—Syntax for function and statement attributes

The syntax for function call and expression attributes is given in Syntax 2-11.

function_statement_or_null ::=(From Annex A - A.6.2)
function_statement

| { attribute_instance };
statement ::=(From Annex A - A.6.4)

{ attribute_instance } blocking_assignment;
| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } nonblocking_assignment;
| { attribute_instance } par_block
| { attribute_instance } procedural_continuous_assignments;
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement

statement_or_null ::=
statement

| { attribute_instance };
function_statement ::=

{ attribute_instance } function_blocking_assignment;
| { attribute_instance } function_case_statement
| { attribute_instance } function_conditional_statement
| { attribute_instance } function_loop_statement
| { attribute_instance } function_seq_block
| { attribute_instance } disable_statement
| { attribute_instance } system_task_enable
20 Copyright 2000 IEEE. All rights reserved. Section 2
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Syntax 2-11—Syntax for function call and expression attributes

constant_function_call ::=(From Annex A - A.8.2)
function_identifier { attribute_instance }
( constant_expression {, constant_expression } )

function_call ::=
hierarchical_function_identifier{ attribute_instance }
( expression {, expression })

genvar_function_call ::=
genvar_function_identifier { attribute_instance }
( constant_expression {, constant_expression })

conditional_expression ::=(From Annex A - A.8.3)
expression1? { attribute_instance } expression2: expression3

constant_expression ::=
constant_primary

| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression? { attribute_instance }

constant_expression: constant_expression
| string

expression ::=
primary

| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string

module_path_conditional_expression ::=
module_path_expression? { attribute_instance }

| module_path_expression: module_path_expression
module_path_expression ::=

module_path_primary
| unary_module_path_operator { attribute_instance } module_path_primary
| module_path_expression binary_module_path_operator { attribute_instance }

module_path_expression
| module_path_conditional_expression
Section 2 Copyright 2000 IEEE. All rights reserved. 21
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Section 3

Data types

The set of Verilog HDL data types is designed to represent the data storage and transmission elements found
hardware.

3.1 Value set

The Verilog HDL value set consists of four basic values:

0 - represents a logic zero, or a false condition

1 - represents a logic one, or a true condition

x - represents an unknown logic value

z - represents a high-impedance state

The values0 and1 are logical complements of one another.

When thez value is present at the input of a gate, or when it is encountered in an expression, the effect is usua
same as anx value. Notable exceptions are the metal-oxide semiconductor (MOS) primitives, which can passz
value.

Almost all of the data types in the Verilog HDL store all four basic values. The exception is theeventtype (see 9.7.3),
which has no storage. All bits of vectors can be independently set to one of the four basic values.

The language includesstrength information in addition to the basic value information for net variables. This
described in detail in Section 7.

3.2 Nets and variables

There are two main groups of data types: the variable data types and the net data types. These two groups dif
way that they are assigned and hold values. They also represent different hardware structures.

3.2.1 Net declarations

Thenetdata types shall represent physical connections between structural entities, such as gates. A net shall
a value (except for the trireg net). Instead, its value shall be determined by the values of its drivers, such as a c
ous assignment or a gate. See Section 6 and Section 7 for definitions of these constructs. If no driver is conne
net, its value shall be high-impedance (z ) unless the net is a trireg, in which case it shall hold the previously driv
value. It is illegal to redeclare a name already declared by a net, parameter, or variable declaration.

The syntax for net declarations is given in Syntax 3-1.
Section 3 Copyright 2000 IEEE. All rights reserved. 23
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Syntax 3-1—Syntax for net declaration

net_declaration ::=(From Annex A - A.2.1.3)
net_type [signed ]
[ delay3 ] list_of_net_identifiers;

| net_type [ drive_strength ] [signed ]
[ delay3 ] list_of_net_decl_assignments;

| net_type [vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_identifiers;

| net_type [ drive_strength ] [vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments;

| trireg  [ charge_strength ] [signed ]
[ delay3 ] list_of_net_identifiers;

| trireg  [ drive_strength ] [signed ]
[ delay3 ] list_of_net_decl_assignments;

| trireg  [ charge_strength ] [vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_identifiers;

| trireg  [ drive_strength ] [vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments;

net_type ::=(From Annex A - A.2.2.1)
supply0 | supply1

| tri | triand   | trior  | tri0  | tri1
| wire | wand   |wor

drive_strength ::=(From Annex A - A.2.2.2)
( strength0, strength1)

| ( strength1, strength0)
| ( strength0, highz1 )
| ( strength1, highz0 )
| ( highz0 , strength1)
| ( highz1 , strength0)

strength0 ::=supply0 | strong0 | pull0 | weak0
strength1 ::=supply1 | strong1 | pull1 | weak1
charge_strength ::=( small ) | ( medium ) | ( large )
delay3 ::=(From Annex A - A.2.2.3)

# delay_value |# ( delay_value [, delay_value [, delay_value ] ])
delay2 ::=

# delay_value |# ( delay_value [, delay_value ])
delay_value ::=

unsigned_number
| parameter_identifier
| specparam_identifier
| mintypmax_expression

list_of_net_decl_assignments ::=(From Annex A - A.2.3)
net_decl_assignment {, net_decl_assignment }

list_of_net_identifiers ::=
net_identifier [ dimension { dimension }]

{ , net_identifier [ dimension { dimension }] }
net_decl_assignment ::=(From Annex A - A.2.4)

net_identifier= expression
dimension ::=(From Annex A -A.2.5)

[ dimension_constant_expression: dimension_constant_expression]
range ::=

[ msb_constant_expression: lsb_constant_expression]
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The first two forms of net declaration are described in this section. The third form, called net assignment, is de
in Section 6.

3.2.2 Variable declarations

A variable is an abstraction of a data storage element. A variable shall store a value from one assignment to th
An assignment statement in a procedure acts as a trigger that changes the value in the data storage elemen
tialization value forreg, time, andinteger data types shall be the unknown value,x . The default initialization value
for real and realtime variable datatypes shall be0.0 . If a variable declaration assignment is used (see 6.2.1),
variable shall take this value as if the assignment occurred in a blocking assignment in an initial construct. It is
to redeclare a name already declared by a net, parameter, or variable declaration.

NOTE—In previous versions of the Verilog standard, the termregisterwas used to encompass both thereg, integer, time, real
andrealtime types; but that the term is no longer used as a Verilog data type.

The syntax for variable declarations is given in Syntax 3-2.

Syntax 3-2—Syntax for variable declaration

If a set of nets or variables share the same characteristics, they can be declared in the same declaration stat

integer_declaration ::=(From Annex A - A.2.1.3)
integer list_of_variable_identifiers;

real_declaration ::=
real list_of_real_identifiers;

realtime_declaration ::=
realtime list_of_real_identifiers;

reg_declaration ::=
reg [ signed ] [ range ] list_of_variable_identifiers;

time_declaration ::=
time list_of_variable_identifiers;

real_type ::= (From Annex A - A.2.2.1)
real_identifier [= constant_expression ]

        | real_identifier dimension { dimension }
variable_type ::=

variable_identifier [= constant_expression ]
| variable_identifier dimension { dimension }

list_of_real_identifiers ::=(From Annex A - A.2.3)
real_type {, real_type }

list_of_variable_identifiers ::=
variable_type {, variable_type }

dimension ::=(From Annex A - A.2.5)
[ dimension_constant_expression: dimension_constant_expression]

range ::=
[ msb_constant_expression: lsb_constant_expression]
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3.3 Vectors

A net or reg declaration without a range specification shall be considered 1 bit wide and is known as ascalar. Multi-
ple bit net and reg data types shall be declared by specifying a range, which is known as avector.

3.3.1 Specifying vectors

The range specification gives addresses to the individual bits in a multibit net or reg. The most significant bit sp
by themsbconstant expression is the left-hand value in the range and the least significant bit specified by thelsbcon-
stant expression is the right-hand value in the range.

Both msb constant expression and lsb constant expression shall be constant expressions. The msb and lsb
expressions can be any value—positive, negative, or zero. The lsb constant expression can be a greater,
lesser value than msb constant expression.

Vector nets and regs shall obey laws of arithmetic modulo 2 to the powern (2n), wheren is the number of bits in the
vector. Vector nets and regs shall be treated as unsigned quantities, unless the net or reg is declared to be sig
connected to a port that is declared to be signed (see 12.2.3).

Examples:

wand w; // a scalar net of type “wand”
tri  [15:0] busa; // a tri-state 16-bit bus
trireg  (small) storeit; // a charge storage node of strength small
reg a; // a scalar reg
reg[3:0] v; // a 4-bit vector reg made up of (from most to

// least significant) v[3], v[2], v[1], and v[0]
reg signed[3:0] signed_reg; // a 4-bit vector in range -8 to 7
reg [-1:4] b; // a 6-bit vector reg
wire w1, w2; // declares two wires
reg [4:0] x, y, z; // declares three 5-bit regs

NOTES

1—Implementations may set a limit on the maximum length of a vector, but they will at least be 65536 (216) bits.

2—Implementations do not have to detect overflow of integer operations.

3.3.2 Vector net accessibility

Vectoredandscalaredshall be optional advisory keywords to be used in vector net or reg declaration. If these
words are implemented, certain operations on vectors may be restricted. If the keywordvectored is used, bit and part
selects and strength specifications may not be permitted, and the PLI may consider the objectunexpanded. If the key-

CAUTION

Variables can be assigned negative values, but only
signed regs, integer, real, and realtime variables
shall retain the significance of the sign. The
unsigned reg and time variables shall treat the value
assigned to them as an unsigned value. Refer to
4.1.6 for a description of how signed and unsigned
variables are treated by certain Verilog operators.
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word scalared is used, bit and part selects of the object shall be permitted, and the PLI shall consider the
expanded.

Examples:

tri1 scalared [63:0] bus64; //a bus that will be expanded
tri vectored [31:0] data; //a bus that may or may not be expanded

3.4 Strengths

There are two types ofstrengths that can be specified in a net declaration. They are as follows:

charge strength shall only be used when declaring a net of typetrireg

drive strength shall only be used when placing a continuous assignment on a net in the same stateme
declares the net

Gate declarations can also specify a drive strength. See Section 7 for more information on gates and for info
on strengths.

3.4.1 Charge strength

The charge strength specification shall be used only with trireg nets. A trireg net shall be used to model charg
age; charge strength shall specify the relative size of the capacitance indicated by one of the following keywo

— small
— medium
— large

The default charge strength of a trireg net shall bemedium.

A trireg net can model a charge storage node whose charge decays over time. The simulation time of a charg
shall be specified in the delay specification for the trireg net (see 7.13.2).

3.4.2 Drive strength

The drive strength specification allows a continuous assignment to be placed on a net in the same statem
declares that net. See Section 6 for more details. Net strength properties are described in detail in Section 7.

3.5 Implicit declarations

The syntax shown in 3.2 shall be used to declare nets and variables explicitly. In the absence of an explicit d
tion, an implicit net of default net type shall be assumed in the following circumstances:

— If an identifier is used in a port expression declaration, then an implicit net of typewire shall be assumed, with
the vector width of the port expression declaration. See 12.3.3 for a discussion of port expression d
tions.

— If an identifier is used in the terminal list of a primitive instance or a module instance, and that identifie
not been explicitly declared previously in one of the declaration statements of the instantiating module
an implicit scalar net of default net type shall be assumed. See Section 19 for a discussion of control
type for implicitly declared nets with the`default_nettype compiler directive.
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3.6 Net initialization

The default initialization value for a net shall be the valuez . Nets with drivers shall assume the output value of the
drivers. The trireg net is an exception. The trireg net shall default to the valuex , with the strength specified in the ne
declaration (small, medium, or large).

3.7 Net types

There are several distinct types of nets, as shown in Table 3-1.

3.7.1 Wire and tri nets

Thewire andtri nets connect elements. The net types wire and tri shall be identical in their syntax and function
names are provided so that the name of a net can indicate the purpose of the net in that model. A wire net can
for nets that are driven by a single gate or continuous assignment. The tri net type can be used where multiple
drive a net.

Logical conflicts from multiple sources of the same strength on a wire or a tri net result in x (unknown) values

Table 3-2 is a truth table for resolving multiple drivers on wire and tri nets. Note that it assumes equal streng
both drivers. Please refer to 7.9 for a discussion of logic strength modeling.

3.7.2 Wired nets

Wired nets are of typewor, wand, trior, andtriand, and are used to model wired logic configurations. Wired nets u
different truth tables to resolve the conflicts that result when multiple drivers drive the same net. The wor an
nets shall createwired orconfigurations, such that when any of the drivers is1, the resulting value of the net is1. The
wand and triand nets shall createwired and configurations, such that if any driver is0, the value of the net is0.

The net types wor and trior shall be identical in their syntax and functionality. The net types wand and triand s
identical in their syntax and functionality. Table 3-3 and Table 3-4 give the truth tables for wired nets. Note tha
assume equal strengths for both drivers. See 7.9 for a discussion of logic strength modeling.

Table 3-1—Net types

wire tri tri0 supply0

wand triand tri1 supply1

wor trior trireg

Table 3-2—Truth table for wire and tri nets

wire/
tri 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x z
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3.7.3 Trireg net

Thetrireg net stores a value and is used to model charge storage nodes. A trireg net can be in one of two sta

driven state When at least one driver of a trireg net has a value of1, 0, or x , the resolved value propagates int
the trireg net and is the driven value of the trireg net.

capacitive state When all the drivers of a trireg net are at the high-impedance value (z ), the trireg net retains its last
driven value; the high-impedance value does not propagate from the driver to the trireg.

The strength of the value on the trireg net in the capacitive state can besmall, medium, or large, depending on the
size specified in the declaration of the trireg net. The strength of a trireg net in the driven state can besupply, strong,
pull , orweak, depending on the strength of the driver.

Examples:

Figure 3-1 shows a schematic that includes a trireg net whose size ismedium, its driver, and the simulation results.

Table 3-3—Truth table for wand and triand nets

wand/
triand 0 1 x z

0 0 0 0 0

1 0 1 x 1

x 0 x x x

z 0 1 x z

Table 3-4—Truth table for wor and trior nets

wor/
trior 0 1 x z

0 0 1 x 0

1 1 1 1 1

x x 1 x x

z 0 1 x z
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Figure 3-1—Simulation values of a trireg and its driver

a) At simulation time 0, wirea and wireb have a value of1. A value of1 with a strong strength propagates
from theand gate through thenmos switches connected to each other by wirec  into trireg netd.

b) At simulation time 10, wirea changes value to0, disconnecting wirec from theand gate. When wirec is no
longer connected to theand gate, the value of wirec changes toHiZ . The value of wireb remains1 so wire
c remains connected to trireg netd through thenmos2 switch. TheHiZ value does not propagate from wire
c into trireg netd. Instead, trireg netd enters the capacitive state, storing its last driven value of1. It stores
the1 with amedium strength.

3.7.3.1 Capacitive networks

A capacitive network is a connection between two or more trireg nets. In a capacitive network whose trireg nets
the capacitive state, logic and strength values can propagate between trireg nets.

Examples:

Figure 3-2 shows a capacitive network in which the logic value of some trireg nets change the logic value o
trireg nets of equal or smaller size.

nmos1 nmos2
wire c

trireg d

wire a wire b

simulation time wire a wire b wire c trireg d

1 1 strong 1 strong 1

0 1 HiZ medium 110

0
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Figure 3-2—Simulation results of a capacitive network

In Figure 3-2, the capacitive strength oftrireg_la net is large, trireg_me1 andtrireg_me2 aremedium,
andtrireg_sm  is small. Simulation reports the following sequence of events:

a) At simulation time 0, wirea and wireb have a value of1. The wirec drives a value of1 into trireg_la
andtrireg_sm ; wire d drives a value of 1 intotrireg_me1  andtrireg_me2 .

b) At simulation time 10, the value of wireb changes to0, disconnectingtrireg_sm and trireg_me2
from their drivers. These trireg nets enter the capacitive state and store the value1, their last driven value.

c) At simulation time 20, wirec  drives a value of0 into trireg_la .

d) At simulation time 30, wired drives a value of0 into trireg_me1 .

e) At simulation time 40, the value of wirea changes to0, disconnectingtrireg_la and trireg_me1
from their drivers. These trireg nets enter the capacitive state and store the value0.

40 0 0 0 0 0 1 0 1

trireg_smtrireg_la

trireg_me2trireg_me1

wire a

wire b

wire c

wire d

simulation
time wire a wire b wire c wire d trireg_la trireg_sm trireg_me1 trireg_me2

0 1 1 1 1 1 1 1 1

10 0 1 111 1 11

20 1 0 1 110 0 1

30 1 0 0 0 0 1 0 1

nmos_1

nmos_2 tranif1_2

50 0 1 0 0 0 0 x x

tranif1_1
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f) At simulation time 50, the value of wireb changes to1.

This change of value in wireb connectstrireg_sm to trireg_la ; these trireg nets have different size
and stored different values. This connection causes the smaller trireg net to store the value of the large
net, andtrireg_sm  now stores a value of0.

This change of value in wireb also connectstrireg_me1 to trireg_me2 ; these trireg nets have the
same size and stored different values. The connection causes bothtrireg_me1 and trireg_me2 to
change value tox .

In a capacitive network, charge strengths propagate from a larger trireg net to a smaller trireg net. Figure 3-3 s
capacitive network and its simulation results.

Figure 3-3—Simulation results of charge sharing

In Figure 3-3, the capacitive strength oftrireg_la is large and the capacitive strength oftrireg_sm is small.
Simulation reports the following results:

a) At simulation time 0, the values of wirea, wire b, and wirec are1, and wirea drives astrong 1 into
trireg_la  andtrireg_sm .

b) At simulation time 10, the value of wireb changes to0, disconnectingtrireg_la andtrireg_sm from
wire a. The trireg_la andtrireg_sm nets enter the capacitive state. Both trireg nets share thelarge
charge oftrireg_la  because they remain connected throughtranif1_2 .

c) At simulation time 20, the value of wirec changes to0, disconnectingtrireg_sm from trireg_la . The
trireg_sm  no longer shareslarge charge oftrireg_la  and now stores asmall charge.

tranif1_2

trireg_sm

simulation
time

wire a

wire b wire c

tranif1_1

wire a wire b trireg_la trireg_sm

0 strong 1

wire c

strong 1 strong 111

0 1 large 1 large 1strong 110

20 00 small 1large 1strong 1

30 1 large 1large 1strong 1 0

40 00 small 1large 1strong 1

trireg_la
32 Copyright 2000 IEEE. All rights reserved. Section 3
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

w

cay is

s

to a
d) At simulation time 30, the value of wirec changes to1, connecting the two trireg nets. These trireg nets no
share the same charge.

e) At simulation time 40, the value of wirec changes again to0, disconnectingtrireg_sm from
trireg_la . Once again,trireg_sm no longer shares thelarge charge oftrireg_la and now stores a
small charge.

3.7.3.2 Ideal capacitive state and charge decay

A trireg net can retain its value indefinitely or its charge can decay over time. The simulation time of charge de
specified in the delay specification of the trireg net. See 7.14.2 for charge decay explanation.

3.7.4 Tri0 and tri1 nets

Thetri0 andtri1 nets model nets with resistivepulldownand resistivepullupdevices on them. When no driver drive
a tri0 net, its value is0. When no driver drives a tri1 net, its value is1. The strength of this value ispull . See Section
7 for a description of strength modeling.

A tri0 net is equivalent to a wire net with a continuous 0 value of pull strength driving it. A tri1 net is equivalent
wire net with a continuous 1 value of pull strength driving it.

A truth table fortri0  is shown in Table 3-5. A truth table fortri1  is shown in Table 3-6.

3.7.5 Supply nets

The supply0andsupply1nets may be used to model the power supplies in a circuit. These nets shall havesupply
strengths.

Table 3-5—Truth table for tri0 net

tri0 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 0

Table 3-6—Truth table for tri1 net

tri1 0 1 x z

0 0 x x 0

1 x 1 x 1

x x x x x

z 0 1 x 1
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3.8 regs

Assignments to a reg are made by procedural assignments (see 6.2 and 9.2). Since the reg holds a value
assignments, it can be used to model hardware registers. Edge-sensitive (i.e., flip-flops) and level sensitive
and transparent latches) storage elements can be modeled. A reg needs not represent a hardware storage ele
it can also be used to represent combinatorial logic.

3.9 Integers, reals, times, and realtimes

In addition to modeling hardware, there are other uses for variables in an HDL model. Although reg variables
used for general purposes such as counting the number of times a particular net changes value, theintegerandtime
variable data types are provided for convenience and to make the description more self-documenting.

The syntax for declaringinteger, time, real, andrealtime variables is given in Syntax 3-3 (from Syntax 3-2).

Syntax 3-3—Syntax for integer, time, real, and realtime declarations

The syntax for list of reg variables is defined in 3.2.2.

An integer is a general-purpose variable used for manipulating quantities that are not regarded as hardware r

A time variable is used for storing and manipulating simulation time quantities in situations where timing chec
required and for diagnostics and debugging purposes. This data type is typically used in conjunction with the$time
system function (see Section 17).

The integer and time variables shall be assigned values in the same manner as reg. Procedural assignment
used to trigger their value changes.

The time variables shall behave the same as a reg of at least 64 bits. They shall be unsigned quantities, and
arithmetic shall be performed on them. In contrast, integer variables shall be treated as signed quantities. Ari

integer_declaration ::=(From Annex A - A.2.1.3)
integer list_of_variable_identifiers;

real_declaration ::=
real list_of_real_identifiers;

realtime_declaration ::=
realtime list_of_real_identifiers;

time_declaration ::=
time list_of_variable_identifiers;

real_type ::= (From Annex A - A.2.2.1)
real_identifier [= constant_expression ]

        | real_identifier dimension { dimension }
variable_type ::=

variable_identifier [= constant_expression ]
| variable_identifier dimension { dimension }

list_of_real_identifiers ::=(From Annex A- A.2.3)
real_type {, real_type }

list_of_variable_identifiers ::=
variable_type {, variable_type }

dimension ::=(From Annex A - A.2.5)
[ dimension_constant_expression: dimension_constant_expression]
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operations performed on integer variables shall produce 2’s complement results.

The Verilog HDL supportsreal number constants andreal variable data types in addition to integer and time variab
data types. Except for the following restrictions, variables declared as real can be used in the same places tha
and time variables are used:

— Not all Verilog HDL operators can be used with real number values. See Table 4-9 for lists of valid and in
operators for real numbers and real variables.

— Real variables shall not use range in the declaration

— Real variables shall default to an initial value of zero.

Therealtime declarations shall be treated synonymously withreal declarations and can be used interchangeably.

Examples:

integer a;                  // integer value

time last_chng;            // time value

real float ;  // a variable to store real value

realtime rtime ;  // a variable to store time as a real value :

NOTE—Implementations may limit the maximum size of aninteger variable, but they shall at least be 32 bits.

3.9.1 Operators and real numbers

The result of using logical or relational operators on real numbers and real variables is a single-bit scalar valu
all Verilog HDL operators can be used with expressions involving real numbers and real variables. Table 4-9 li
valid operators for use with real numbers and real variables. Real number constants and real variables are also
ited in the following cases:

— Edge descriptors (posedge , negedge ) applied to real variables

— Bit-select or part-select references of variables declared asreal

— Real number index expressions of bit-select or part-select references of vectors

— Declaration of memories (arrays of real variables)

3.9.2 Conversion

Real numbers shall be converted to integers by rounding the real number to the nearest integer, rather than by
ing it. Implicit conversion shall take place when a real number is assigned to an integer. The ties shall be ro
away from zero.

Implicit conversion shall take place when an expression is assigned to a real. Individual bits that arex or z in the net
or the variable shall be treated as zero upon conversion.

See Section 17 for a discussion of system tasks that perform explicit conversion.

3.10 Arrays

An array declaration for a net or a variable declares an element type which is either scalar or vector (see 3
example:
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NOTE—Array size does not affect the element size.

Arrays can be used to group elements of the declared element type into multi-dimensional objects. Arrays s
declared by specifying the element address range(s) after the declared identifier. Each dimension shall be rep
by an address range. See 3.2.1 and 3.2.2 for net and variable declarations. The expression(s) that specify th
of the array shall be constant expressions. The value of the constant expression can be a positive integer, a
integer, or zero.

One declaration statement can be used for declaring both arrays and elements of the declared data type. Th
makes it convenient to declare both arrays and elements that match the element vector width in the same de
statement.

An element can be assigned a value in a single assignment, but complete or partial array dimensions cannot.
complete or partial array dimensions be used to provide a value to an expression. To assign a value to an ele
an array, an index for every dimension shall be specified. The index can be an expression. This option pro
mechanism to reference different array elements depending on the value of other variables and nets in the cir
example, a program counter reg can be used to index into a RAM.

3.10.1 Net arrays

Arrays of nets can be used to connect ports of generated instances. Each element of the array can be used in
fashion as a scalar or vector net.

3.10.2 reg and variable arrays

Arrays for all variables types (reg, integer, time, real, realtime) shall be possible.

3.10.3 Memories

A one dimensional array with elements of type reg is also called a memory. These memories can be used to
read-only memories (ROMs), random access memories (RAMs), and reg files. Each reg in the array is know
element or word and is addressed by a single array index.

An n-bit reg can be assigned a value in a single assignment, but a complete memory cannot. To assign a va
memory word, an index shall be specified. The index can be an expression. This option provides a mechanism
erence different memory words, depending on the value of other variables and nets in the circuit. For example
gram counter reg could be used to index into a RAM.

Declaration Element Type

reg x[11:0]; scalar reg

wire [0:7] y[5:0]; seven-bit-wide vector wire indexed from 0 to 7

reg [31:0] x [127:0]; thirty-two-bit-wide reg
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3.10.3.1 Array examples

3.10.3.1.1 Array declarations

3.10.3.1.2 Assignment to array elements

The assignment statements in this section assume the presence of the declarations in 3.10.3.1.1.

NOTE—Implementations may limit the maximum size of an array, but they shall at least be 16777216 (224).

3.10.3.1.3 Memory differences

A memory ofn 1-bit regs is different from ann-bit vector reg

3.11 Parameters

Verilog HDL parameters do not belong to either the variable or the net group. Parameters are not variables, t
constants. There are two types of parameters: module parameters and specify parameters. It is illegal to red
name already declared by a net, parameter or variable declaration.

Both types of parameters accept a range specification. By default,parametersandspecparamsshall be as wide as

reg [7:0] mema[0:255]; // declares a memory mema of 256 8-bit
// registers. The indices are 0 to 255

reg arrayb[7:0][0:255];  // declare a two dimensional array of
// one bit registers

wire w_array[7:0][5:0]; // declare array of wires
integer inta[1:64];       // an array of 64 integer values
time chng_hist[1:1000] // an array of 1000 time values
integer t_index;

rega = 0; // Legal syntax
mema = 0; // Illegal syntax- Attempt to write to entire array
arrayb[1] = 0; // Illegal Syntax - Attempt to write to elements
               // [1][0]..[1][255]
arrayb[1][12:31] = 0; // Illegal Syntax - Attempt to write to
                      //  elements [1][12]..[1][31]
mema[1] = 0; //Assigns 0 to the second element of mema
arrayb[1][0] = 0; // Assigns 0 to the bit referenced by indices
                  // [1][0]
inta[4] = 33559;  // Assign decimal number to integer in array
chng_hist[t_index] = $time; // Assign current simulation time to
                            //  element addressed by integer index

reg [1:n] rega; // An n-bit register is not the same
reg mema [1:n]; // as a memory of n 1-bit registers
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necessary to contain the value of the constant, except when a range specification is present.

3.11.1 Module parameters

The syntax for parameter declarations is given in Syntax 3-4.

Syntax 3-4—Syntax for parameter declaration

The list_of_param_assignmentsshall be a comma-separated list of assignments, where the right hand side o
assignment shall be a constant expression; that is, an expression containing only constant numbers and p
defined parameters. (See Section 4.)

The list_of_param_assignmentscan appear in a module as a set ofmodule_itemsor in the module declaration in the
module_parameter_port_list. (See 12.1). If anyparam_assignmentsappear in amodule_parameter_port_list, then
any param_assignmentsthat appear in the module become local parameters and shall not be overridden b
method.

Parameters represent constants; hence, it is illegal to modify their value at runtime. However, module parame
be modified at compilation time to have values that are different from those specified in the declaration assig
This allows customization of module instances. A parameter can be modified with thedefparam statement or in the
module instance statement. Typical uses of parameters are to specify delays and width of variables. See Secti
details on parameter value assignment.

A module parameter can have atypespecification and arangespecification. The type and range of module param
ters shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of th
value assigned to the parameter, after any value overrides have been applied.

— A parameter with a range specification, but with no type specification, shall be the range of the paramet
laration and shall be unsigned. The sign and range shall not be affected by value overrides.

— A parameter with a type specification, but with no range specification, shall be of the type specified. A s
parameter shall default to the range of the final value assigned to the parameter, after any value overrid
been applied.

local_parameter_declaration ::=(From Annex A - A.2.2.1)
localparam [ signed ] [ range ] list_of_param_assignments;

| localparam integer list_of_param_assignments;
| localparam real list_of_param_assignments;
| localparam realtime list_of_param_assignments;
| localparam time list_of_param_assignments;

parameter_declaration ::=
parameter [ signed ] [ range ] list_of_param_assignments;

| parameter integer list_of_param_assignments;
| parameter real list_of_param_assignments;
| parameter realtime list_of_param_assignments;
| parameter time list_of_param_assignments;

list_of_param_assignments ::=(From Annex A - A.2.3)
param_assignment {, param_assignment }

param_assignment ::=(From Annex A - A.2.4)
parameter_identifier= constant_expression

range ::= (From Annex A - A.2.5)
[ msb_constant_expression: lsb_constant_expression]
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— A parameter with a signed type specification and with a range specification shall be signed, and shall
range of its declaration. The sign and range shall not be affected by value overrides.

— A parameter with no range specification, and with either a signed type specification or no type specific
shall have an implied range with anlsbequal to0 and anmsbequal to one less than the size of the final valu
assigned to the parameter.

— A parameter with no range specification, and with either a signed type specification or no type specific
and for which the final value assigned to it is unsized, shall have an implied range with anlsb equal to0 and
anmsb equal to an implementation-dependent value of at least 31.

Examples:

parameter msb = 7; // defines msb as a constant value 7
parameter e = 25, f = 9; // defines two constant numbers
parameter r = 5.7; // declares r as a real  parameter
parameter byte_size = 8,

byte_mask = byte_size - 1;
parameter average_delay = (r + f) / 2;

parameter signed [3:0] mux_selector = 0;
parameter real r1 = 3.5e17;
parameter p1 = 13’h7e;
parameter [31:0] dec_const = 1’b1;    // value converted to 32 bits
parameter newconst = 3’h4;            // implied range of [2:0]
parameter newconst = 4;               // implied range of at least [31:0]

parameter signed [3:0] mux_selector = 0;
parameter real r1 = 3.5e17;
parameter p1 = 13’h7e;
parameter [31:0] dec_const = 1’b1;       // valued converted to 32 bits

See 3.9.2 for conversion between parameter types.

3.11.2 Local parameters - localparam

Verilog HDL localparam - local parameter(s) are identical to parameters except that they can not directly be m
fied with thedefparam statement or by the ordered or named parameter value assignment. Local parameters
assigned to a constant expression containing a parameter which can be modified with thedefparam statement or by
the ordered or named parameter value assignment.  See 12.1.3 for details.

The syntax for local parameter declarations is given in Syntax 3-4.

3.11.3 Specify parameters

The syntax for declaring specify parameters is shown in Syntax 3-5.
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Syntax 3-5—Syntax of the specparam declaration

The keywordspecparamdeclares a special type of parameter which is intended only for providing timing and d
values, but can appear in any expression that is not assigned to a parameter and is not part of the range specifi
a declaration. Originally permitted only in specify blocks (see Section 14),with this revisionspecify parameters (also
calledspecparams) are now permitted both within the specify block and in the main module body.

A specify parameter declared outside a specify block shall be declared before it is referenced. The value assig
specify parameter can be any constant expression. A specify parameter can be used as part of a constant e
for a subsequent specify parameter declaration. Unlike a module parameter, a specify parameter cannot be
from within the language, but it may be modified through SDF annotation (see Section 16).

The specify parameters and module parameters shall not be interchangeable. In addition, module parameters
be assigned a constant expression that includes any specify parameters. Table 3-7 summarizes the di
between the two types of parameter declarations.

A specify parameter can have a range specification. The range of specify parameters shall be in accordance
following rules:

specparam_declaration ::=(From Annex A - A.2.2.1)
specparam [ range ] list_of_specparam_assignments;

list_of_specparam_assignments ::=(From Annex A- A.2.3)
specparam_assignment {, specparam_assignment }

specparam_assignment ::=(From Annex A - A.2.4)
specparam_identifier= constant_mintypmax_expression

| pulse_control_specparam
pulse_control_specparam ::=

PATHPULSE$ = ( reject_limit_value [, error_limit_value ]) ;
| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor

= ( reject_limit_value [, error_limit_value ]) ;
error_limit_value ::=

limit_value
reject_limit_value ::=

limit_value
limit_value ::=

constant_mintypmax_expression
range ::= (From Annex A - A.2.5)

[ msb_constant_expression: lsb_constant_expression]

Table 3-7—Differences between specparams and parameters

Specparams
(specify parameter)

Parameters
(module parameter)

Use keywordspecparam Use keywordparameter

Shall be declaredinside a module or specify block Shall be declaredoutside specify blocks

May only be used inside a module or specify block May not be used inside specify blocks

May be assigned specparams and parameters May not be assigned specparams

Use SDF annotation to override values Usedefparam or instance declaration param-
eter value passing to override values
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— A specparam declaration with no range specification shall default to the range of the final value assig
the parameter, after any value overrides have been applied.

— A specparam with a range specification shall be the range of the parameter declaration. The range sha
affected by value overrides.

Examples:

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tRise_control = 40, tFall_control = 50;

endspecify

The lines between the keywordsspecifyandendspecifydeclare four specify parameters. The first line declares sp
ify parameters calledtRise_clk_q and tFall_clk_q with values150 and200 respectively; the second line
declarestRise_control  andtFall_control  specify parameters with values40  and50  respectively.

Examples:

module RAM16GEN (DOUT, DIN, ADR, WE, CE)
specparam dhold = 1.0;
specparam ddly = 1.0;
parameter width = 1;
parameter regsize = dhold + 1.0; // Illegal - can’t assign

// specparams to parameters
endmodule

3.12 Name spaces

In Verilog HDL, there are six name spaces; two are global and four are local. The global name spaces aredefinitions
andtext macros. Thedefinitions name spaceunifies all themodule (see 12.1),macromodule (see 12.1), andprimi-
tive (see 8.1) definitions. Once a name is used to define a module, macromodule, or primitive, the name shal
used again to declare another module, macromodule, or primitive.

Thetext macro name spaceis global. Since text macro names are introduced and used with a leading` character, they
remain unambiguous with any other name space (see 19.3). The text macro names are defined in the linear
appearance in the set of input files that make up the description of the design unit. Subsequent definitions of th
name override the previous definitions for the balance of the input files.

There are four local name spaces:block, module, port, andspecify block. Once a name is defined within one of th
four name spaces, it shall not be defined again with the same type or another type.

Theblock name spaceis introduced by the named block (see 9.8), function (see 10.3), and task (see 10.2) cons
It unifies the definitions of the named blocks, functions, tasks, parameters, named events and the variable type
laration (see 3.2.2). The variable type of declaration includes the reg, integer, time, real, andrealtime declarations.

Themodule name spaceis introduced by themodule, macromodule, andprimitive constructs. It unifies the defini-
tion of functions, tasks, named blocks, instance names, parameters, named events, net type of declaration,
able type of declaration. The net type of declaration includeswire, wor, wand, tri , trior , triand , tri0 , tri1 , trireg ,
supply0, andsupply1 (see 3.7).

Theport name spaceis introduced by themodule, macromodule, primitive , function, andtask constructs. It pro-
vides a means of structurally defining connections between two objects that are in two different name spac
connection can be unidirectional (eitherinput or output) or bidirectional (inout). The port name space overlaps th
module and the block name spaces. Essentially, the port name space specifies the type of connection betwe
in different name spaces. The port type of declarations includeinput , output, and inout (see 12.3). A port name
introduced in the port name space may be reintroduced in the module name space by declaring a variable o
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Thespecify block name spaceis introduced by thespecifyconstruct (see 14.2). Aspecparamname can be defined
and used only in the specify block name space. Any other type of name cannot be defined in this name spac
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Section 4

Expressions

This section describes the operators and operands available in the Verilog HDL and how to use them to form
sions.

An expressionis a construct that combinesoperandswith operatorsto produce a result that is a function of the value
of the operands and the semantic meaning of the operator. Any legal operand, such as a net bit-select, with
operator is considered an expression. Wherever a value is needed in a Verilog HDL statement, an expressio
used.

Some statement constructs require an expression to be aconstant expression. The operands of a constant expressio
consist of constant numbers, parameter names, constant bit-selects of parameters, constant part-selects of pa
andconstant function calls (see 10.3.5) only, but they can use any of the operators defined in Table 4-1.

A scalar expressionis an expression that evaluates to a scalar (single-bit) result. If the expression evaluates to a
(multibit) result, then the least significant bit of the result is used as the scalar result.

The data typesreg, integer, time, real, andrealtime are all variable data types. Descriptions pertaining to variab
usage apply to all of these data types.

An operand can be one of the following:

— Constant number (including real)
— Net
— Variables of type reg, integer, time, real, and realtime
— Net bit-select
— Bit-select of type reg, integer, and time
— Net part-select
— Part-select of type reg, integer, and time
— Array element
— A call to a user-defined function or system-defined function that returns any of the above

4.1 Operators

The symbols for the Verilog HDL operators are similar to those in the C programming language. Table 4-1 lists
operators.

Table 4-1—Operators in the Verilog HDL

{}  {{}} Concatenation, replication

+ - * / ** Arithmetic

% Modulus

> >= < <= Relational

! Logical negation
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sidered
4.1.1 Operators with real operands

The operators shown in Table 4-2 shall be legal when applied to real operands. All other operators shall be con
illegal when used with real operands.

&& Logical and

|| Logical or

== Logical equality

!= Logical inequality

=== Case equality

!== Case inequality

~ Bit-wise negation

& Bit-wise and

| Bit-wise inclusive or

^ Bit-wise exclusive or

^~ or ~^ Bit-wise equivalence

& Reduction and

~& Reduction nand

| Reduction or

~| Reduction nor

^ Reduction xor

~^ or ^~ Reduction xnor

<< Logical left shift

>> Logical right shift

<<< Arithmetic left shift

>>> Arithmetic right shift

? : Conditional

or Event or

Table 4-2—Legal operators for use in real expressions

unary + unary - Unary operators

+   -    *   / ** Arithmetic

>   >=   <   <= Relational

!    &&  || Logical

==        != Logical equality

Table 4-1—Operators in the Verilog HDL  (continued)
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order of
The result of using logical or relational operators on real numbers is a single-bit scalar value.

Table 4-3 lists operators that shall not be used to operate on real numbers.

See 3.9.1 for more information on use of real numbers.

4.1.2 Binary operator precedence

The precedence order ofbinary operatorsand theconditional operator(?: ) is shown in Table 4-4. The Verilog HDL
has two equality operators. They are discussed in 4.1.8.

Operators shown on the same row in Table 4-4 shall have the same precedence. Rows are arranged in

?: Conditional

or Event or

Table 4-3—Operators not allowed for real expressions

{}   {{}} Concatenate, replicate

% Modulus

===   !== Case equality

~   &   |
^   ^~   ~^

Bit-wise

^   ^~   ~^
&   ~&   |   ~|

Reduction

<<   >>   <<<   >>> Shift

Table 4-4—Precedence rules for operators

+ - ! ~ (unary) Highest precedence

**

* / %

+ - (binary)

 << >> <<< >>>

 < <= > >=

== != === !==

& ~&

^ ^~ ~^

| ~|

&&

||

?: (conditional operator) Lowest precedence

Table 4-2—Legal operators for use in real expressions  (continued)
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decreasing precedence for the operators. For example,* , /, and% all have the same precedence, which is higher th
that of the binary+ and- operators.

All operators shall associate left to right with the exception of the conditional operator, which shall associate r
left. Associativity refers to the order in which the operators having the same precedence are evaluated. Thu
following exampleB is added toA and thenC is subtracted from the result ofA+B.

A + B - C

When operators differ in precedence, the operators with higher precedence shall associate first. In the fo
example,B is divided byC (division has higher precedence than addition) and then the result is added toA.

A + B / C

Parentheses can be used to change the operator precedence.

(A + B) / C // not the same as A + B / C

4.1.3 Using integer numbers in expressions

Integer numbers can be used as operands in expressions. An integer number can be expressed as

— An unsized, unbased integer (e.g.,12)

— An unsized, based integer (e.g.,’d12, ’sd12 )

— A sized, based integer (e.g.,16’d12, 16’sd12 )

A negative value for an integer with no base specifier shall be interpreted differently than for an integer with
specifier. An integer with no base specifier shall be interpreted as a signed value in 2’s complement form. An
with an unsigned base specifier shall be interpreted as an unsigned value.

Example:

This example shows four ways to write the expression “minus 12 divided by 3.” Note that-12 and-’d12 both eval-
uate to the same 2’s complement bit pattern, but, in an expression, the-’d12 loses its identity as a signed negativ
number.

4.1.4 Expression evaluation order

The operators shall follow the associativity rules while evaluating an expression as described in 4.1.2. Howeve
final result of an expression can be determined early, the entire expression need not be evaluated. This is calleshort-
circuiting an expression evaluation.

integer IntA;
IntA = -12 / 3; // The result is -4.

IntA = -’d 12 / 3; // The result is 1431655761.

IntA = -’sd 12 / 3; // The result is -4.

IntA = -4'sd 12 / 3; // -4'sd12 is the negative of the 4-bit
// quantity 1100, which is -4. -(-4) = 4.
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Example:

reg regA, regB, regC, result ;
result = regA & (regB | regC) ;

If regA is known to be zero, the result of the expression can be determined as zero without evaluating the sub-
sionregB | regC .

4.1.5 Arithmetic operators

The binary arithmetic operators are given in Table 4-5.

The integer division shall truncate any fractional part toward zero. For the division or modulus operators, if th
ond operand is a zero, then the entire result value shall bex . The modulus operator, for exampley % z, gives the
remainder when the first operand is divided by the second, and thus is zero when z divides y exactly. The res
modulus operation shall take the sign of the first operand.

The result of the power operator shall be real if either operand is a real, integer, or signed. If both operan
unsigned then the result shall be unsigned. The result of the power operator is unspecified if the first operand
and the second operand is non-positive, or if the first operand is negative and the second operand is not an
value.

The unary arithmetic operators shall take precedence over the binary operators. The unary operators are
Table 4-6.

For the arithmetic operators, if any operand bit value is the unknown valuex or the high-impedance valuez , then the
entire result value shall bex .

Example:

Table 4-7 gives examples of modulus operations.

Table 4-5—Arithmetic operators defined

a + b a plus b

a - b a minus b

a * b a multiplied by b
(or a times b)

a / b a divided by b

a % b a modulo b

a ** b a to the power of b

Table 4-6—Unary operators defined

+m Unary plus m (same as m)

- m Unary minus m
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4.1.6 Arithmetic expressions with regs and integers

An arithmetic operation on a reg type variable shall be treated differently than an arithmetic operation on an
data type. A reg data type shall be treated as anunsignedvalue and an integer data type shall be treated as asigned
value. Thus, if a sized constant with a negative value is stored in a reg type variable, a positive constant, which
complement of the sized constant, shall be the value stored in the reg type variable. When this reg is used in a
metic expression, the positive constant shall be used as the value of the reg. In contrast, if a sized constant wit
ative value is stored in an integer type variable and used in an arithmetic expression, the expression shall e
using signed arithmetic.

Table 4-8 lists how arithmetic operators interpret each data type.

Example:

The following example shows various ways to divide “minus twelve by three”— usinginteger andreg data types in
expressions.

Table 4-7—Examples of modulus operators

Modulus expression Result Comments

10 % 3 1 10/3 yields a remainder of 1

11 % 3 2 11/3 yields a remainder of 2

12 % 3 0 12/3 yields no remainder

-10 % 3 -1 The result takes the sign of the first operand

11 % -3 2 The result takes the sign of the first operand

-4’d12 % 3 1 -4’d12 is seen as a large, positive number that leaves a
remainder of 1 when divided by 3

Table 4-8—Data type interpretation by arithmetic operators

Data type Interpretation

unsigned net Unsigned

signed net Signed, 2’s complement

unsigned reg Unsigned

signed reg Signed, 2’s complement

integer Signed, 2’s complement

time Unsigned

real, realtime Signed, floating point
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4.1.7 Relational operators

Table 4-9 lists and defines the relational operators.

An expression using theserelational operatorsshall yield the scalar value0 if the specified relation isfalseor the
value1 if it is true. If either operand of a relational operator contains an unknown (x ) or high impedance (z ) value,
then the result shall be a 1-bit unknown value(x) .

When two operands of unequal bit lengths are used, the smaller operand shall be zero filled on the most signifi
side to extend to the size of the larger operand.

All the relational operators shall have the same precedence. Relational operators shall have lower precede
arithmetic operators.

Examples:

The following examples illustrate the implications of this precedence rule:

a < foo - 1 // this expression is the same as
a < (foo - 1) // this expression, but . . .
foo - (1 < a) // this one is not the same as
foo - 1 < a // this expression

Table 4-9—Definitions of the relational operators

a < b a less than b

a > b a greater than b

a <= b a less than or equal to b

a >= b a greater than or equal to b

integer intA;
reg [15:0] regA;
reg signed  [15:0] regS;

intA = -4’d12;
regA = intA / 3; // expression result is -4,

// intA is an integer data type, regA is 65532

regA = -4’d12; // regA is 65524
intA = regA / 3; // expression result is 21841,

// regA is a reg data type

intA = -4’d12 / 3; // expression result is 1431655761.
// -4’d12 is effectively a 32-bit reg data type

regA = -12 / 3; // expression result is -4, -12 is effectively
// an integer data type. regA is 65532

regS = -12 / 3; // expression result is -4. regS is a signed
// reg

regS = -4’sd12 / 3;// expression result is 1. -4’sd12 is actually
// 4. The rules for integer division yield 4/3==1
Section 4 Copyright 2000 IEEE. All rights reserved. 49
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

tracted

d integer)
relational
xpression

es the

bit, with

e
he

cal

ue

s

enthe-
Whenfoo - (1 < a) evaluates, the relational expression evaluates first and then either zero or one is sub
from foo . Whenfoo - 1 < a  evaluates, the value offoo  operand is reduced by one and then compared witha.

When both operands of a relational expression are signed integral operands (an integer, or a unsized, unbase
then the expression shall be interpreted as a comparison between signed values. When either operand of a
expression is a real operand then the other operand shall be converted to an equivalent real value, and the e
shall be interpreted as a comparison between two real values.

Otherwise the expression shall be interpreted as a comparison between unsigned values.

4.1.8 Equality operators

Theequality operatorsshall rank lower in precedence than the relational operators. Table 4-10 lists and defin
equality operators.

All four equality operators shall have the same precedence. These four operators compare operands bit for
zero filling if the two operands are of unequal bit length. As with the relational operators, the result shall be0 if com-
parison fails,1 if it succeeds.

For thelogical equalityandlogical inequalityoperators (== and!= ), if, due to unknown or high-impedance bits in
the operands, the relation is ambiguous, then the result shall be a one bit unknown value (x ).

For thecase equalityandcase inequalityoperators(=== and!== ), the comparison shall be done just as it is in th
procedural case statement (see 9.5). Bits that arex or z shall be included in the comparison and shall match for t
result to be considered equal. The result of these operators shall always be a known value, either1 or 0.

4.1.9 Logical operators

The operatorslogical and (&&) and logical or (||) are logical connectives. The result of the evaluation of a logi
comparison shall be1 (defined astrue), 0 (defined asfalse), or, if the result is ambiguous, the unknown value (x ).
The precedence of&& is greater than that of|| , and both are lower than relational and equality operators.

A third logical operator is the unarylogical negationoperator( ! ). The negation operator converts a nonzero or tr
operand into0 and a zero or false operand into1. An ambiguous truth value remains asx .

Examples:

Example 1—If reg alpha holds the integer value 237 andbeta holds the value zero, then the following example
perform as described:

regA = alpha && beta; // regA is set to 0
regB = alpha || beta; // regB is set to 1

Example 2—The following expression performs a logical and of three subexpressions without needing any par
ses:

a < size-1 && b != c && index != lastone

Table 4-10—Definitions of the equality operators

a ===b a equal to b, including x and z

a !==b a not equal to b, including x and z

a ==b a equal to b, result may be unknown

a !=b a not equal to b, result may be unknown
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However, it is recommended for readability purposes that parentheses be used to show very clearly the pre
intended, as in the following rewrite of this example:

(a < size-1) && (b != c) && (index != lastone)

Example 3—A common use of!  is in constructions like the following:

if (!inword)

In some cases, the preceding construct makes more sense to someone reading the code than this equivalent

if (inword == 0)

4.1.10 Bit-wise operators

The bit-wise operatorsshall perform bit-wise manipulations on the operands—that is, the operator shall comb
bit in one operand with its corresponding bit in the other operand to calculate one bit for the result. Logic Table
through 4-15 show the results for each possible calculation.

Table 4-11—Bit-wise binary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 4-12—Bit-wise binary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x

Table 4-13—Bit-wise binary exclu-
sive or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 4-14—Bit-wise binary exclu-
sive nor operator

^~
~^ 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x
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When the operands are of unequal bit length, the shorter operand is zero-filled in the most significant bit pos

4.1.11 Reduction operators

Theunary reduction operatorsshall perform a bit-wise operation on a single operand to produce a single bit re
For reduction and, reduction or, andreduction xoroperators, the first step of the operation shall apply the opera
between the first bit of the operand and the second using logic Tables 4-16 through 4-18. The second and sub
steps shall apply the operator between the 1-bit result of the prior step and the next bit of the operand using th
logic table. Forreduction nand, reduction nor, andreduction xnoroperators, the result shall be computed by invertin
the result of the reduction and, reduction or, and reduction xor operation respectively.

Table 4-15—Bit-wise unary negation operator

~

0 1

1 0

x x

z x

Table 4-18—Reduction unary exclusive or operator

^ 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

Table 4-16—Reduction unary and
operator

& 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

Table 4-17—Reduction unary or
operator

| 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x
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Example:

Table 4-19 shows the results of applying reduction operators on different operands.

4.1.12 Shift operators

There are two types ofshift operators, the logical shift operators, << and >>, and the arithmetic shift operators, <
and >>>. The left shift operators, << and <<<, shall shift their left operand to the left by the number by the num
bit positions given by the right operand. In both cases, the vacated bit positions shall be filled with zeroes. Th
shift operators, >> and >>>, shall shift their left operand to the right by the number of bit positions given by the
operand. The logical right shift shall fill the vacated bit positions with zeroes. The arithmetic right shift shall fi
vacated bit positions with zeroes if the result type is unsigned. It shall fill the vacated bit positions with the va
the most-significant (i.e.,sign) bit of the left operand if the result type is signed. If the right operand has an unkn
or high impedence value, then the result shall be unknown. The right operand is always treated as an unsign
ber and has no effect on the signedness of the result. The result signedness is determined by the left-hand
and the remainder of the expression, as outlined in section 4.5.1.

Examples:

Example 1—In this example, the regresult is assigned the binary value0100 , which is0001 shifted to the left
two positions and zero-filled.

Example 2—In this example, the regresult is assigned the binary value1110 , which is1000 shifted to the right
two positions and sign-filled.

Table 4-19—Results of unary reduction operations

Operand & ~& | ~| ^ ~^ Comments

4’b0000 0 1 0 1 0 1 No bits set

4’b1111 1 0 1 0 0 1 All bits set

4’b0110 0 1 1 0 0 1 Even number of bits
set

4’b1000 0 1 1 0 1 0 Odd number of bits set

module shift;
reg [3:0] start, result;
initial begin

start = 1;
result = (start << 2);

end
endmodule

module ashift;
reg [3:0] start, result;
initial begin

start = 4’b1000;
result = (start >>> 2);

end
endmodule
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4.1.13 Conditional operator

The conditional operator, also known asternary operator, shall be right associative and shall be constructed us
three operands separated by two operators in the format given in Syntax 4-1.

Syntax 4-1—Syntax for conditional operator

The evaluation of a conditional operator shall begin with the evaluation of expression1. If expression1 evalu
false (0), then expression3 shall be evaluated and used as the result of the conditional expression. If expressio
uates to true (known value other than 0), then expression2 is evaluated and used as the result. If expression1
to ambiguous value (x or z ), then both expression2 and expression3 shall be evaluated and their results shall be
bined, bit by bit, using Table 4-20 to calculate the final result unless expression2 or expression3 is real, in whic
the result shall be0. If the lengths of expression2 and expression3 are different, the shorter operand shall be l
ened to match the longer and zero-filled from the left (the high-order end).

Example:

The following example of a tri-state output bus illustrates a common use of the conditional operator.

wire [15:0] busa = drive_busa ? data : 16’bz;

The bus calleddata is driven ontobusa whendrive_busa is 1. If drive_busa is unknown, then an unknown
value is driven ontobusa . Otherwise,busa  is not driven.

4.1.14 Concatenations

A concatenation is the joining together of bits resulting from two or more expressions. The concatenation s
expressed using the brace characters{ and}, with commas separating the expressions within.

Unsized constant numbers shall not be allowed in concatenations. This is because the size of each operand in
catenation is needed to calculate the complete size of the concatenation.

conditional_expression ::=(From Annex A - A.8.3)
expression1? { attribute_instance } expression2: expression3

expression1 ::=
expression

expression2 ::=
expression

expression3 ::=
expression

Table 4-20—Ambiguous condition results for conditional operator

?: 0 1 x z

0 0 x x x

1 x 1 x x

x x x x x

z x x x x
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Examples:

This example concatenates four expressions:

{a, b[3:0], w, 3’b101}

and it is equivalent to the following example:

{a, b[3], b[2], b[1], b[0], w, 1’b1, 1’b0, 1’b1}

Another form of concatenation is the replication operation. The first expression shall be a non-zero, non-X and
constant expression, the second expression follows the rules for concatenations. This example replicates "w

{4{w}} // This is equivalent to {w, w, w, w}
a[31:0] = {1’b1, {0{1’b0}} };       //illegal. RHS becomes {1’b1,;
a[31:0] = {1’b1, {1’bz{1’b0}} };    //illegal. RHS becomes {1’b1,;
a[31:0] = {1’b1, {1’bx{1’b0}} };    //illegal. RHS becomes {1’b1,;

If the replication operator is used on a function call operand, the function need not be evaluated multiple time
example:

result = {4{func(w)}}

may be computed as

result = {func(w), func(w), func(w), func(w)}

or

y = func(w) ;
result = {y, y, y, y}

This is another form of expression evaluation short-circuiting.

The next example illustrates nested concatenations:

{b, {3{a, b}}} // This is equivalent to {b, a, b, a, b, a, b}

4.1.15 Event or

The eventor operator shall perform an or of events. The, operator does the same thing. See 9.7 for events and trig
ing of events.

Example:

The following example shows both ways to make an assignment to rega when an event (change) occurs on
enable.

@(trig or enable) rega = regb ;
@(trig , enable) rega = regb ;

4.2 Operands

There are several types of operands that can be specified in expressions. The simplest type is a reference to
variable in its complete form—that is, just the name of the net or variable is given. In this case, all of the bits m
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If a single bit of a vector net, reg variable, integer variable, or time variable is required, then a bit-select operan
be used. A part-select operand shall be used to reference a group of adjacent bits in a vector net, vector reg
variable, or time variable.

A memory word can be referenced as an operand. A concatenation of other operands (including nested co
tions) can be specified as an operand. A function call is an operand.

4.2.1 Vector bit-select and part-select addressing

Bit-selectsextract a particular bit from a vector net, vector reg, integer variable, or time variable. The bit ca
addressed using an expression. If the bit-select is out of the address bounds or the bit-select isx or z , then the value
returned by the reference shall bex . The bit-select or part-select of a variable declared asreal or realtime shall be
considered illegal.

Several contiguous bits in a vector net, vector reg, integer variable, or time variable can be addressed and ar
aspart-selects. There are two types of part-selects, a constant part-select and an indexed part-select. A consta
select of a vector reg or net is given with the following syntax.:

vect[msb_expr:lsb_expr]

Both expressions shall be constant expressions. The first expression has to address a more significant bit tha
ond expression. If the part-select is out of the address bounds or the part-select isx or z , then the value returned by
the reference shall bex .

An indexed part select of a vector net, vector reg, integer variable, or time variable is given with the following sy

reg [15:0] big_vect;
reg [0:15] little_vect;

big_vect[lsb_base_expr +: width_expr]
little_vect[msb_base_expr +: width_expr]

big_vect[msb_base_expr -: width_expr]
little_vect[lsb_base_expr -: width_expr]

The width_expr shall be a constant expression. It also shall not be affected by run-time parameter assign
Thelsb_base_expr andmsb_base_expr can vary at run-time. The first two examples select bits starting at
base and ascending the bit range. The number of bits selected is equal to the width expression. The second tw
ples select bits starting at the base and descending the bit range. Part-selects that address a range of bits tha
pletely out of the address bounds of thenet , reg , integer , or time , or when the part-select isx or z , shall yield
the valuex when read, and shall have no effect on the data stored when written. Part-selects that are partially
range shall when read returnx for the bits that are out of range, and when written shall only affect the bits that ar
range.

Examples:

reg [31:0] big_vect;
reg [0:31] little_vect;
reg [63:0] dword;
integer sel;

The first fourif statements show the identity between the two part select constructs. The last one shows an ind
nature.
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initial begin
if  (   big_vect[0  +:8] ==    big_vect[7  : 0]) begin end
if  (little_vect[0  +:8] == little_vect[0  : 7]) begin end
if  (   big_vect[15 -:8] ==    big_vect[15 : 8]) begin end
if  (little_vect[15 -:8] == little_vect[8  :15]) begin end
if  (sel >0 && sel < 8)

      dword[8*sel +:8] = big_vect[7:0]; // Replace the byte selected.

Examples:

Example 1—The following example specifies the single bit ofacc  vector that is addressed by the operandindex .

acc[index]

The actual bit that is accessed by an address is, in part, determined by the declaration ofacc . For instance, each of
the declarations ofacc  shown in the next example causes a particular value ofindex  to access adifferent bit:

reg [15:0] acc;
reg [2:17] acc

Example 2—The next example and the bullet items that follow it illustrate the principles of bit addressing. The
declares an 8-bit reg calledvect and initializes it to a value of 4. The list describes how the separate bits of that
tor can be addressed.

reg [7:0] vect;
vect = 4; // fills vect with the pattern 00000100

// msb is bit 7, lsb is bit 0

— If the value ofaddr  is 2, thenvect[addr]  returns1.
— If the value ofaddr  is out of bounds, thenvect[addr]  returnsx.
— If addr  is 0, 1, or 3 through 7,vect[addr]  returns0.
— vect[3:0]  returns the bits0100.
— vect[5:1]  returns the bits00010.
— vect[ expression that returns x]  returnsx.
— vect[ expression that returns z]  returnsx.
— If any bit ofaddr  is x  or z , then the value ofaddr  is x.

NOTES

1—Part-select indices that evaluate to x or z may be flagged as a compile time error.

2—Bit-select or part-select indices that are outside of the declared range may be flagged as a compile time error.

4.2.2 Array and memory addressing

Declaration of arrays and memories (one dimensional arrays of reg) are discussed in 3.10. This subclause d
array addressing.

Examples:

The next example declares a memory of 1024 8-bit words:

reg [7:0] mem_name[0:1023];

The syntax for a memory address shall consist of the name of the memory and an expression for the address,
with the following format:
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Theaddr_expr can be any expression; therefore, memory indirections can be specified in a single expressio
next example illustrates memory indirection:

mem_name[mem_name[3]]

In this example,mem_name[3] addresses word three of the memory calledmem_name. The value at word three is
the index intomem_namethat is used by the memory addressmem_name[mem_name[3]] . As with bit-selects,
the address bounds given in the declaration of the memory determine the effect of the address expression. If t
is out of the address bounds or if any bit in the address isx  or z , then the value of the reference shall bex .

Examples:

The next example declares an array of 256 by 256 8-bit elements and an array 256 by 256 by 8 1-bit elemen

reg [7:0] twod_array[0:255][0:255];

wire threed_array[0:255][0:255][0:7];

The syntax for access to the array shall consist of the name of the memory or array and an expression f
addressed dimension:

twod_array[addr_expr][addr_expr]

threed_array[addr_expr][addr_expr][addr_expr]

As before, theaddr_expr can be any expression. The arraytwod_array accesses a whole 8-bit vector, while th
arraythreed_array  accesses a single bit of the three dimensional array.

To express bit selects or part selects of array elements, the desired word shall first be selected by supplying an
for each dimension. Once selected, bit and part selects shall be addressed in the same manner as net and r
part selects (see 4.2.1).

Examples:

twod_array[14][1][3:0]      // access lower 4 bits of word

twod_array[1][3][6]         // access bit 6 of word

twod_array[1][3][sel]       // use variable bit select

threed_array[14][1][3:0]    // Illegal

4.2.3 Strings

String operands shall be treated as constant numbers consisting of a sequence of 8-bit ASCII codes, one per c
Any Verilog HDL operator can manipulate string operands. The operator shall behave as though the entire strin
a single numeric value.

When a variable is larger than required to hold the value being assigned, the contents after the assignment
padded on the left with zeros. This is consistent with the padding that occurs during assignment of nonstring 

Example:

The following example declares a string variable large enough to hold 14 characters and assigns a value to
example then manipulates the string using the concatenation operator.
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The result of simulating the above description is

4.2.3.1 String operations

The common string operationscopy, concatenate, andcompareare supported by Verilog HDL operators. Copy is pro
vided by simple assignment. Concatenation is provided by the concatenation operator. Comparison is provide
equality operators.

When manipulating string values in vector regs, the regs should be at least8*n bits (wheren is the number of ASCII
characters) in order to preserve the 8-bit ASCII code.

4.2.3.2 String value padding and potential problems

When strings are assigned to variables, the values stored shall be padded on the left with zeros. Padding can
results of comparison and concatenation operations. The comparison and concatenation operators shall no
guish between zeros resulting from padding and the original string characters (\0, ASCII NULL ).

Examples:

The following example illustrates the potential problem.

The comparison in this example fails because during the assignment the string variables are padded as illus
the next example:

s1 = 000000000048656c6c6f
s2 = 00000020776f726c6421

module string_test;
reg [8*14:1] stringvar;

initial begin
stringvar = "Hello world";
$display("%s is stored as %h", stringvar, stringvar);
stringvar = {stringvar,"!!!"};
$display("%s is stored as %h", stringvar, stringvar);

end
endmodule

   Hello world is stored as 00000048656c6c6f20776f726c64
Hello world!!! is stored as 48656c6c6f20776f726c64212121

reg [8*10:1] s1, s2;
initial begin

s1 = "Hello";
s2 = " world!";
if ({s1,s2} == "Hello world!")

$display("strings are equal");
end
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The concatenation ofs1  ands2  includes the zero padding, resulting in the following value:

000000000048656c6c6f00000020776f726c6421

Since the string “Hello world!” contains no zero padding, the comparison fails, as shown in the following exam

This comparison yields a result of zero, which is equivalent to false.

4.2.3.3 Null string handling

The null string (“” ) shall be considered equivalent to the ASCII NULL (“\0” ) which has a value zero (0), which is
different from a string“0” .

4.3 Minimum, typical, and maximum delay expressions

Verilog HDL delay expressions can be specified as three expressions separated by colons and enclosed by p
ses. This is intended to represent minimum, typical, and maximum values—in that order. The syntax is gi
Syntax 4-2.

000000000048656c6c6f00000020776f726c6421
48656c6c6f20776f726c6421

"Hello" " world!"

s1 s2
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Syntax 4-2—Syntax for mintypmax expression

Verilog HDL models typically specify three values for delay expressions. The three values allow a design to be
with minimum, typical, or maximum delay values.

Values expressed in min:typ:max format can be used in expressions. The min:typ:max format can be used w
expressions can appear.

Examples:

Example 1—This example shows an expression that defines a single triplet of delay values. The minimum value
sum ofa+d ; the typical value isb+e ; the maximum value isc+f , as follows:

constant_expression ::=(From Annex A - A.8.3)
constant_primary

| unary_operator { attribute_instance } constant_primary
| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression? { attribute_instance } constant_expression

constant_expression
| string

constant_mintypmax_expression ::=
constant_expression

| constant_expression: constant_expression: constant_expression
expression ::=

primary
| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string

mintypmax_expression ::=
expression

| expression: expression: expression
constant_primary ::=(From Annex A - A.8.4)

constant_concatenation
| constant_function_call
| ( constant_mintypmax_expression)
| constant_multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier

primary ::=
number

| hierarchical_identifier
| hierarchical_identifier[ expression] { [ expression] }
| hierarchical_identifier[ expression] { [ expression] } [ range_expression]
| hierarchical_identifier[ range_expression]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| ( mintypmax_expression)
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Example 2—The next example shows some typical expressions that are used to specifymin:typ:max format val-
ues:

val - (32’d 50: 32’d 75: 32’d 100)

4.4 Expression bit lengths

Controlling the number of bits that are used in expression evaluations is important if consistent results are
achieved. Some situations have a simple solution; for example, if a bit-wise and operation is specified on two
regs, then the result is a 16-bit value. However, in some situations it is not obvious how many bits are used to e
an expression, or what size the result should be.

For example, should an arithmetic add of two 16-bit values perform the evaluation using 16 bits, or should the
ation use 17 bits in order to allow for a possible carry overflow? The answer depends on the type of device
modeled, and whether that device handles carry overflow. The Verilog HDL uses the bit length of the opera
determine how many bits to use while evaluating an expression. The bit length rules are given in 4.4.1. In the
the addition operator, the bit length of the largest operand, including the left-hand side of an assignment, s
used.

Examples:

reg [15:0] a, b; // 16-bit regs
reg [15:0] sumA; // 16-bit reg
reg [16:0] sumB; // 17-bit reg

sumA = a + b; // expression evaluates using 16 bits
sumB = a + b; // expression evaluates using 17 bits

4.4.1 Rules for expression bit lengths

The rules governing the expression bit lengths have been formulated so that most practical situations have a
solution.

The number of bits of an expression (known as the size of the expression) shall be determined by the op
involved in the expression and the context in which the expression is given.

A self-determined expressionis one where the bit length of the expression is solely determined by the expres
itself—for example, an expression representing a delay value.

A context-determined expressionis one where the bit length of the expression is determined by the bit length o
expressionandby the fact that it is part of another expression. For example, the bit size of the right-hand side e
sion of an assignment depends on itself and the size of the left-hand side.

Table 4-21 shows how the form of an expression shall determine the bit lengths of the results of the expres
Table 4-21,i , j , andk represent expressions of an operand, andL(i) represents the bit length of the operand repr
sented byi .
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4.4.2 An example of an expression bit-length problem

During the evaluation of an expression, interim results shall take the size of the largest operand (in case of an
ment, this also includes the left-hand side). Care has to be taken to prevent loss of a significant bit during exp
evaluation. The example below describes how the bit lengths of the operands could result in the loss of a sig
bit.

Given the following declarations

reg [15:0] a, b, answer; // 16-bit regs

The intent is to evaluate the expression

answer = (a + b) >> 1; //will not work properly

wherea andb are to be added, which may result in an overflow, and then shifted right by 1 bit to preserve the
bit in the 16-bitanswer .

A problem arises, however, because all operands in the expression are of a 16-bit width. Therefore, the expr
(a + b ) produces an interim result that is only 16 bits wide, thus losing the carry bit before the evaluation per
the 1-bit right shift operation.

The solution is to force the expression (a + b ) to evaluate using at least 17 bits. For example, adding an inte

Table 4-21—Bit lengths resulting from self-determined expressions

   Expression Bit length Comments

Unsized constant number1

1If an unsized constant is part of an expression that is longer than 32 bits, then if the most significant bit
is unknown (X or x ) or tri-state (Z or z ) the most significant bit is extended up to the size of the expres-
sion, otherwise signed constants are sign extended and unsigned constants are zero extended.

NOTE—Multiplication without losing any overflow bits is still possible simply by assigning the result to
something wide enough to hold it.

Same as integer

Sized constant number As given

i op j, where op is:
+  -  *  /  %  &  |  ^  ^~  ~^

max(L(i),L(j))

op i, where op is:
+  -  ~

L(i)

i op j, where op is:
=== !== == != && || > >= < <=

1 bit Operands are sized to max(L(i),L(j))

op i, where op is:
&  ~&  |  ~|  ^  ~^  ^~ !

1 bit All operands are self-determined

i op j, where op is:
>>   <<   **

L(i) j is self-determined

i ? j : k max(L(j),L(k)) i is self-determined

{i,...,j} L(i)+..+L(j) All operands are self-determined

{i{j,..,k}} i *  (L(j)+..+L(k)) All operands are self-determined
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value of 0 to the expression will cause the evaluation to be performed using the bit size of integers. The fol
example will produce the intended result:

answer = (a + b + 0) >> 1; //will work correctly

In the following example:

module bitlength();
reg [3:0] a,b,c;
reg [4:0] d;

initial begin
     a = 9;
     b = 8;
     c = 1;

$display("answer = %b", c ? (a&b) : d);
end

endmodule

the$display  statement will display:

   answer = 01000

By itself, the expressiona&b would have the bit length 4, but since it is in the context of the conditional express
which uses the maximum bit-length, the expressiona&b actually has length 5, the length ofd.

4.4.3 Example of self-determined expressions

reg [3:0] a;
reg [5:0] b;
reg [15:0] c;

initial begin
      a = 4’hF;
      b = 6’ha;

$display("a*b=%x",
               a*b);        // expression size is self determined
      c = {a**b};           // expression a**b is self determined

$display("a**b=%x", c); // due to {}
      c = a**b;             // expression size is determined by c

$display("c=%x", c);
end

Simulator output for this example:

a*b=16 // 96 was truncated since expression size is 6
a**b=1 // expression size is 4 bits (size of a)
c=21 // expression size is 6 bits (size of c)

4.5 Signed expressions

Controlling the sign of an expression is important if consistent results are to be achieved. In addition to the rul
lined in the following sections, two system functions shall be used to handle type casting on expressions: $s
and $unsigned(). These functions shall evaluate the input expression and return a value with the same size a
of the input expression and the type defined by the function:
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$signed - returned value is signed
$unsigned - returned value is unsigned

Example:

reg [7:0] regA;
reg signed [7:0] regS;

regA = $unsigned(-4); // regA = 4'b1100
regS = $signed(4'b1100); // regS = -4

4.5.1 Rules for expression types

The following are the rules for determining the resulting type of an expression:

— Expression type depends only on the operands. It does not depend on the LHS (if any).
— Decimal numbers are signed.
— Based_numbers are unsigned, except where thes  notation is used in the base specifier (as in "4'sd12 ").
— Bit-select results are unsigned, regardless of the operands.
— Part-select results are unsigned, regardless of the operands.

NOTE—This is true even if the part-select specifies the entire vector.

reg [15:0] a;
reg signed [7:0] b;

initial
a = b[7:0]; // b[7:0] is unsigned and therefore zero-extended

— Concatenate results are unsigned, regardless of the operands.
— Comparison results (1, 0) are unsigned, regardless of the operands.
— Reals converted to integers by type coercion are signed
— The sign and size of any self-determined operand is determined by the operand itself and independen

remainder of the expression.
— For non-self-determined operands the following rules apply:

if any operand is real, the result is real;
if any operand is unsigned, the result is unsigned, regardless of the operator;
if all operands are signed, the result will be signed, regardless of operator, except as noted.

4.5.2 Steps for evaluating an expression

— Determine the expression size based upon the standard rules of expression size determination.
— Determine the sign of the expression using the rules outlined in 4.5.1.
— Coerce the type of each operand of the expression (excepting those which are self-determined) to the

the expression.
— Extend the size of each operand (excepting those which are self-determined) to the size of the expressi

form sign extension if and only if the operand type (after type coercion) is signed.

4.5.3 Steps for evaluating an assignment

— Determine the size of the RHS by the standard assignment size determination rules (see 4.4)
— If needed, extend the size of the RHS, performing sign extension if and only if the type of the RHS is sig
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4.5.4 Handling X and Z in signed expressions

If a signed operand is to be resized to a larger signed width and the value of the sign bit isX, the resulting value shall
be bit-filled withXs. If the sign bit of the value isZ, then the resulting value shall be bit-filled withZs. If any bit of a
signed value isX or Z, then any non logical operation involving the value shall result in the entire resultant v
being anX and the type consistent with the expression's type.
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Section 5

Scheduling semantics

5.1 Execution of a model

The balance of the sections of this standard describe the behavior of each of the elements of the language. T
tion gives an overview of the interactions between these elements, especially with respect to the scheduling a
cution of events.

The elements that make up the Verilog HDL can be used to describe the behavior, at varying levels of abstrac
electronic hardware. An HDL has to be a parallel programming language. The execution of certain languag
structs is defined by parallel execution of blocks or processes. It is important to understand what execution o
guaranteed to the user, and what execution order is indeterminate.

Although the Verilog HDL is used for more than simulation, the semantics of the language are defined for simu
and everything else is abstracted from this base definition.

5.2 Event simulation

The Verilog HDL is defined in terms of a discrete event execution model. The discrete event simulation is des
in more detail in this section to provide a context to describe the meaning and valid interpretation of Verilog
constructs. These resulting definitions provide the standard Verilog reference model for simulation, which all c
ant simulators shall implement. Note, though, that there is a great deal of choice in the definitions that follow, a
ferences in some details of execution are to be expected between different simulators. In addition, Verilog
simulators are free to use different algorithms than those described in this section, provided the user-visible e
consistent with the reference model.

A design consists of connected threads of execution or processes. Processes are objects that can be evalu
may have state, and that can respond to changes on their inputs to produce outputs. Processes include p
modules, initial and always procedural blocks, continuous assignments, asynchronous tasks, and procedura
ment statements.

Every change in value of a net or variable in the circuit being simulated, as well as the named event, is consid
update event.

Processes are sensitive to update events. When an update event is executed, all the processes that are sens
event are evaluated in an arbitrary order. The evaluation of a process is also an event, known as anevaluation event.

In addition to events, another key aspect of a simulator is time. The termsimulation timeis used to refer to the time
value maintained by the simulator to model the actual time it would take for the circuit being simulated. The
time is used interchangeably with simulation time in this section.

Events can occur at different times. In order to keep track of the events and to make sure they are processed in
rect order, the events are kept on anevent queue, ordered by simulation time. Putting an event on the queue is ca
scheduling an event.

5.3 The stratified event queue

The Verilog event queue is logically segmented into five different regions. Events are added to any of the five r
but are only removed from theactive region.
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1) Events that occur at the current simulation time and can be processed in any order. These are theactive
events.

2) Events that occur at the current simulation time, but that shall be processed after all the active eve
processed. These are theinactive events.

3) Events that have been evaluated during some previous simulation time, but that shall be assigned
simulation time after all the active and inactive events are processed. These are thenonblocking assign update
events.

4) Events that shall be processed after all the active, inactive, and nonblocking assign update eve
processed. These are themonitor events.

5) Events that occur at some future simulation time. These are thefutureevents. Future events are divided int
future inactive events, andfuture nonblocking assignment update events.

The processing of all the active events is called asimulation cycle.

The freedom to choose any active event for immediate processing is an essential source of nondeterminism in
ilog HDL.

An explicit zero delay(#0) requires that the process be suspended and added as an inactive event for the curre
so that the process is resumed in the next simulation cycle in the current time.

A nonblocking assignment (see 9.2.2) creates a nonblocking assign update event, scheduled for current or a l
ulation time.

The$monitor and$strobesystem tasks (see 17.1) create monitor events for their arguments. These events a
tinuously re-enabled in every successive time step. The monitor events are unique in that they cannot create a
events.

The call back procedures scheduled with PLI routines such astf_synchronize() (see 25.58) or
vpi_register_cb(cb_readwrite)  (see 27.33) shall be treated as inactive events.

5.4 The Verilog simulation reference model

In all the examples that follow, T refers to the current simulation time, and all events are held in the event q
ordered by simulation time.

while (there are events) {
if (no active events) {

if (there are inactive events) {
activate all inactive events;

} else if (there are nonblocking assign update events) {
activate all nonblocking assign update events;

} else if (there are monitor events) {
activate all monitor events;

} else {
advance T to the next event time;
activate all inactive events for time T;

}
}
E = any active event;
if (E is an update event) {

update the modified object;
add evaluation events for sensitive processes to event queue;
68 Copyright 2000 IEEE. All rights reserved. Section 5
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

r

der the

e. The
e taken

ny order.
ot have
e 9.7). At
ly com-
ss exe-

ions are
} else { /* shall be an evaluation event */
evaluate the process;
add update events to the event queue;

}
}

5.4.1 Determinism

This standard guarantees a certain scheduling order.

1) Statements within abegin-end block shall be executed in the order in which they appear in thatbegin-
end block. Execution of statements in a particularbegin-end block can be suspended in favor of othe
processes in the model; however, in no case shall the statements in abegin-end block be executed in any
order other than that in which they appear in the source.

2) Nonblocking assignments shall be performed in the order the statements were executed. Consi
following example:

When this block is executed, there will be two events added to the nonblocking assign update queu
previous rule requires that they be entered on the queue in source order; this rule requires that they b
from the queue and performed in source order as well. Hence, at the end of time step1, the variablea will be
assigned0 and then1.

5.4.2 Nondeterminism

One source of nondeterminism is the fact that active events can be taken off the queue and processed in a
Another source of nondeterminism is that statements without time-control constructs in behavioral blocks do n
to be executed as one event. Time control statements are the # expression and @ expression constructs (se
any time while evaluating a behavioral statement, the simulator may suspend execution and place the partial
pleted event as a pending active event on the event queue. The effect of this is to allow the interleaving of proce
cution. Note that the order of interleaved execution is nondeterministic and not under control of the user.

5.5 Race conditions

Because the execution of expression evaluation and net update events may be intermingled, race condit
possible:

assign p = q;
initial begin

q = 1;
#1 q = 0;
$display(p);

end

The simulator is correct in displaying either a1 or a0. The assignment of0 to q enables an update event forp. The
simulator may either continue and execute the $display task or execute the update forp, followed by the $display
task.

initial begin
a <= 0;
a <= 1;

end
Section 5 Copyright 2000 IEEE. All rights reserved. 69
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

ts in the
ent queue,

hat
an active

s, then
s is sched-

assign-
t the time
tial state-

nblocking
values

left-hand

s each

pro-

ine the
using a
ents at a

ucting
All other
5.6 Scheduling implication of assignments

Assignments are translated into processes and events as follows.

5.6.1 Continuous assignment

A continuous assignment statement (Section 6) corresponds to a process, sensitive to the source elemen
expression. When the value of the expression changes, it causes an active update event to be added to the ev
using current values to determine the target.

5.6.2 Procedural continuous assignment

A procedural continuous assignment (which are theassignor force statement; see 9.3) corresponds to a process t
is sensitive to the source elements in the expression. When the value of the expression changes, it causes
update event to be added to the event queue, using current values to determine the target.

A deassign or arelease statement deactivates any correspondingassign or force statement(s).

5.6.3 Blocking assignment

A blocking assignment statement with a delay computes the right-hand side value using the current value
causes the executing process to be suspended and scheduled as a future event. If the delay is 0, the proces
uled as an inactive event for the current time.

When the process is returned (or if it returns immediately if no delay is specified), the process performs the
ment to the left-hand side and enables any events based upon the update of the left-hand side. The values a
the process resumes are used to determine the target(s). Execution may then continue with the next sequen
ment or with other active events.

5.6.4 Nonblocking assignment

A nonblocking assignment statement always computes the updated value and schedules the update as a no
assign update event, either in this time step if the delay is zero or as a future event if the delay is nonzero. The
in effect when the update is placed on the event queue are used to compute both the right-hand value and the
target.

5.6.5 Switch (transistor) processing

The event-driven simulation algorithm described in 5.4 depends on unidirectional signal flow and can proces
event independently. The inputs are read, the result is computed, and the update is scheduled.

The Verilog HDL provides switch-level modeling in addition to behavioral and gate-level modeling. Switches
vide bi-directional signal flow and require coordinated processing of nodes connected by switches.

The Verilog HDL source elements that model switches are various forms of transistors, calledtran , tranif0 , tranif1 ,
rtran , rtranif0 , andrtranif1 .

Switch processing shall consider all the devices in a bidirectional switch-connected net before it can determ
appropriate value for any node on the net, because the inputs and outputs interact. A simulator can do this
relaxation technique. The simulator can process tran at any time. It can process a subset of tran-connected ev
particular time, intermingled with the execution of other active events.

Further refinement is required when some transistors have gate valuex . A conceptually simple technique is to solve
the network repeatedly with these transistors set to all possible combinations of fully conducting and noncond
transistors. Any node that has a unique logic level in all cases has steady-state response equal to this level.
nodes have steady-state responsex .
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5.6.6 Port connections

Ports connect processes through implicit continuous assignment statements or implicit bidirectional conne
Bidirectional connections are analogous to an always-enabled tran connection between the two nets, but with
strength reduction. Port connection rules require that a value receiver be a net or a structural net expression.

Ports can always be represented as declared objects connected as follows:

— If an input port, then a continuous assignment from an outside expression to a local (input) net
— If an output port, then a continuous assignment from a local output expression to an outside net
— If an inout, then a nonstrength-reducing transistor connecting the local net to an outside net

5.6.7 Functions and tasks

Task and function parameter passing is by value, and it copies in on invocation and copies out on return. The c
on the return function behaves in the same manner as does any blocking assignment.
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Section 6

Assignments

The assignment is the basic mechanism for placing values into nets and variables. There are two basic f
assignments:

— Thecontinuous assignment, which assigns values tonets
— Theprocedural assignment, which assigns values tovariables

There are two additional forms of assignments, assign / deassign and force / release which are calledprocedural con-
tinuous assignments, described in 9.3.

An assignment consists of two parts, a left-hand side and a right-hand side, separated by the equals (= ) character; or,
in the case of nonblocking procedural assignment, the less-than-equals (<= ) character pair. The right-hand side ca
be any expression that evaluates to a value. The left-hand side indicates the variable to which the right-ha
value is to be assigned. The left-hand side can take one of the forms given in Table 6-1, depending on whe
assignment is a continuous assignment or a procedural assignment.

6.1 Continuous assignments

Continuous assignments shall drive values onto nets, both vector and scalar. This assignment shall occur w
the value of the right-hand side changes. Continuous assignments provide a way to model combinational log
out specifying an interconnection of gates. Instead, the model specifies the logical expression that drives the

The syntax for continuous assignments is given in Syntax 6-1.

Table 6-1—Legal left-hand side forms in assignment statements

Statement type Left-hand side (LHS)

Continuous assignment Net (vector or scalar)
Constant bit select of a vector net
Constant part select of a vector net
Constant indexed part select of a vector net
Concatenation of any of the above four LHS

Procedural assignment Variables (vector or scalar)
Bit-select of a vector reg, integer, or time variable
Constant part select of a vector reg, integer, or time
variable
Memory word
Indexed part select of a vector reg, integer, or time
variable
Concatenation of regs; bit or part selects of regs
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Syntax 6-1—Syntax for continuous assignment

6.1.1 The net declaration assignment

The first two alternatives in the net declaration are discussed in see 3.2. The third alternative, the net dec
assignment, allows a continuous assignment to be placed on a net in the same statement that declares the n

Example:

The following is an example of the net declaration form of a continuous assignment:

wire ( strong1, pull0) mynet = enable ;

NOTE—Because a net can be declared only once, only one net declaration assignment can be made for a particular net.
trasts with the continuous assignment statement; one net can receive multiple assignments of the continuous assignmen

6.1.2 The continuous assignment statement

The continuous assignment statement shall place a continuous assignment on a net data type. The net may b
itly declared, or may inherit an implicit declaration in accordance with the implicit declarations rules defined in

Assignments on nets shall be continuous and automatic. This means that whenever an operand in the right-h
expression changes value, the whole right-hand side shall be evaluated and if the new value is different from
vious value, then the new value shall be assigned to the left-hand side.

net_declaration ::=(From Annex A - A.2.1.3)
net_type [signed ]

[ delay3 ] list_of_net_identifiers;
| net_type [ drive_strength ] [signed ]

[ delay3 ] list_of_net_decl_assignments;
| net_type [vectored | scalared ] [ signed ]

range [ delay3 ] list_of_net_identifiers;
| net_type [ drive_strength ] [vectored | scalared ] [ signed ]

range [ delay3 ] list_of_net_decl_assignments;
| trireg  [ charge_strength ] [signed ]

[ delay3 ] list_of_net_identifiers;
| trireg  [ drive_strength ] [signed ]

[ delay3 ] list_of_net_decl_assignments;
| trireg  [ charge_strength ] [vectored | scalared ] [ signed ]

range [ delay3 ] list_of_net_identifiers;
| trireg  [ drive_strength ] [vectored | scalared ] [ signed ]

range [ delay3 ] list_of_net_decl_assignments;
list_of_net_decl_assignments ::=(From Annex A - A.2.3)

net_decl_assignment {, net_decl_assignment }
net_decl_assignment ::=(From Annex A - A.2.4)

net_identifier= expression
continuous_assign ::=(From Annex A - A.6.1)

assign [ drive_strength ] [ delay3 ] list_of_net_assignments;
list_of_net_assignments ::=

net_assignment {, net_assignment }
net_assignment ::=

net_lvalue= expression
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Examples:

Example 1—The following is an example of a continuous assignment to a net that has been previously declare

wire mynet ;

assign ( strong1, pull0) mynet = enable ;

Example 2—The following is an example of the use of a continuous assignment to model a 4-bit adder with carry
assignment could not be specified directly in the declaration of the nets because it requires a concatenation on
hand side.

Example 3—The following example describes a module with one 16-bit output bus. It selects between one o
input busses and connects the selected bus to the output bus.

The following sequence of events is experienced during simulation of this example:

a) The value ofs , a bus selector input variable, is checked in the assign statement. Based on the value ofs , the
netdata  receives the data from one of the four input buses.

b) The setting ofdata net triggers the continuous assignment in the net declaration forbusout . If enable is
set, the contents ofdata are assigned tobusout ; if enable is 0, the contents ofZee are assigned to
busout .

module adder (sum_out, carry_out, carry_in, ina, inb);
output [3:0] sum_out;
output carry_out;
input  [3:0] ina, inb;
input  carry_in;
wire carry_out, carry_in;
wire [3:0] sum_out, ina, inb;
assign {carry_out, sum_out} = ina + inb + carry_in;
endmodule

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
parameter n = 16;
parameter Zee = 16’bz;
output [1:n] busout;
input  [1:n] bus0, bus1, bus2, bus3;
input  enable;
input  [1:2] s;
tri  [1:n] data; // net declaration
// net declaration with continuous assignment
tri  [1:n] busout = enable ? data : Zee;
// assignment statement with four continuous assignments
assign

data = (s == 0) ? bus0 : Zee,
data = (s == 1) ? bus1 : Zee,
data = (s == 2) ? bus2 : Zee,
data = (s == 3) ? bus3 : Zee;

endmodule
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6.1.3 Delays

A delay given to a continuous assignment shall specify the time duration between a right-hand side operan
change and the assignment made to the left-hand side. If the left-hand side references a scalar net, then the d
be treated in the same way as for gate delays—that is, different delays can be given for the output rising, fallin
changing to high impedance (see Section 7).

If the left-hand side references a vector net, then up to three delays can be applied. The following rules de
which delay controls the assignment:

— If the right-hand side makes a transition from nonzero to zero, then the falling delay shall be used.
— If the right-hand side makes a transition toz , then the turn-off delay shall be used.
— For all other cases, the rising delay shall be used.

Specifying the delay in a continuous assignment that is part of the net declaration shall be treated differentl
specifying a net delay and then making a continuous assignment to the net. A delay value can be applied to a
net declaration, as in the following example:

wire #10 wireA;

This syntax, called anet delay, means that any value change that is to be applied towireA by some other statement
shall be delayed for ten time units before it takes effect. When there is a continuous assignment in a declarat
delay is part of the continuous assignment and isnota net delay. Thus, it shall not be added to the delay of other dr
ers on the net. Furthermore, if the assignment is to a vector net, then the rising and falling delays shall not be
to the individual bits if the assignment is included in the declaration.

In situations where a right-hand side operand changes before a previous change has had time to propagate to
hand side, then the following steps are taken:

a) The value of the right-hand side expression is evaluated.

b) If this RHS value differs from the value currently scheduled to propagate to the left-hand side, the
currently scheduled propagation event is descheduled.

c) If the new RHS value equals the current left-hand side value, no event is scheduled.

d) If the new RHS value differs from the current LHS value, a delay is calculated in the standard way usin
current value of the left-hand side, the newly calculated value of the right-hand side, and the delays ind
on the statement; a new propagation event is then scheduled to occur delay time units in the future.

6.1.4 Strength

The driving strength of a continuous assignment can be specified by the user. This applies only to assignment
lar nets of the following types:

wire tri trireg
wand triand tri0
wor trior tri1

Continuous assignments driving strengths can be specified in either a net declaration or in a stand-alone ass
using theassignkeyword. The strength specification, if provided, shall immediately follow the keyword (either
keyword for the net type orassign) and precede any delay specified. Whenever the continuous assignment driv
net, the strength of the value shall be simulated as specified.
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A drive strength specification shall contain one strength value that applies when the value being assigned to th
1 and a second strength value that applies when the assigned value is0. The following keywords shall specify the
strength value for an assignment of1:

supply1 strong1 pull1 weak1 highz1

The following keywords shall specify the strength value for an assignment of0:

supply0 strong0 pull0 weak0 highz0

The order of the two strength specifications shall be arbitrary. The following two rules shall constrain the use o
strength specifications:

— The strength specifications (highz1, highz0) and (highz0, highz1) shall be treated as illegal constructs.
— If drive strength is not specified, it shall default to( strong1, strong0).

6.2 Procedural assignments

The primary discussion of procedural assignments is in 9.2. However, a description of the basic ideas in this
highlights the differences between continuous assignments and procedural assignments.

As stated in 6.1, continuous assignments drive nets in a manner similar to the way gates drive nets. The expre
the right-hand side can be thought of as a combinatorial circuit that drives the net continuously. In contrast,
dural assignments put values in variables. The assignment does not have duration; instead, the variable h
value of the assignment until the next procedural assignment to that variable.

Procedural assignments occur within procedures such asalways, initial (see Section 9),task, andfunction (see Sec-
tion 10) and can be thought of as “triggered” assignments. The trigger occurs when the flow of execution in the
lation reaches an assignment within a procedure. Reaching the assignment can be controlled by con
statements. Event controls, delay controls,if statements,casestatements, and looping statements can all be used
control whether assignments are evaluated. Section 9 gives details and examples.

6.2.1 Variable declaration assignment

The variable declaration assignment is a special case of procedural assignment as it assigns a value to a va
allows an initial value to be placed in a variable in the same statement that declares the variable. The assignm
be to a constant expression. The assignment does not have duration; instead, the variable holds the value unti
assignment to that variable. Variable declaration assignments to an array are not allowed. Variable declaration
ments are only allowed at the module level.

Examples:

Example 1—Declare a 4 bit reg and assign it the value 4.

reg[3:0] a = 4'h4;

This is equivalent to writing:

reg[3:0] a;
initial  a = 4'h4;

Example 2—The following example is not legal.

reg [3:0] array [3:0] = 0;
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Example 3—Declare two integers, the first is assigned the value of 0.

integer i = 0, j;

Example 4—Declare two real variables, assigned to the values 2.5 and 300,000.

real r1 = 2.5, n300k = 3E6;

Example 5—Declare a time variable and realtime variable with initial values.

time t1 = 25;
realtime rt1 = 2.5;

NOTE—If the same variable is assigned different values both in an initial block and in a variable declaration assignment, th
of the evaluation is undefined.

6.2.2 Variable declaration syntax

The syntax for variable declaration assignments is given in Syntax 6-2.

Syntax 6-2—Syntax for reg declaration assignment

integer_declaration ::=(From Annex A - A.2.1.3)
integer list_of_variable_identifiers;

real_declaration ::=
real list_of_real_identifiers;

realtime_declaration ::=
realtime list_of_real_identifiers;

reg_declaration ::=
reg [ signed ] [ range ] list_of_variable_identifiers;

time_declaration ::=
time list_of_variable_identifiers;

real_type ::= (From Annex A - A.2.2.1)
real_identifier [= constant_expression ]

| real_identifier dimension { dimension }
variable_type ::=

variable_identifier [= constant_expression ]
| variable_identifier dimension { dimension }

list_of_real_identifiers ::=(From Annex A - A.2.3)
real_type {, real_type }

list_of_variable_identifiers ::=
variable_type {, variable_type }
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Section 7

Gate and switch level modeling

This section describes the syntax and semantics of these built-in primitives and how a hardware design
described using these primitives.

There are 14 logic gates and 12 switches predefined in the Verilog HDL to provide thegateandswitchlevel modeling
facility. Modeling with logic gates and switches has the following advantages:

— Gates provide a much closer one-to-one mapping between the actual circuit and the model.
— There is no continuous assignment equivalent to the bidirectional transfer gate.

7.1 Gate and switch declaration syntax

Syntax 7-1 shows the gate and switch declaration syntax.

A gate or a switch instance declaration shall have the following specifications:

— The keyword that names the type of gate or switch primitive
— An optionaldrive strength
— An optionalpropagation delay
— An optional identifier that names each gate or switch instance
— An optional range forarray of instances
— The terminal connection list

Multiple instances of the one type of gate or switch primitive can be declared as a comma-separated list. A
instances shall have the same drive strength and delay specification.
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Syntax 7-1—Syntax for gate instantiation

gate_instantiation ::=(From Annex A - A.3.1)
cmos_switchtype [delay3] cmos_switch_instance {, cmos_switch_instance };

| enable_gatetype [drive_strength] [delay3] enable_gate_instance {, enable_gate_instance };
| mos_switchtype [delay3] mos_switch_instance {, mos_switch_instance };
| n_input_gatetype [drive_strength] [delay2] n_input_gate_instance {, n_input_gate_instance };
| n_output_gatetype [drive_strength] [delay2] n_output_gate_instance

{ , n_output_gate_instance };
| pass_en_switchtype [delay2] pass_enable_switch_instance {, pass_enable_switch_instance };
| pass_switchtype pass_switch_instance {, pass_switch_instance };
| pulldown [pulldown_strength] pull_gate_instance {, pull_gate_instance };
| pullup  [pullup_strength] pull_gate_instance {, pull_gate_instance };

cmos_switch_instance ::= [ name_of_gate_instance ]
( output_terminal, input_terminal, ncontrol_terminal, pcontrol_terminal)

enable_gate_instance ::= [ name_of_gate_instance ]
( output_terminal, input_terminal, enable_terminal)

mos_switch_instance ::= [ name_of_gate_instance ]
( output_terminal, input_terminal, enable_terminal)

n_input_gate_instance ::= [ name_of_gate_instance ]
( output_terminal, input_terminal {, input_terminal })

n_output_gate_instance ::= [ name_of_gate_instance ]
( output_terminal {, output_terminal }, input_terminal)

pass_switch_instance ::= [ name_of_gate_instance ]( inout_terminal, inout_terminal)
pass_enable_switch_instance ::= [ name_of_gate_instance ]

( inout_terminal, inout_terminal, enable_terminal)
pull_gate_instance ::= [ name_of_gate_instance ]( output_terminal)
name_of_gate_instance ::= gate_instance_identifier [ range ]
pulldown_strength ::=(From Annex A - A.3.2)

( strength0, strength1 )
| ( strength1, strength0)
| ( strength0)

pullup_strength ::=( strength0, strength1)
| ( strength1, strength0)
| ( strength1)

enable_terminal ::=(From Annex A - A.3.3)
expression

inout_terminal ::= net_lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression
cmos_switchtype ::=(From Annex A - A.3.4)

cmos | rcmos
enable_gatetype ::=bufif0  | bufif1  | notif0 | notif1
mos_switchtype ::=nmos | pmos | rnmos | rpmos
n_input_gatetype ::=and | nand | or | nor | xor | xnor
n_output_gatetype ::=buf | not
pass_en_switchtype ::=tranif0  | tranif1  | rtranif1  | rtranif0
pass_switchtype ::=tran  | rtran
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7.1.1 The gate type specification

A gate or switch instance declaration shall begin with the keyword that specifies the gate or switch primitive
used by the instances that follow in the declaration. Table 7-1 lists the keywords that shall begin a gate or a
instance declaration.

Explanations of the built-in gates and switches shown in Table 7-1 begin in 7.2.

7.1.2 The drive strength specification

An optional drive strength specification shall specify thestrengthof the logic values on the output terminals of th
gate instance. Only the instances of the gate primitives shown in Table 7-2 can have the drive strength specifi

The drive strength specification for a gate instance, with the exception ofpullup and pulldown, shall have a
strength1specification and astrength0specification. The strength1 specification shall specify the strength of sig
with a logic value 1, and thestrength0specification shall specify the strength of signals with a logic value 0. T
strength specification shall follow the gate type keyword and precede any delay specification. Thestrength0specifica-
tion can precede or follow thestrength1specification. The strength1 andstrength0specifications shall be separate
by a comma and enclosed within a pair of parentheses.

Thepullup gate can have onlystrength1specification;strength0specification shall be optional. Thepulldown gate
can have onlystrength0 specification;strength1 specification shall be optional.

The strength1 specification shall be one of the following keywords:

supply1 strong1 pull1 weak1

The strength0 specification shall be one of the following keywords:

supply0 strong0 pull0 weak0

Specifyinghighz1 as strength1 shall cause the gate or switch to output a logic valuez in place of a1. Specifying
highz0shall cause the gate to output a logic valuez in place of a0. The strength specifications(highz0, highz1)and
(highz1, highz0)shall be considered invalid.

Table 7-1—Built-in gates and switches

n_input gates n_output gates tristate gates pull gates MOS switches bidirectional
switches

and buf bufif0 pulldown cmos rtran

nand not bufif1 pullup nmos rtranif0

nor notif0 pmos rtranif1

or notif1 rcmos tran

xnor rnmos tranif0

xor rpmos tranif1

Table 7-2—Valid gate types for strength specifications

and nand buf not pulldown

or nor bufif0 notif0 pullup

xor xnor bufif1 notif1
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In the absence of a strength specification, the instances shall have the default strengthsstrong1 andstrong0.

Example:

The following example shows a drive strength specification in a declaration of an open collectornor gate:

nor (highz1,strong0) n1(out1,in1,in2);

In this example, thenor gate outputs az  in place of a1.

Logic strength modeling is discussed in more detail in 7.9 through 7.13.

7.1.3 The delay specification

An optional delay specification shall specify the propagation delay through the gates and switches in a decl
Gates and switches in declarations with no delay specification shall have no propagation delay. A delay spec
can contain up to three delay values, depending on the gate type. Thepullup andpulldown instance declarations
shall not include delay specifications. Delays are discussed in more detail in 7.14.

7.1.4 The primitive instance identifier

An optional name can be given to a gate or switch instance. If multiple instances are declared as an array of in
an identifier shall be used to name the instances.

7.1.5 The range specification

There are many situations when repetitive instances are required. These instances shall differ from each othe
the index of the vector to which they are connected.

In order to specify an array of instances, the instance name shall be followed by the range specification. Th
shall be specified by two constant expressions, left-hand index (lhi ) and right-hand index (rhi ), separated by a
colon and enclosed within a pair of square brackets. A[lhi:rhi] range specification shall represent an array
abs(lhi-rhi)+1 instances. Neither of the two constant expressions are required to be zero, andlhi is not
required to be larger thanrhi . If both constant expressions are equal, only one instance shall be generated.

An array of instances shall have a continuous range. One instance identifier shall be associated with only one
declare an array of instances.

The range specification shall be optional. If no range specification is given, a single instance shall be created

Example:

A declaration shown below is illegal:

nand #2 t_nand[0:3] ( ... ), t_nand[4:7] ( ... );

It could be declared correctly as one array of eight instances, or two arrays with unique names of four eleme

nand #2 t_nand[0:7]( ... );
nand #2 x_nand[0:3] ( ... ), y_nand[4:7] ( ... );

7.1.6 Primitive instance connection list

The terminal list describes how the gate or switch connects to the rest of the model. The gate or switch type c
these expressions. The connection list shall be enclosed in a pair of parentheses, and the terminals shall be
by commas. The output or bidirectional terminals shall always come first in the terminal list, followed by the
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The terminal connections for an array of instances shall follow these rules:

— The bit length of each port expression in the declared instance-array shall be compared with the bit len
each single-instance port or terminal in the instantiated module or primitive.

— For each port or terminal where the bit length of the instance-array port expression is the same as
length of the single-instance port, the instance-array port expression shall be connected to each
instance port.

— If bit lengths are different, each instance shall get a part-select of the port expression as specified in the
starting with the right-hand index.

— Too many or too few bits to connect to all the instances shall be considered an error.

An individual instance from an array of instances shall be referenced in the same manner as referencing an ele
an array of regs.

Examples:

Example 1—The following declaration ofnand_array declares four instances that can be referenced
nand_array[1] , nand_array[2] , nand_array[3] , andnand_array[4]  respectively.

nand #2 nand_array[1:4]( ... ) ;

Example 2—The two module descriptions that follow are equivalent except for indexed instance names, an
demonstrate the range specification and connection rules for declaring an array of instances:

Example 3—The two module descriptions that follow are equivalent except for indexed instance names, an
demonstrate how different instances within an array of instances are connected when the port sizes do not m

module driver (in, out, en);
input  [3:0] in;
output [3:0] out;
input  en;

bufif0  ar[3:0] (out, in, en); // array of tri-state buffers

endmodule

module driver_equiv (in, out, en);
input  [3:0] in;
output [3:0] out;
input  en;

bufif0  ar3 (out[3], in[3], en); // each buffer declared separately
bufif0  ar2 (out[2], in[2], en);
bufif0  ar1 (out[1], in[1], en);
bufif0  ar0 (out[0], in[0], en);

endmodule
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Example 4—This example demonstrates how a series of modules can be chained together. Figure 7-1 shows a
alent schematic interconnection of DFF instances.

module busdriver (busin, bushigh, buslow, enh, enl);
input  [15:0] in;
output [7:0] bushigh, buslow;
input  enh, enl;

driver busar3 (busin[15:12], bushigh[7:4], enh);
driver busar2 (busin[11:8], bushigh[3:0], enh);
driver busar1 (busin[7:4], buslow[7:4], enl);
driver busar0 (busin[3:0], buslow[3:0], enl);

endmodule

module busdriver_equiv (busin, bushigh, buslow, enh, enl);
input  [15:0] busin;
output [7:0] bushigh, buslow;
input  enh, enl;

driver busar[3:0] (.out({bushigh, buslow}), .in(busin),
 .en({enh, enh, enl, enl}));

endmodule

module dffn (q, d, clk);
parameter bits = 1;
input  [bits-1:0] d;
output [bits-1:0] q;
input  clk ;

DFF dff[bits-1:0] (q, d, clk); // create a row of D flip-flops

endmodule

module MxN_pipeline (in, out, clk);
parameter M = 3, N = 4; // M=width,N=depth
input  [M-1:0] in;
output [M-1:0] out;
input  clk;
wire [M*(N-1):1] t;

// #(M) redefines the bits parameter for dffn
// create p[1:N] columns of dffn rows (pipeline)

dffn #(M) p[1:N] ({out, t}, {t, in}, clk);

endmodule
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Figure 7-1—Schematic diagram of interconnections in array of instances

7.2 and, nand, nor, or, xor, and xnor gates

The instance declaration of a multiple input logic gate shall begin with one of the following keywords:

and nand nor or xor xnor

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first dela
determine the output rise delay, the second delay shall determine the output fall delay, and the smaller of
delays shall apply to output transitions tox . If only one delay is specified, it shall specify both the rise delay and
fall delay. If there is no delay specification, there shall be no propagation delay through the gate.

These six logic gates shall have one output and one or more inputs. The first terminal in the terminal list shall c
to the output of the gate and all other terminals connect to its inputs.

The truth tables for these gates, showing the result of two input values, appear in Table 7-3.

in[2:0]

clk

out[2:0]

p[4] p[3] p[2] p[1]

dff[2] dff[2]dff[2]dff[2]

dff[1] dff[1]dff[1]dff[1]

dff[0] dff[0] dff[0] dff[0]

t[3] t[6] t[9]

t[2] t[5] t[8]

t[1] t[4] t[7]

out[2]

out[1]

out[0]

in[2]

in[1]

in[0]
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Versions of these six logic gates having more than two inputs shall have a natural extension, but the number o
shall not alter propagation delays.

Example:

The following example declares a two inputand gate:

and a1 (out, in1, in2);

The inputs arein1  andin2 . The output isout . The instance name isa1 .

7.3 buf and not gates

The instance declaration of a multiple output logic gate shall begin with one of the following keywords:

buf not

The delay specification shall be zero, one, or two delays. If the specification contains two delays, the first dela
determine the output rise delay, the second delay shall determine the output fall delay, and the smaller of
delays shall apply to output transitions tox . If only one delay is specified, it shall specify both the rise delay and
fall delay. If there is no delay specification, there shall be no propagation delay through the gate.

These two logic gates shall have one input and one or more outputs. The last terminal in the terminal list shall c
to the input of the logic gate, and the other terminals shall connect to the outputs of the logic gate.

Table 7-3—Truth tables for multiple input logic gates

and 0 1 x z

0 0 0 0 0

1 0 1 x x

x 0 x x x

z 0 x x x

nand 0 1 x z

0 1 1 1 1

1 1 0 x x

x 1 x x x

z 1 x x x

nor 0 1 x z

0 1 0 x x

1 0 0 0 0

x x 0 x x

z x 0 x x

xor 0 1 x z

0 0 1 x x

1 1 0 x x

x x x x x

z x x x x

xnor 0 1 x z

0 1 0 x x

1 0 1 x x

x x x x x

z x x x x

or 0 1 x z

0 0 1 x x

1 1 1 1 1

x x 1 x x

z x 1 x x
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Truth tables for these logic gates with one input and one output are shown in Table 7-4.

Example:

The following example declares a two outputbuf:

buf b1 (out1, out2, in);

The input isin.  The outputs areout1  andout2 . The instance name isb1 .

7.4 bufif1, bufif0, notif1, and notif0 gates

The instance declaration of a tri-state logic gate shall begin with one of the following keywords:

bufif0 bufif1 notif1 notif0

These four logic gates model three-state drivers. In addition to logic values1 and0, these gates can outputz .

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three dela
first delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shal
mine the delay of transitions toz , and the smallest of the three delays shall determine the delay of transitions tox . If
the specification contains two delays, the first delay shall determine the output rise delay, the second delay sha
mine the output fall delay, and the smaller of the two delays shall apply to output transitions tox andz . If only one
delay is specified, it shall specify the delay for all output transitions. If there is no delay specification, there sh
no propagation delay through the gate.

Some combinations of data input values and control input values can cause these gates to output either of two
without a preference for either value (see 7.10.2). These logic tables for these gates include two symbols repr
such unknown results. The symbolL shall represent a result that has a value0 or z . The symbolH shall represent a
result that has a value1 or z . Delays on transitions toH or L shall be treated the same as delays on transitions tox .

These four logic gates shall have one output, one data input, and one control input. The first terminal in the te
list shall connect to the output, the second terminal shall connect to the data input, and the third terminal shall c
to the control input.

Table 7-4—Truth tables for multiple output logic gates

buf

input output

0 0

1 1

x x

z x

not

input output

0 1

1 0

x x

z x
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Table 7-5 presents the logic tables for these gates.

Example:

The following example declares an instance ofbufif1 :

bufif1  bf1 (outw, inw, controlw);

The output isoutw , the input isinw , and the control iscontrolw . The instance name isbf1 .

7.5 MOS switches

The instance declaration of a MOS switch shall begin with one of the following keywords:

cmos nmos pmos rcmos rnmos rpmos

Thecmos andrcmos switches are described in 7.7.

The pmos keyword stands for the P-type metal-oxide semiconductor (PMOS) transistor and thenmos keyword
stands for the N-type metal-oxide semiconductor (NMOS) transistor. PMOS and NMOS transistors have rel
low impedance between their sources and drains when they conduct. Therpmos keyword stands for resistive PMOS
transistor and thernmos keyword stands for resistive NMOS transistor. Resistive PMOS and resistive NMOS tra
tors have significantly higher impedance between their sources and drains when they conduct than PMOS and
transistors have. The load devices in static MOS networks are examples ofrpmos andrnmos transistors. These four
switches areunidirectional channels for data similar to thebufif  gates.

Table 7-5—Truth tables for tristate logic gates

bufif0
CONTROL

0 1 x z

D 0 0 z L L

A 1 1 z H H

T x x z x x

A z x z x x

bufif1
CONTROL

0 1 x z

D 0 z 0 L L

A 1 z 1 H H

T x z x x x

A z z x x x

notif0
CONTROL

0 1 x z

D 0 1 z H H

A 1 0 z L L

T x x z x x

A z x z x x

notif1
CONTROL

0 1 x z

D 0 z 1 H H

A 1 z 0 L L

T x z x x x

A z z x x x
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The delay specification shall be zero, one, two, or three delays. If the delay specification contains three dela
first delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shal
mine the delay of transitions toz , and the smallest of the three delays shall determine the delay of transitions tox . If
the specification contains two delays, the first delay shall determine the output rise delay, the second delay sha
mine the output fall delay, and the smaller of the two delays shall apply to output transitions tox andz . If only one
delay is specified, it shall specify the delay for all output transitions. If there is no delay specification, there sh
no propagation delay through the switch.

Some combinations of data input values and control input values can cause these switches to output either of
ues, without a preference for either value. The logic tables for these switches include two symbols representi
unknown results. The symbolL represents a result that has a value0 or z . The symbolH represents a result that has
value1 or z . Delays on transitions toH andL shall be the same as delays on transitions tox .

These four switches shall have one output, one data input, and one control input. The first terminal in the term
shall connect to the output, the second terminal shall connect to the data input, and the third terminal shall con
the control input.

The nmos andpmos switches shall pass signals from their inputs and through their outputs with a change i
strength of the signal in only one case, as discussed in 7.11. Thernmos andrpmos switches shall reduce the strengt
of signals that propagate through them, as discussed in 7.12.

Table 7-6 presents the logic tables for these switches.

Example:

The following example declares apmos switch:

pmos p1 (out, data, control);

The output isout , the data input isdata , and the control input iscontrol . The instance name isp1 .

7.6 Bidirectional pass switches

The instance declaration of a bidirectional pass switch shall begin with one of the following keywords:

tran tranif1 tranif0
rtran rtranif1 rtranif0

The bidirectional pass switches shall not delay signals propagating through them. Whentranif0 , tranif1 , rtranif0 , or
rtranif1 devices are turned off they shall block signals, and when they are turned on they shall pass signals. Ttran

Table 7-6—Truth tables for MOS switches

pmos
rpmos

CONTROL

0 1 x z

D 0 0 z L L

A 1 1 z H H

T x x z x x

A z z z z z

nmos
rnmos

CONTROL

0 1 x z

D 0 z 0 L L

A 1 z 1 H H

T x z x x x

A z z z z z
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andrtran  devices cannot be turned off, and they shall always pass signals.

The delay specifications fortranif1 , tranif0 , rtranif1 , andrtranif0 devices shall be zero, one, or two delays. If th
specification contains two delays, the first delay shall determine theturn-on delay, and the second delay shall deter
mine theturn-off delay, and the smaller of the two delays shall apply to output transitions tox andz . If only one
delay is specified, it shall specify both the turn-on and the turn-off delays. If there is no delay specification, ther
be no turn-on or turn-off delay for the bidirectional pass switch.

The bidirectional pass switchestran  andrtran  shall not accept delay specification.

The tranif1 , tranif0 , rtranif1 , andrtranif0 devices shall have three items in their terminal lists. The first two sh
be bidirectional terminals that conduct signals to and from the devices, and the third terminal shall connect to
trol input. Thetran andrtran devices shall have terminal lists containing two bidirectional terminals. Both bidir
tional terminals shall unconditionally conduct signals to and from the devices, allowing signals to pass in
direction through the devices. The bidirectional terminals of all six devices shall be connected only to scalar
bit-selects of vector nets.

The tran , tranif0 , andtranif1 devices shall pass signals with an alteration in their strength in only one case, a
cussed in 7.11. Thertran , rtranif0 , andrtranif1 devices shall reduce the strength of the signals passing thro
them according to rules discussed in 7.12.

Example:

The following example declares an instance oftranif1 :

tranif1  t1 (inout1,inout2,control);

The bidirectional terminals areinout1  andinout2 . The control input iscontrol . The instance name ist1 .

7.7 CMOS switches

The instance declaration of a CMOS switch shall begin with one of the following keywords:

cmos rcmos

The delay specification shall be zero, one, two, or three delays. If the delay specification contains three dela
first delay shall determine the rise delay, the second delay shall determine the fall delay, the third delay shal
mine the delay of transitions toz , and the smallest of the three delays shall determine the delay of transitionsx .
Delays in transitions toH or L are the same as delays in transitions tox . If the specification contains two delays, th
first delay shall determine the output rise delay, the second delay shall determine the output fall delay, and the
of the two delays shall apply to output transitions tox andz . If only one delay is specified, it shall specify the dela
for all output transitions. If there is no delay specification, there shall be no propagation delay through the sw

Thecmosandrcmos switches shall have a data input, a data output, and two control inputs. In the terminal lis
first terminal shall connect to the data output, the second terminal shall connect to the data input, the third te
shall connect to the n-channel control input, and the last terminal shall connect to the p-channel control input

Thecmosgate shall pass signals with an alteration in their strength in only one case, as discussed in 7.11. Thercmos
gate shall reduce the strength of signals passing through it according to rules described in 7.12.

Thecmosswitch shall be treated as the combination of apmosswitch and annmosswitch. Thercmos switch shall
be treated as the combination of anrpmos switch and anrnmos switch. The combined switches in these configur
tions shall share data input and data output terminals, but they shall have separate control inputs.
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Example:

The equivalence of thecmosgate to the pairing of annmosgate and apmosgate is shown in the following example

7.8 pullup and pulldown sources

The instance declaration of a pullup or a pulldown source shall begin with one of the following keywords:

pullup pulldown

A pullup source shall place a logic value1 on the nets connected in its terminal list. Apulldown source shall place a
logic value0 on the nets connected in its terminal list. The signals that these sources place on nets shall hapull
strength in the absence of a strength specification. If conflicting strength specification is declared, it shall be ig
There shall be no delay specifications for these sources.

Example:

The following example declares twopullup  instances:

pullup (strong1) p1 (neta), p2 (netb);

In this example, thep1  instance drivesneta  and thep2  instance drivesnetb .

7.9 Logic strength modeling

The Verilog HDL provides for accurate modeling of signal contention, bidirectional pass gates, resistive
devices, dynamic MOS, charge sharing, and other technology-dependent network configurations by allowing
net signal values to have a full range of unknown values and different levels of strength or combinations of le
strength. This multiple-level logic strength modeling resolves combinations of signals into known or unknown v
to represent the behavior of hardware with improved accuracy.

A strength specification shall have two components

a) The strength of the 0 portion of the net value, called strength0, designated as one of the following:

supply0 strong0 pull0 weak0 highz0

b) The strength of the 1 portion of the net value, called strength1, designated as one of the following:

supply1 strong1 pull1 weak1 highz1

cmos (w, datain, ncontrol, pcontrol);

is equivalent to:

nmos (w, datain, ncontrol);
pmos (w, datain, pcontrol);

nmos

pmos

ncontrol

pcontrol

w datain
Section 7 Copyright 2000 IEEE. All rights reserved. 91
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

ions of

engths.
The combinations(highz0, highz1) and(highz1, highz0) shall be considered illegal.

Despite this division of the strength specification, it is helpful to consider strength as a property occupying reg
a continuum in order to predict the results of combinations of signals.

Table 7-7 demonstrates the continuum of strengths. The left column lists the keywords used in specifying str
The right column gives correlated strength levels.

In Table 7-7, there are fourdriving strengths:

supply strong pull weak

Signals with driving strengths shall propagate from gate outputs and continuous assignment outputs.

In Table 7-7, there are threecharge storage strengths:

large medium small

Signals with the charge storage strengths shall originate in thetrireg  net type.

Table 7-7—Strength levels for scalar net signal values

Strength name Strength level

supply0 7

strong0 6

pull0 5

large0 4

weak0 3

medium0 2

small0 1

highz0 0

highz1 0

small1 1

medium1 2

weak1 3

large1 4

pull1 5

strong1 6

supply1 7
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It is possible to think of the strengths of signals in the preceding table as locations on the scale in Figure 7-2.

Figure 7-2—Scale of strengths

Discussions of signal combinations later in this section employs graphics similar to those used in Figure 7-2.

If the signal value of a net is known, all of its strength levels shall be in either the strength0 part of the scale
sented by Figure 7-2, or all strength levels shall be in its strength1 part. If the signal value of a net is unknown,
have strength levels in both the strength0 and the strength1 parts. A net with a signal valuez shall have a strength
level only in one of the 0 subdivisions of the parts of the scale.

7.10 Strengths and values of combined signals

In addition to a signal value, a net shall have either a single unambiguous strength level or an ambiguous s
consisting of more than one level. When signals combine, their strengths and values shall determine the stren
value of the resulting signal in accordance with the principles in 7.10.1 through 7.10.4.

7.10.1 Combined signals of unambiguous strength

This subclause deals with combinations of signals in which each signal has a known value and a single streng

If two or more signals of unequal strength combine in a wired net configuration, the stronger signal shall domin
the weaker drivers and determine the result. The combination of two or more signals of like value shall result
same value with the greater of all the strengths. The combination of signals identical in strength and value sha
in the same signal.

The combination of signals with unlike values and the same strength can have three possible results. Two
results occur in the presence of wired logic and the third occurs in its absence. Wired logic is discussed in 7.10
result in the absence of wired logic is the subject of Figure 7-4.

Example:

Figure 7-3—Combining unequal strengths

In Figure 7-3, the numbers in parentheses indicate the relative strengths of the signals. The combination of apull 1
and astrong 0 results in astrong 0, which is the stronger of the two signals.

7.10.2 Ambiguous strengths: sources and combinations

There are several classifications of signals possessing ambiguous strengths

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

Pu1(5)

St0(6)
St0(6)

Su1(7)

La1(4)
Su1(7)
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— Signals with known values and multiple strength levels
— Signals with a valuex , which have strength levels consisting of subdivisions of both the strength1 and the

strength0 parts of the scale of strengths in Figure 7-2
— Signals with a valueL, which have strength levels that consist of high impedance joined with strength le

in the strength0 part of the scale of strengths in Figure 7-2
— Signals with a valueH, which have strength levels that consist of high impedance joined with strength le

in the strength1 part of the scale of strengths in Figure 7-2

Many configurations can produce signals of ambiguous strength. When two signals of equal strength and o
value combine, the result shall be a valuex , along with the strength levels of both signals and all the smaller stren
levels.

Examples:

Figure 7-4 shows the combination of aweaksignal with a value1 and aweaksignal with a value0 yielding a signal
with weak strength and a valuex .

Figure 7-4—Combination of signals of equal strength and opposite values

This output signal is described in Figure 7-5.

Figure 7-5—Weak x signal strength

An ambiguous signal strength can be a range of possible values. An example is the strength of the output from
state drivers with unknown control inputs as shown in Figure 7-6.

We1

We0

WeX

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
94 Copyright 2000 IEEE. All rights reserved. Section 7
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

sulting
bination
Figure 7-6—Bufifs with control inputs of x

The output of thebufif1  in Figure 7-6— is astrong H, composed of the range of values described in Figure 7-7.

Figure 7-7—Strong H range of values

The output of thebufif0  in Figure 7-6 is astrong L, composed of the range of values described in Figure 7-8.

Figure 7-8—Strong L range of values

The combination of two signals of ambiguous strength shall result in a signal of ambiguous strength. The re
signal shall have a range of strength levels that includes the strength levels in its component signals. The com
of outputs from two tri-state drivers with unknown control inputs, shown in Figure 7-9, is an example.

X

St1

X

We0

StH

StL

bufif1

bufif0

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
Section 7 Copyright 2000 IEEE. All rights reserved. 95
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

s of the

lt. The

nd lower
Figure 7-9—Combined signals of ambiguous strength

In Figure 7-9, the combination of signals of ambiguous strengths produces a range that includes the extreme
signals and all the strengths between them, as described in Figure 7-10.

Figure 7-10—Range of strengths for an unknown signal

The result is a valuex because its range includes the values1 and0. The number35 , which precedes thex , is a con-
catenation of two digits. The first is the digit 3, which corresponds to the highest strength0 level for the resu
second digit, 5, corresponds to the highest strength1 level for the result.

Switch networks can produce a ranges of strengths of the same value, such as the signals from the upper a
configurations in Figure 7-11.

X

X

Pu1

We0

PuH

WeL

35X

7 6 5 4 3 2 1 0 76543210

strength0 strength1

HiZ0Sm0Me0We0La0Pu0St0Su0 HiZ1 Sm1 Me1 We1 La1 Pu1 St1 Su1
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Figure 7-11—Ambiguous strengths from switch networks

In Figure 7-11, the upper combination of a reg, a gate controlled by a reg of unspecified value, and a pullup pr
a signal with a value of 1 and a range of strengths (651 ) described in Figure 7-12.

Figure 7-12—Range of two strengths of a defined value

In Figure 7-11, the lower combination of apulldown, a gate controlled by a reg of unspecified value, and anand gate
produces a signal with a value0 and a range of strengths (530 ) described in Figure 7-13.

Figure 7-13—Range of three strengths of a defined value

When the signals from the upper and lower configurations in Figure 7-11 combine, the result is an unknown
range (56x ) determined by the extremes of the two signals shown in Figure 7-14.

reg a

reg b Vcc

reg g

reg d

reg e

651

530

56X

pullup=x

=1

=x

=0

=0

pulldown ground

and
We0 (3)

Pu0 (5)

Pu1

(6)

(5)
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ure 7-16.
Figure 7-14—Unknown value with a range of strengths

In Figure 7-11, replacing thepulldown in the lower configuration with asupply0 would change the range of the
result to the range (StX ) described in Figure 7-15.

The range in Figure 7-15 isstrong x , because it is unknown and the extremes of both its components arestrong. The
extreme of the output of the lower configuration isstrong because the lowerpmos reduces the strength of the
supply0 signal. This modeling feature is discussed in 7.11.

Figure 7-15—Strong X range

Logic gates produce results with ambiguous strengths as well as tri-state drivers. Such a case appears in Fig
Theand gateN1 is declared withhighz0 strength, andN2 is declared withweak0 strength.

Figure 7-16—Ambiguous strength from gates

In Figure 7-16, regb has an unspecified value, so input to the upperand gate isstrong x . The upperand gate has a
strength specification includinghighz0. The signal from the upperand gate is astrong H composed of the values as
described in Figure 7-17.
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StH

36X

We0

a=1

b=X

c=0

d=0

N1

N2

and (strong1,highz0) N1(a,b);

and (strong1, weak0) N2(c,d);
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Figure 7-17—Ambiguous strength signal from a gate

HiZ0 is part of the result, because the strength specification for the gate in question specified that strength for
put with a value0. A strength specification other than high impedance for the0 value output results in a gate outpu
valuex . The output of the lowerand gate is aweak0 as described in Figure 7-18.

Figure 7-18—Weak 0

When the signals combine, the result is the range (36x ) as described in Figure 7-19.

Figure 7-19—Ambiguous strength in combined gate signals

Figure 7-19 presents the combination of an ambiguous signal and an unambiguous signal. Such combination
topic of 7.10.3.

7.10.3 Ambiguous strength signals and unambiguous signals

The combination of a signal with unambiguous strength and known value with another signal of ambiguous s
presents several possible cases. To understand a set of rules governing this type of combination, it is necessa
sider the strength levels of the ambiguous strength signal separately from each other and relative to the unam
strength signal. When a signal of known value and unambiguous strength combines with a component of a s
ambiguous strength, these shall be the effects
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a) The strength levels of the ambiguous strength signal that are greater than the strength level
unambiguous signal shall remain in the result.

b) The strength levels of the ambiguous strength signal that are smaller than or equal to the strength leve
unambiguous signal shall disappear from the result, subject to rule c.

c) If the operation of rule a and rule b results in a gap in strength levels because the signals are of opposit
the signals in the gap shall be part of the result.

The following figures show some applications of the rules.

Figure 7-20—Elimination of strength levels

In Figure 7-20, the strength levels in the ambiguous strength signal that are smaller than or equal to the streng
of the unambiguous strength signal disappear from the result, demonstrating rule b.
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Combining the two signals above results in the following signal:
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Figure 7-21—Result demonstrating a range and the elimination of strength levels of two values

In Figure 7-21, rules a, b, and c apply. The strength levels of the ambiguous strength signal that are of opposi
and lesser strength than the unambiguous strength signal disappear from the result. The strength levels in the
ous strength signal that are less than the strength level of the unambiguous strength signal, and of the same v
appear from the result. The strength level of the unambiguous strength signal and the greater extreme
ambiguous strength signal define a range in the result.
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Combining the two signals above results in the following signal:
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Figure 7-22—Result demonstrating a range and the elimination of strength levels of one value

In Figure 7-22, rules a and b apply. The strength levels in the ambiguous strength signal that are less than the
level of the unambiguous strength signal disappear from the result. The strength level of the unambiguous s
signal and the strength level at the greater extreme of the ambiguous strength signal define a range in the re
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Combining the two signals above results in the following signal:
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Figure 7-23—A range of both values

In Figure 7-23, rules a, b, and c apply. The greater extreme of the range of strengths for the ambiguous streng
is larger than the strength level of the unambiguous strength signal. The result is a range defined by the
strength in the range of the ambiguous strength signal and by the strength level of the unambiguous strength

7.10.4 Wired logic net types

The net typestriand , wand, trior , andwor shall resolve conflicts when multiple drivers have the same streng
These net types shall resolve signal values by treating signals as inputs of logic functions.

Examples:

Consider the combination of two signals of unambiguous strength in Figure 7-24.
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Combining the two signals above results in the following signal:
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Figure 7-24—Wired logic with unambiguous strength signals

The combination of the signals in Figure 7-24, usingwired andlogic, produces a result with the same value as t
result produced by anand gate with the value of the two signals as its inputs. The combination of signals usingwired
or logic produces a result with the same value as the result produced by anor gate with the values of the two signals
as its inputs. The strength of the result is the same as the strength of the combined signals in both cases. If the
the upper signal changes so that both signals in Figure 7-24 possess a value1, then the results of both types of logic
have a value1.

When ambiguous strength signals combine in wired logic, it is necessary to consider the results of all combina
each of the strength levels in the first signal with each of the strength levels in the second signal, as sh
Figure 7-25.

wired AND logic value result: 0
wired OR logic value result: 1
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Figure 7-25—Wired logic and ambiguous strengths

signal1 signal2 result

strength value strength value strength value

5 0 5 1 5 1

6 0 5 1 6 0

signal1 signal2 result

strength value strength value strength value

5 0 5 1 5 0

6 0 5 1 6 0

Signal 1

Signal 2

The result is the following signal:
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The combinations of strength levels for or logic appear in the
following chart:

The result is the following signal:

The combinations of strength levels for and logic appear in the
following chart:
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7.11 Strength reduction by nonresistive devices

Thenmos, pmos, andcmosswitches shall pass the strength from the data input to the output, except that asupply
strength shall be reduced to astrong strength.

The tran , tranif0 , andtranif1 switches shall not affect signal strength across the bidirectional terminals, excep
asupply strength shall be reduced to astrong strength.

7.12 Strength reduction by resistive devices

The rnmos, rpmos, rcmos, rtran , rtranif1 , and rtranif0 devices shall reduce the strength of signals that pa
through them according to Table 7-8.

7.13 Strengths of net types

Thetri0 , tri1 , supply0, andsupply1net types shall generate signals with specific strength levels. Thetrireg declara-
tion can specify either of two signal strength levels other than a default strength level.

7.13.1 tri0 and tri1 net strengths

Thetri0 net type models a net connected to a resistivepulldown device. In the absence of an overriding source, su
a signal shall have a value0 and apull strength. Thetri1 net type models a net connected to a resistivepullup device.
In the absence of an overriding source, such a signal shall have a value1 and apull  strength.

7.13.2 trireg strength

The trireg net type models charge storage nodes. The strength of the drive resulting from atrireg net that is in the
charge storage state (that is, a driver charged the net and then went to high impedance) shall be one of the
strengths:large, medium, or small. The specific strength associated with a particulartrireg net shall be specified by
the user in the net declaration. The default shall bemedium. The syntax of this specification is described in 3.4.1.

7.13.3 supply0 and supply1 net strengths

Thesupply0 net type models ground connections. Thesupply1 net type models connections to power supplies. T
supply0 andsupply1 net types shall havesupply driving strengths.

Table 7-8—Strength reduction rules

Input strength Reduced strength

Supply drive Pull drive

Strong drive Pull drive

Pull drive Weak drive

Large capacitor Medium capacitor

Weak drive Medium capacitor

Medium capacitor Small capacitor

Small capacitor Small capacitor

High impedance High impedance
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7.14 Gate and net delays

Gate and net delays provide a means of more accurately describing delays through a circuit. Thegate delaysspecify
the signal propagation delay from any gate input to the gate output. Up to three values per output represent
fall, and turn-off delays can be specified (see 7.2 through 7.8).

Net delaysrefer to the time it takes from any driver on the net changing value to the time when the net va
updated and propagated further. Up to three delay values per net can be specified.

For both gates and nets, thedefault delayshall be zero when no delay specification is given. When one delay valu
given, then this value shall be used for all propagation delays associated with the gate or the net. When two de
given, the first delay shall specify the rise delay and the second delay shall specify the fall delay. The delay wh
signal changes to high impedance or to unknown shall be the lesser of the two delay values.

For a three-delay specification

— The first delay refers to the transition to the 1 value (rise delay).
— The second delay refers to the transition to the 0 value (fall delay).
— The third delay refers to the transition to the high-impedance value.

When a value changes to the unknown (x ) value, the delay is the smallest of the three delays. The strength of the i
signal shall not affect the propagation delay from an input to an output.

Table 7-9 summarizes the from-to propagation delay choice for the two- and three-delay specifications.

Examples:

Example 1—The following is an example of a delay specification with one, two, and three delays:

Table 7-9—Rules for propagation delays

Delay used if there are

From value: To value: 2 delays 3 delays

0 1 d1 d1

0 x min(d1, d2) min(d1, d2, d3)

0 z min(d1, d2) d3

1 0 d2 d2

1 x min(d1, d2) min(d1, d2, d3)

1 z min(d1, d2) d3

x 0 d2 d2

x 1 d1 d1

x z min(d1, d2) d3

z 0 d2 d2

z 1 d1 d1

z x min(d1, d2) min(d1, d2, d3)
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and #(10) a1 (out, in1, in2); // only one delay
and #(10,12) a2 (out, in1, in2); // rise and fall delays
bufif0  #(10,12,11) b3 (out, in, ctrl);// rise, fall, and turn-off delays

Example 2—The following example specifies a simple latch module with tri-state outputs, where individual de
are given to the gates. The propagation delay from the primary inputs to the outputs of the module will be cumu
and it depends on the signal path through the network.

7.14.1 min:typ:max delays

The syntax for delays on gate primitives (including user-defined primitives; see Section 8), nets, and cont
assignments shall allow three values each for the rising, falling, and turn-off delays. The minimum, typical, and
imum values for each delay shall be specified as constant expressions separated by colons. There shall be no
relation (e.g., min≤ typ ≤ max) between the expressions for minimum, typical, and maximum delays. These c
any three constant expressions.

Examples:

The following example showsmin:typ:max  values for rising, falling, and turn-off delays:

The syntax for delay controls in procedural statements (see 9.7) also allows minimum, typical, and maximum
These are specified by expressions separated by colons. The following example illustrates this concept.

module tri_latch (qout, nqout, clock, data, enable);
output qout, nqout;
input  clock, data, enable;
tri  qout, nqout;

not #5 n1 (ndata, data);
nand #(3,5) n2 (wa, data, clock),

n3 (wb, ndata, clock);
nand #(12,15) n4 (q, nq, wa),

n5 (nq, q, wb);
bufif1 #(3,7,13) q_drive (qout, q, enable),

nq_drive (nqout, nq, enable);

endmodule

module iobuf (io1, io2, dir);
. . .

bufif0  #(5:7:9, 8:10:12, 15:18:21) b1 (io1, io2, dir);
bufif1  #(6:8:10, 5:7:9, 13:17:19) b2 (io2, io1, dir);

. . .
endmodule
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7.14.2 trireg net charge decay

Like all nets, the delay specification in atrireg net declaration can contain up to three delays. The first two del
shall specify the delay for transition to the1 and0 logic states when thetrireg net is driven to these states by a drive
The third delay shall specify thecharge decay timeinstead of the delay in a transition to thez logic state. The charge
decay time specifies the delay between when the drivers of atrireg net turn off and when its stored charge can n
longer be determined.

A trireg net does not need a turn-off delay specification because atrireg net never makes a transition to thez logic
state. When the drivers of atrireg net make transitions from the1, 0, or x logic states to off, thetrireg net shall
retain the previous1, 0, or x logic state that was on its drivers. Thez value shall not propagate from the drivers of
trireg net to atrireg net. A trireg net can only hold az logic state whenz is the initial logic state of thetrireg net or
when thetrireg  net is forced to thez  state with aforce statement (see 9.3.2).

A delay specification for charge decay models a charge storage node that is not ideal—a charge storage nod
charge leaks out through its surrounding devices and connections.

The following subclauses describe the charge decay process and the delay specification for charge decay.

7.14.2.1 The charge decay process

Charge decay is the cause of transition of a 1 or 0 that is stored in atrireg net to an unknown value (x ) after a speci-
fied delay. The charge decay process shall begin when the drivers of thetrireg net turn off and thetrireg net starts to
hold charge. The charge decay process shall end under the following two conditions:

a) The delay specified by charge decay time elapses and thetrireg  net makes a transition from1 or 0 to x .

b) The drivers oftrireg  net turn on and propagate a1, 0, orx  into thetrireg  net.

7.14.2.2 The delay specification for charge decay time

The third delay in atrireg net declaration shall specify the charge decay time. A three-valued delay specificatio
trireg  net declaration shall have the following form:

#(d1, d2, d3) // (rise_delay, fall_delay, charge_decay_time)

The charge decay time specification in atrireg net declaration shall be preceded by a rise and a fall delay specifi
tion.

Examples:

Example 1—The following example shows a specification of the charge decay time in atrireg  net declaration:

trireg  ( large) #(0,0,50) cap1;

This example declares atrireg net namedcap1 . This trireg net stores alarge charge. The delay specifications fo
the rise delay is 0, the fall delay is 0, and the charge decay time specification is 50 time units.

parameter min_hi = 97, typ_hi = 100, max_hi = 107;
reg clk;

always begin
#(95:100:105) clk = 1;
#(min_hi:typ_hi:max_hi) clk = 0;

end
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Example 2—The next example presents a source description file that contains atrireg net declaration with a charge
decay time specification. Figure 7-26 shows an equivalent schematic for the source description.

Figure 7-26—Trireg net with capacitance

data

gate

nmos1
trireg

module capacitor;
reg data, gate;

// trireg declaration with a charge decay time of 50 time units
trireg  ( large) #(0,0,50) cap1;

nmos nmos1 (cap1, data, gate); // nmos that drives the trireg

initial begin
$monitor("%0d data=%v gate=%v cap1=%v", $time, data, gate, cap1);
data = 1;
// Toggle the driver of the control input to the nmos switch

 gate = 1;
#10 gate = 0;
#30 gate = 1;
#10 gate = 0;
#100 $finish;

end
endmodule
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Section 8

 User-defined primitives (UDPs)

This section describes a modeling technique to augment the set of predefined gate primitives by designing an
fying new primitive elements called user-defined primitives (UDPs). Instances of these new UDPs can be u
exactly the same manner as the gate primitives to represent the circuit being modeled.

The following two types of behavior can be represented in a user-defined primitive:

a) Combinational—modeled by a combinational UDP
b) Sequential—modeled by a sequential UDP

A combinational UDP uses the value of its inputs to determine the next value of its output. A sequential UDP us
value of its inputs and the current value of its output to determine the value of its output. Sequential UDPs pro
way to model sequential circuits such as flip-flops and latches. A sequential UDP can model both level-sensit
edge-sensitive behavior.

Each UDP has exactly one output, which can be in one of three states:0, 1, or x . The tri-state valuez is not sup-
ported. In sequential UDPs, the output always has the same value as the internal state.

Thez  values passed to UDP inputs shall be treated the same asx  values.

8.1 UDP definition

UDP definitions are independent of modules; they are at the same level as module definitions in the syntax hie
They can appear anywhere in the source text, either before or after they are instantiated inside a module. Th
not appear between the keywordsmodule andendmodule.

NOTE—Implementations may limit the maximum number of UDP definitions in a model, but they shall allow at least 256.

The formal syntax of the UDP definition is given in Syntax 8-1.
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Syntax 8-1—Syntax for user-defined primitives

udp_declaration ::=(From Annex A - A.5.1)
{ attribute_instance }primitive  udp_identifier( udp_port_list) ;
udp_port_declaration { udp_port_declaration }
udp_body
endprimitive

| { attribute_instance }primitive  udp_identifier( udp_declaration_port_list) ;
udp_body
endprimitive

udp_port_list ::=(From Annex A - A.5.2)
output_port_identifier, input_port_identifier {, input_port_identifier }

udp_declaration_port_list ::=
udp_output_declaration, udp_input_declaration {, udp_input_declaration }

udp_port_declaration ::=
udp_output_declaration

| udp_input_declaration
| udp_reg_declaration

udp_output_declaration ::=
{ attribute_instance }output port_identifier;

| { attribute_instance }output reg port_identifier [= constant_expression ];
udp_input_declaration ::=

{ attribute_instance }input  list_of_port_identifiers;
udp_reg_declaration ::=

{ attribute_instance }reg variable_identifier;
udp_body ::=(From Annex A - A.5.3)

combinational_body | sequential_body
combinational_body ::=

table combinational_entry { combinational_entry }endtable
combinational_entry ::=

level_input_list : output_symbol;
sequential_body ::=

[ udp_initial_statement ]table sequential_entry { sequential_entry }endtable
udp_initial_statement ::=

initial  output_port_identifier= init_val ;
init_val ::= 1'b0 | 1'b1 | 1'bx | 1'bX  | 1'B0 | 1'B1 | 1'Bx | 1'BX  | 1 | 0
sequential_entry ::=

seq_input_list : current_state : next_state;
seq_input_list ::=

level_input_list | edge_input_list
level_input_list ::=

level_symbol { level_symbol }
edge_input_list ::=

{ level_symbol } edge_indicator { level_symbol }
edge_indicator ::=

( level_symbol level_symbol) | edge_symbol
current_state ::= level_symbol
next_state ::=output_symbol |-
output_symbol ::=0 | 1 | x | X
level_symbol ::=0 | 1 | x | X | ? | b | B
edge_symbol ::=r  | R | f | F | p | P | n | N | *
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8.1.1 UDP header

A UDP definition shall have one of two alternate forms. The first form shall begin with the keywordprimitive , fol-
lowed by an identifier, which is the name of the UDP. This in turn is followed by a comma-separated list of
enclosed in parentheses, which is followed by a semicolon. The UDP definition header is followed by port de
tions and a state table. The UDP definition shall be terminated by the keywordendprimitive .

The second form shall begin with the keywordprimitive , followed by an identifier, which is the name of the UDP
This in turn is followed by a comma separated list of ports declarations enclosed in parenthesis, followed by a
colon. The UDP definition header is followed by a state table. The UDP definition shall be terminated by the ke
endprimitive .

UDPs have multiple input ports and exactly one output port; bidirectional inout ports are not permitted on UDP
ports of a UDP shall be scalar; vector ports are not permitted.

The output port shall be the first port in the port list.

8.1.2 UDP port declarations

UDPs shall contain input and output port declarations. The output port declaration begins with the keywordoutput,
followed by one output port name. The input port declaration begins with the keywordinput , followed by one or
more input port names.

Sequential UDPs shall contain areg declaration for the output port, either in addition to the output declaration, w
the UDP is declared using the first form of a UDP Header, or as part of the output_declaration, in either case. C
national UDPs cannot contain areg declaration. The initial value of the output port can be specified in aninitial state-
ment in a sequential UDP (see 8.1.3).

NOTE—Implementations may limit the maximum number of inputs to a UDP, but they shall allow at least 9 inputs for sequ
UDPs and 10 inputs for combinational UDPs.

8.1.3 Sequential UDP initial statement

The sequential UDP initial statement specifies the value of the output port when simulation begins. This sta
begins with the keywordinitial . The statement that follows shall be an assignment statement that assigns a sin
literal value to the output port.

8.1.4 UDP state table

The state table defines the behavior of a UDP. It begins with the keywordtable and is terminated with the keyword
endtable. Each row of the table is terminated by a semicolon.

Each row of the table is created using a variety of characters (see Table 8-1), which indicate input values and
state. Three states—0, 1, andx—are supported. Thez state is explicitly excluded from consideration in user-defin
primitives. A number of special characters are defined to represent certain combinations of state possibilities
are described in Table 8-1.

The order of the input state fields of each row of the state table is taken directly from the port list in the UDP d
tion header. It is not related to the order of the input port declarations.

Combinational UDPs have one field per input and one field for the output. The input fields are separated from t
put field by a colon (:). Each row defines the output for a particular combination of the input values (see 8.2).

Sequential UDPs have an additional field inserted between the input fields and the output field. This addition
represents the current state of the UDP and is considered equivalent to the current output value. It is delim
colons. Each row defines the output based on the current state, particular combinations of input values, and
one input transition (see 8.4). A row such as the one shown below is illegal:
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If all input values are specified asx , then the output state shall be specified asx .

It is not necessary to explicitly specify every possible input combination. All combinations of input values that a
explicitly specified result in a default output state ofx .

It is illegal to have the same combination of inputs, including edges, specified for different outputs.

8.1.5 Z values in UDP

Thez value in a table entry is not supported and it is considered illegal. Thez values passed to UDP inputs shall b
treated the same asx  values.

8.1.6 Summary of symbols

To improve the readability and to ease writing of the state table, several special symbols are provided. Table 8
marizes the meaning of all the value symbols that are valid in the table part of a UDP definition.

Table 8-1—UDP table symbols

Symbol Interpretation Comments

0 Logic 0

1 Logic 1

x Unknown Permitted in the input fields of all
UDPs and in the current state field
of sequential UDPs. Not permitted
in the output field.

? Iteration of 0, 1, and x Not permitted in output field.

b Iteration of 0 and 1 Permitted in the input fields of all
UDPs and in the current state field
of sequential UDPs. Not permitted
in the output field.

- No change Permitted only in the output field of
a sequential UDP.

(vw) Value change from v to w v and w can be any one of 0,
1, x, ?, or b, and are only permitted
in the input field.

* Same as (??) Any value change on input.

r Same as (01) Rising edge on input.

f Same as (10) Falling edge on input.

p Iteration of (01), (0 x) and (x1) Potential positive edge on the input.

n Iteration of (10), (1x)and (x0 Potential negative edge on the input.
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8.2 Combinational UDPs

In combinational UDPs, the output state is determined solely as a function of the current input states. When
input state changes, the UDP is evaluated and the output state is set to the value indicated by the row in the st
that matches all the input states. All combinations of the inputs that are not explicitly specified will drive the o
state to the unknown valuex .

Examples:

The following example defines a multiplexer with two data inputs and a control input.

The first entry in this example can be explained as follows: whencontrol equals0, anddataA equals1, and
dataB  equals0, then outputmux equals1.

The input combination0xx (control=0, dataA=x, dataB=x) is not specified. If this combination occurs
during simulation, the value of output portmux will becomex .

Using?, the description of a multiplexer can be abbreviated as

primitive  multiplexer (mux, control, dataA, dataB);
output mux;
input  control, dataA, dataB;
table
// control dataA dataB mux

0 1  0  :  1 ;
0 1  1  :  1 ;
0 1  x  :  1 ;
0 0  0  :  0 ;
0 0  1  :  0 ;
0 0  x  :  0 ;
1 0  1  :  1 ;
1 1  1  :  1 ;
1 x  1  :  1 ;
1 0  0  :  0 ;
1 1  0  :  0 ;
1 x  0  :  0 ;
x 0  0  :  0 ;
x 1  1  :  1 ;

endtable
endprimitive
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8.3 Level-sensitive sequential UDPs

Level-sensitive sequential behavior is represented the same way as combinational behavior, except that the
declared to be of typereg, and there is an additional field in each table entry. This new field represents the cu
state of the UDP. The output field in a sequential UDP represents the next state.

Example:

Consider the example of a latch:

This description differs from a combinational UDP model in two ways. First, the output identifierq has an additional
reg declaration to indicate that there is an internal stateq. The output value of the UDP is always the same as t
internal state. Second, a field for the current state, which is separated by colons from the inputs and the out
been added.

8.4 Edge-sensitive sequential UDPs

In level-sensitive behavior, the values of the inputs and the current state are sufficient to determine the outpu
Edge-sensitive behavior differs in that changes in the output are triggered by specific transitions of the input
makes the state table a transition table.

Each table entry can have a transition specification on at most one input. A transition is specified by a pair of va
parenthesis such as(01)  or a transition symbol such asr . Entries such as the following are illegal:

primitive  multiplexer (mux, control, dataA, dataB);
output mux;
input  control, dataA, dataB;
table
// control dataA dataB mux

0 1 ? : 1 ; // ? = 0 1 x
0 0 ? : 0 ;
1 ? 1 : 1 ;
1 ? 0 : 0 ;
x 0 0 : 0 ;
x 1 1 : 1 ;

endtable
endprimitive

primitive  latch (q, clock, data);
output q; reg q;
input  clock, data;
table
//  clock data  q q+

0 1 : ? : 1 ;
0 0 : ? : 0 ;
1 ? : ? : - ; // - = no change

endtable
endprimitive
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All transitions that do not affect the output shall be explicitly specified. Otherwise, such transitions cause the va
the output to change tox . All unspecified transitions default to the output valuex .

If the behavior of the UDP is sensitive to edges of any input, the desired output state shall be specified forall edges of
all inputs.

Example:

The following example describes a rising edge D flip-flop:

The terms such as(01) represent transitions of the input values. Specifically,(01) represents a transition from0 to
1. The first line in the table of the preceding UDP definition is interpreted as follows: when clock changes value
0 to 1, and data equals0, the output goes to0 no matter what the current state

The transition of clock from0 to x with data equal to0 and current state equal to1 will result in the outputq going to
x .

8.5 Sequential UDP initialization

The initial value on the output port of a sequential UDP can be specified with an initial statement that provides
cedural assignment. The initial statement is optional.

Like initial statements in modules, the initial statement in UDPs begin with the keywordinitial . The valid contents of
initial statements in UDPs and the valid left-hand and right-hand sides of their procedural assignment stateme
fer from initial statements in modules. A partial list of differences between these two types of initial stateme
described in Table 8-2.

Table 8-2—Initial statements in UDPs and modules

Initial statements in UDPs Initial statements in modules

Contents limited to one procedural assignment
statement

Contents can be one procedural statement of
any type or a block statement that contains
more than one procedural statement

primitive  d_edge_ff (q, clock, data);
output q; reg q;
input  clock, data;
table
// clock data q q+

// obtain output on rising edge of clock
(01)  0 : ? : 0 ;
(01)  1 : ? : 1 ;
(0?)  1 : 1 : 1 ;
(0?)  0 : 0 : 0 ;
// ignore negative edge of clock
(?0)  ? : ? : - ;
// ignore data changes on steady clock
 ? (??) : ? : - ;

endtable
endprimitive
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Examples:

Example 1—The following example shows a sequential UDP that contains an initial statement.

The outputq has an initial value of 1 at the start of the simulation; a delay specification on an instantiated UDP
not delay the simulation time of the assignment of this initial value to the output. When simulation starts, this va
the current state in the state table. Delays are not permitted in a UDP initial statement.

Example 2—The following example and figure show how values are applied in a module that instantiates a seq
UDP with an initial statement.

The procedural assignment statement shall
assign a value to a reg whose identifier
matches the identifier of an output terminal

Procedural assignment statements in initial
statements can assign values to a reg whose
identifier does not match the identifier of an
output terminal

The procedural assignment statement shall
assign one of the following values: 1’b1, 1’b0,
1’bx, 1, 0

Procedural assignment statements can assign
values of any size, radix, and value

Table 8-2—Initial statements in UDPs and modules  (continued)

Initial statements in UDPs Initial statements in modules

primitive  srff (q, s, r);
output q; reg q;
input  s, r;
initial  q = 1’b1;
table
//  s  r   q   q+
    1  0 : ? : 1 ;
    f  0 : 1 : - ;
    0  r : ? : 0 ;
    0  f : 0 : - ;
    1  1 : ? : 0 ;
endtable
endprimitive
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The UDPdff1 contains an initial statement that sets the initial value of its output to 1. The moduledff contains an
instance of UDPdff1 .

Figure 8-1 shows the schematic of the preceding module and the simulation propagation times of the initial v
the UDP output.

primitive  dff1 (q, clk, d);
input  clk, d;
output q; reg q;
initial q = 1’b1;
table
// clk d q q+

 r 0 : ? : 0 ;
 r 1 : ? : 1 ;
 f ? : ? : - ;
 ? * : ? : - ;

endtable
endprimitive

module dff (q, qb, clk, d);
input  clk, d;
output q, qb;

dff1   g1 (qi, clk, d);
buf #3 g2 (q, qi);
not #5 g3 (qb, qi);

endmodule
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Figure 8-1—Module schematic and simulation times of initial value propagation

In Figure 8-1, the fanout from the UDP outputqi includes netsq andqb. At simulation time 0,qi changes value to
1. That initial value ofqi does not propagate to netq until simulation time 3, and it does not propagate to netqb
until simulation time 5.

8.6 UDP instances

The syntax for creating a UDP instance is shown in Syntax 8-2.

Syntax 8-2—Syntax for UDP instances

Instances of user-defined primitives are specified inside modules in the same manner as gates (see 7.1). The
name is optional, just as for gates. The port connection order is as specified in the UDP definition. Only two

udp_instantiation ::= (From Annex A- A.5.4)
udp_identifier [ drive_strength ] [ delay2 ]

[attribute_instance] udp_instance {, udp_instance };
udp_instance ::=

[ name_of_udp_instance ]( output_terminal, input_terminal
{ , input_terminal })

name_of_udp_instance ::=
udp_instance_identifier [ range ]

qi
UDP dff1 g1

buf g2

not g3

d

clk

q

qb

module dff

#3

#5

0

1

0

1

0

1

0 3 5

qi

q

qb

simulation time
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can be specified becausez is not supported for UDPs. An optional range may be specified for an array of U
instances. The port connection rules remain the same as outlined in 7.1.

Example:

The following example creates an instance of the D-type flip-flopd_edge_ff  (defined in 8.4).

8.7 Mixing level-sensitive and edge-sensitive descriptions

UDP definitions allow a mixing of the level-sensitive and the edge-sensitive constructs in the same table. Wh
input changes, the edge-sensitive cases are processed first, followed by level-sensitive cases. Thus, when le
tive and edge-sensitive cases specify different output values, the result is specified by the level-sensitive cas

Example:

module flip;
reg clock, data;
parameter p1 = 10;
parameter p2 = 33;
parameter p3 = 12;

d_edge_ff #p3 d_inst (q, clock, data);

initial begin
data = 1;
clock = 1;
#(20 * p1) $finish;

end
always #p1 clock = ~clock;
always #p2 data = ~data;
endmodule

primitive  jk_edge_ff (q, clock, j, k, preset, clear);
output q; reg q;
input  clock, j, k, preset, clear;
table
// clock jk pc state output/next state

 ? ?? 01 : ? : 1 ; // preset logic
 ? ?? *1 : 1 : 1 ;
 ? ?? 10 : ? : 0 ; // clear logic
 ? ?? 1* : 0 : 0 ;
 r 00 00 : 0 : 1 ; // normal clocking cases
 r 00 11 : ? : - ;
 r 01 11 : ? : 0 ;
 r 10 11 : ? : 1 ;
 r 11 11 : 0 : 1 ;
 r 11 11 : 1 : 0 ;
 f ?? ?? : ? : - ;
 b *? ?? : ? : - ; // j and k transition cases
 b ?* ?? : ? : - ;

endtable
endprimitive
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In this example, the preset and clear logic is level-sensitive. Whenever the preset and clear combination is01 , the
output has value1. Similarly, whenever the preset and clear combination has value10 , the output has value0.

The remaining logic is sensitive to edges of the clock. In the normal clocking cases, the flip-flop is sensitive to t
ing clock edge, as indicated by anr in the clock field in those entries. The insensitivity to the falling edge of clock
indicated by a hyphen (-) in the output field (see Table 8-1) for the entry with anf as the value of clock. Remembe
that the desired output for this input transition shall be specified to avoid unwantedx values at the output. The las
two entries show that the transitions inj  andk  inputs do not change the output on a steady low or highclock.

8.8 Level-sensitive dominance

Table 8-3 shows level-sensitive and edge-sensitive entries in the example from 8.7, their level-sensitive or edg
tive behavior, and a case of input values that each includes.

The included cases specify opposite next state values for the same input and current state combination. The le
sitive included case specifies that when the inputsclock, jk , andpc values are0, 00 , and01 and the current state
is 0, the output changes to1. The edge-sensitive included case specifies that whenclock falls from1 to 0, the other
inputsjk  andpc  are00  and01 , and the current state is0, then the output changes to0.

When the edge-sensitive case is processed first, followed by the level-sensitive case, the output changes to1.

Table 8-3—Mixing of level-sensitive and edge-sensitive entries

Entry Included case Behavior

?  ?? 01: ?: 1; 0  00 01: 0: 1; Level-sensitive

f  ?? ??: ?: -; f  00 01: 0: 0; Edge-sensitive
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Section 9

Behavioral modeling

The language constructs introduced so far allow hardware to be described at a relatively detailed level. Mod
circuit with logic gates and continuous assignments reflects quite closely the logic structure of the circuit being
eled; however, these constructs do not provide the power of abstraction necessary for describing complex hi
aspects of a system. The procedural constructs described in this section are well suited to tackling problems
describing a microprocessor or implementing complex timing checks.

This section starts with a brief overview of a behavioral model to provide a context for many types of beha
statements in the Verilog HDL.

9.1 Behavioral model overview

Verilog behavioral modelscontainprocedural statementsthat control the simulation and manipulate variables of t
data types previously described. These statements are contained within procedures. Each procedure has a
flow associated with it.

The activity starts at the control constructsinitial andalways. Eachinitial construct and eachalwaysconstruct starts
a separate activity flow. All of the activity flows are concurrent to model the inherent concurrence of hardware.
constructs are formally described in 9.9.

The following example shows a complete Verilog behavioral model.

During simulation of this model, all of the flows defined by the initial and always constructs start together at si
tion time zero. The initial constructs execute once, and the always constructs execute repetitively.

In this model, the reg variablesa andb initialize to 1 and 0 respectively at simulation time zero. The initial constru
is then complete and does not execute again during this simulation run. This initial construct contains abegin-end
block (also called asequential block) of statements. In this begin-end blocka is initialized first, followed byb.

The always constructs also start at time zero, but the values of the variables do not change until the times spe
the delay controls (introduced by#) have elapsed. Thus, rega inverts after 50 time units and regb inverts after 100

module behave;
reg [1:0] a, b;

initial begin
a = ’b1;
b = ’b0;

end
always begin

#50 a = ~a;
end
always begin

#100 b = ~b;
end

endmodule
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time units. Since the always constructs repeat, this model will produce two square waves. The rega toggles with a
period of 100 time units, and regb toggles with a period of 200 time units. The two always constructs proceed c
currently throughout the entire simulation run.

9.2 Procedural assignments

As described in Section 6, procedural assignments are used for updatingreg, integer, time, real, realtime, and mem-
ory data types. There is a significant difference between procedural assignments and continuous assignmen

— Continuous assignments drive nets and are evaluated and updated whenever an input operand changes

— Procedural assignmentsupdate the value of variables under the control of the procedural flow constructs
surround them.

The right-hand side of a procedural assignment can be any expression that evaluates to a value. The left-h
shall be a variable that receives the assignment from the right-hand side. The left-hand side of a procedural
ment can take one of the following forms:

— reg, integer, real, realtime,or time data type: an assignment to the name reference of one of these data t

— Bit-select of areg, integer, or time data type: an assignment to a single bit that leaves the other
untouched.

— Part-select of areg, integer,or time data type: a part-select of one or more contiguous bits that leaves the
of the bits untouched.

— Memory word: a single word of a memory.

— Concatenation of any of the above: a concatenation of any of the previous four forms can be specified,
effectively partitions the result of the right-hand side expression and assigns the partition parts, in order
various parts of the concatenation.

NOTE—When the right-hand side evaluates to fewer bits than the left-hand side, then if the right-hand side is signed (see
shall be sign-extended to the size of the left-hand side.

The Verilog HDL contains two types of procedural assignment statements:

— Blocking procedural assignment statements

— Nonblocking procedural assignment statements

Blocking and nonblocking procedural assignment statements specify different procedural flows in sequential 

9.2.1 Blocking procedural assignments

A blocking procedural assignmentstatement shall be executed before the execution of the statements that follow
a sequential block (see 9.8.1). A blocking procedural assignment statement shall not prevent the execution
ments that follow it in a parallel block (see 9.8.2).

The syntax for a blocking procedural assignment is given in Syntax 9-1.
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Syntax 9-1—Syntax for blocking assignments

In this syntax,reg_lvalue is a data type that is valid for a procedural assignment statement,= is the assignment
operator, and delay_or_event_control is the optional intra-assignment timing control. The control can be e
delay control (e.g.,#6) or an event_control (e.g.,@(posedge clk) ). The expression is the right-hand side valu
that shall be assigned to the left-hand side. Ifreg_lvalue requires an evaluation, it shall be evaluated at the tim
specified by the intra-assignment timing control.

The = assignment operator used by blocking procedural assignments is also used by procedural continuous
ments and continuous assignments.

Example:

The following examples show blocking procedural assignments.

blocking_assignment ::=(From Annex A - A.6.2)
variable_lvalue= [ delay_or_event_control ] expression

delay_control ::=(From Annex A - A.6.5)
# delay_value

| # ( mintypmax_expression)
delay_or_event_control ::=

delay_control
| event_control
| repeat (expression) event_control

event_control ::=
@ event_identifier

| @ ( event_expression)
| @*
| @ (*)

event_expression ::=
expression

| hierarchical_identifier
| posedge expression
| negedge expression
| event_expressionor event_expression
| event_expression, event_expression

variable_lvalue ::=(From Annex A - A.8.5)
hierarchical_variable_identifier

| hierarchical_variable_identifier[ expression] { [ expression] }
| hierarchical_variable_identifier[ expression] { [ expression] }

[ range_expression]
| hierarchical_variable_identifier[ range_expression]
| variable_concatenation

rega = 0;
rega[3] = 1; // a bit-select
rega[3:5] = 7; // a part-select
mema[address] = 8’hff; // assignment to a mem element
{carry, acc} = rega + regb; // a concatenation
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9.2.2 The nonblocking procedural assignment

The nonblocking procedural assignmentallows assignment scheduling without blocking the procedural flow. T
nonblocking procedural assignment statement can be used whenever several variable assignments within
time step can be made without regard to order or dependence upon each other.

The syntax for a nonblocking procedural assignment is given in Syntax 9-2.

Syntax 9-2—Syntax for nonblocking assignments

In this syntax,reg_lvalue is a data type that is valid for a procedural assignment statement,<= is the nonblocking
assignment operator, anddelay_or_event_control is the optional intra-assignment timing control. I
reg_lvalue requires an evaluation, it shall be evaluated at the same time as the expression on the right-han
The order of evaluation of thereg_lvalue and the expression on the right-hand side is undefined if timing con
is not specified.

The nonblocking assignment operator is the same operator as the less-than-or-equal-to relational operator. T
pretation shall be decided from the context in which<= appears. When<= is used in an expression, it shall be inter
preted as a relational operator, and when it is used in a nonblocking procedural assignment, it shall be interp
an assignment operator.

The nonblocking procedural assignments shall be evaluated in two steps as discussed in Section 5. These t
are shown in the following example.

nonblocking_assignment ::=(From Annex A - A.6.2)
variable_lvalue<= [ delay_or_event_control ] expression

delay_control ::=(From Annex A - A.6.5)
# delay_value

| # ( mintypmax_expression)
delay_or_event_control ::=

delay_control
| event_control
| repeat (expression) event_control

event_control ::=
@ event_identifier

| @ ( event_expression)
| @*
| @ (*)

event_expression ::=
expression

| hierarchical_identifier
| posedge expression
| negedge expression
| event_expressionor event_expression
| event_expression, event_expression

variable_lvalue ::=(From Annex A - A.8.5)
hierarchical_variable_identifier

| hierarchical_variable_identifier[ expression] { [ expression] }
| hierarchical_variable_identifier[ expression] { [ expression] }

[ range_expression]
| hierarchical_variable_identifier[ range_expression]
| variable_concatenation
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Example 1:

At the end of the time stepmeans that the nonblocking assignments are the last assignments executed in a time
with one exception. Nonblocking assignment events can create blocking assignment events. These blocking
ment events shall be processed after the scheduled nonblocking events.

Unlike an event or delay control for blocking assignments, the nonblocking assignment does not block the proc
flow. The nonblocking assignment evaluates and schedules the assignment, but it does not block the executio
sequent statements in abegin-end block.

Example 2:

As shown in the previous example, the simulator evaluates and schedules assignments for the end of the cur
step and can perform swapping operations with the nonblocking procedural assignments.

module evaluates2 (out);
output out;
reg a, b, c;

initial begin
a = 0;
b = 1;
c = 0;

end

alwaysc = #5 ~c;

always @( posedge c) begin
a <= b; // evaluates, schedules,
b <= a; // and executes in two steps

end
endmodule

At posedge c, the simulator
evaluates the right-hand sides
of the nonblocking assign-
ments and schedules the
assignments of the new values
at the end of thenonblocking
assign updateevents (see 5.4).

Step 1:

a = 0

b = 1
Step 2:

When the simulator activates
the nonblocking assign update
events, the simulator updates
the left-hand side of each non-
blocking assignment statement.

Nonblocking
assignment
schedules
changes at
time 5

a = 1

b = 0

Assignment
values are:

//non_block1.v
module non_block1;
reg a, b, c, d, e, f;

//blocking assignments
initial begin

a = #10 1; // a will be assigned 1 at time 10
b = #2 0; // b will be assigned 0 at time 12
c = #4 1; // c will be assigned 1 at time 16

end
//non-blocking assignments
initial begin

d <= #10 1; // d will be assigned 1 at time 10
e <= #2 0; // e will be assigned 0 at time 2
f <= #4 1; // f will be assigned 1 at time 4

end
endmodule

scheduled
changes at

time 2

e = 0

f = 1

d = 1

scheduled
changes at

time 4

scheduled
changes at

time 10
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Example 3:

When multiple nonblocking assignments are scheduled to occur in the same variable in a particular time s
order in which the assignments are evaluated is not guaranteed—the final value of the variable is indetermin
shown in the following example, the value of rega is not known until the end of time step 4.

Example 4:

If the simulator executes two procedural blocks concurrently, and if these procedural blocks contain nonbl
assignment operators to the same variable, the final value of that variable is indeterminate. For example, the
rega is indeterminate in the following example.

Example 5:

//non_block1.v
module non_block1;
reg a, b;
initial begin

a = 0;
b = 1;
a <= b; // evaluates, schedules, and
b <= a; // executes in two steps

end
initial begin

$monitor ( $time, ,"a = %b b = %b", a, b);
#100 $finish;

end
endmodule

The simulator evaluates the right-
hand side of the nonblocking
assignments and schedules the
assignments for the end of the cur-
rent time step.

Step 1:

Step 2:

At the end of the current time step,
the simulator updates the left-hand
side of each nonblocking assign-
ment statement.

a = 1

b = 0

assignment values are:

module multiple2 (out);
output out;
reg a;

initial  a = 1;
// The assigned value of the reg is indeterminate
initial begin

a <= #4 0; // schedules a = 0 at time 4
a <= #4 1; // schedules a = 1 at time 4

end // At time 4, a = ??
endmodule

module multiple3 ;
reg a;

initial  a = 1;
initial  a <= #4 0; // schedules 0 at time 4
initial  a <= #4 1; // schedules 1 at time 4

// At time 4, a = ??
endmodule
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tax 9-3.
When multiple nonblocking assignments with timing controls are made to the same variable, the assignme
made without cancelling nonblocking assignments scheduled at other times. Scheduling an assignment to a
at the same time as a previously scheduled assignment to the same variable shall result in an arbitrary order o
ment to that variable, and, hence, the final value of that variable cannot be predicted.

The following example shows how the value ofi[0] is assigned tor1 and how the assignments are scheduled
occur after each time delay.

Example 6:

9.3 Procedural continuous assignments

The procedural continuous assignments(using keywordsassignand force) are procedural statements that allow
expressions to be driven continuously onto variables or nets. The syntax for these statements is given in Syn

module multiple;
reg r1;
reg [2:0] i;

initial begin
// starts at time 0, does not hold the block

r1 = 0;
// makes assignments to r1 without cancelling previous assignments

for  (i = 0; i <= 5; i = i+1)
r1 <= # (i*10) i[0];

end
endmodule

r1
10 20 30 40 500
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Syntax 9-3—Syntax for procedural continuous assignments

The left-hand side of the assignment in theassign statementshall be a variable reference or a concatenation of va
ables. It shall not be a memory word (array reference) or a bit-select or a part-select of a variable.

In contrast, the left-hand side of the assignment in theforce statementcan be a variable reference or a net reference
can be a concatenation of any of the above. Bit-selects and part-selects of vector variables or vector nets
allowed.

9.3.1 The assign and deassign procedural statements

Theassignprocedural continuous assignment statement shall override all procedural assignments to a variab
deassignprocedural statement shall end a procedural continuous assignment to a variable. The value of the v
shall remain the same until the reg is assigned a new value through a procedural assignment or a procedural
ous assignment. The assign and deassign procedural statements allow, for example, modeling of asynchrono
preset on a D-type edge-triggered flip-flop, where the clock is inhibited when the clear or preset is active.

If the keywordassignis applied to a variable for which there is already a procedural continuous assignment, the
new procedural continuous assignment shall deassign the variable before making the new procedural con
assignment.

Example:

The following example shows a use of the assign and deassign procedural statements in a behavioral descrip
D-type flip-flop with preset and clear inputs.

net_assignment ::=(From Annex A - A.6.1)
net_lvalue= expression

procedural_continuous_assignments ::=(From Annex A - A.6.2)
assign variable_assignment

| deassign variable_lvalue
| force variable_assignment
| force net_assignment
| release variable_lvalue
| release net_lvalue

variable_assignment ::=(From Annex A - A.6.3)
variable_lvalue= expression

net_lvalue ::=(From Annex A - A.8.5)
hierarchical_net_identifier

| hierarchical_net_identifier[ constant_expression] { [ constant_expression] }
| hierarchical_net_identifier[ constant_expression] { [ constant_expression] }

[ constant_range_expression]
| hierarchical_net_identifier[ constant_range_expression]
| net_concatenation

variable_lvalue ::=
hierarchical_variable_identifier

| hierarchical_variable_identifier[ expression] { [ expression] }
| hierarchical_variable_identifier[ expression] { [ expression] }

[ range_expression]
| hierarchical_variable_identifier[ range_expression]
| variable_concatenation
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If either clear or preset is low, then the outputq will be held continuously to the appropriate constant value a
a positive edge on theclock  will not affectq. When both theclear  andpreset  are high, thenq is deassigned.

If either operand to an arithmetic operator is real, the resulting expression is of type real.

9.3.2 The force and release procedural statements

Another form of procedural continuous assignment is provided by theforceandreleaseprocedural statements. Thes
statements have a similar effect to the assign-deassign pair, but a force can be applied to nets as well as to v
The left-hand side of the assignment can be a variable, a net, a constant bit-select of a vector net, a part-se
vector net, or a concatenation. It cannot be a memory word (array reference) or a bit-select or a part-select of
variable.

A forcestatement to a variable shall override a procedural assignment or procedural continuous assignment th
place on the variable until a release procedural statement is executed on the variable. After thereleaseprocedural
statement is executed, the variable shall not immediately change value (as would a net that is forced). The val
ified in the force statement shall be maintained in the variable until the next procedural assignment takes place
in the case where a procedural continuous assignment is active on the variable.

A force procedural statement on a net overrides all drivers of the net—gate outputs, module outputs, and con
assignments—until a release procedural statement is executed on the net.

Releasing a variable that currently has an active procedural continuous assignment shall re-establish that ass

module dff (q, d, clear, preset, clock);
output q;
input  d, clear, preset, clock;
reg q;

always @(clear or preset)
if  (!clear)

assign q = 0;
else if (!preset)

assign q = 1;
else

deassign q;

always @( posedge clock)
q = d;

endmodule
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Example:

In this example, anand gate instanceand1 is “patched” as anor gate by a force procedural statement that forces
output to the value of its logical or inputs, and an assign procedural statement of logical and values is “patched
assign procedural statement of logical or values.

The right-hand side of a procedural continuous assignment or a force statement can be an expression. This
treated just as a continuous assignment; that is, if any variable on the right-hand side of the assignment chan
assignment shall be re-evaluated while the assign or force is in effect. For example:

force a = b + f(c) ;

Here, ifb changes orc  changes,a will be forced to the new value of the expressionb+f(c) .

9.4 Conditional statement

Theconditional statement(or if-elsestatement) is used to make a decision as to whether a statement is execu
not. Formally, the syntax is given in Syntax 9-4.

module test;
reg a, b, c, d;
wire e;

and and1 (e, a, b, c);

initial begin
$monitor("%d d=%b,e=%b", $stime, d, e);
assign d = a & b & c;
a = 1;
b = 0;
c = 1;
#10;
force d = (a | b | c);
force e = (a | b | c);
#10 $stop;
release d;
release e;
#10 $finish;

end
endmodule

Results:
 0 d=0,e=0
10 d=1,e=1
20 d=0,e=0
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Syntax 9-4—Syntax of if statement

If the expression evaluates to true (that is, has a nonzero known value), the first statement shall be executed. I
uates to false (has a zero value or the value isx or z ), the first statement shall not execute. If there is an else statem
and expression is false, the else statement shall be executed.

Since the numeric value of theif expression is tested for being zero, certain shortcuts are possible. For exampl
following two statements express the same logic:

if  (expression)

if  (expression != 0)

Because the else part of an if-else is optional, there can be confusion when an else is omitted from a n
sequence. This is resolved by always associating the else with the closest previous if that lacks an else. In the
below, the else goes with the inner if, as shown by indentation.

If that association is not desired, a begin-end block statement shall be used to force the proper association, a
below.

9.4.1 If-else-if construct

The following construction occurs so often that it is worth a brief separate discussion:

conditional_statement ::=(From Annex A - A.6.6)
if (  expression)

statement_or_null [else statement_or_null ]
| if_else_if_statement

function_conditional_statement ::=(From Annex A - A.6.6)
if (  expression) function_statement_or_null

[ else function_statement_or_null ]
| function_if_else_if_statement

if (index > 0)
if (rega > regb)

result = rega;
else // else applies to preceding if

result = regb;

if (index > 0)  begin
if (rega > regb)

result = rega;
end
else result = regb;
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Syntax 9-5—Syntax of if-else-if construct

This sequence of if statements (known as anif-else-ifconstruct) is the most general way of writing a multiway dec
sion. The expressions shall be evaluated in order; if any expression is true, the statement associated with it
executed, and this shall terminate the whole chain. Each statement is either a single statement or a block
ments.

The last else part of the if-else-if construct handles the none-of-the-above or default case where none of the ot
ditions were satisfied. Sometimes there is no explicit action for the default; in that case, the trailing else statem
be omitted or it can be used for error checking to catch an impossible condition.

Example:

The following module fragment uses the if-else statement to test the variableindex to decide whether one of three
modify_segn regs has to be added to the memory address, and which increment is to be added to theindex reg.
The first ten lines declare the regs and parameters.

if_else_if_statement ::=(From Annex A - A.6.6)
if (  expression) statement_or_null
{ else if ( expression) statement_or_null }
[ else statement_or_null ]

function_if_else_if_statement ::=(From Annex A - A.6.6)
if (  expression) function_statement_or_null
{ else if ( expression) function_statement_or_null }
[ else function_statement_or_null ]

// declare regs and parameters
reg [31:0] instruction, segment_area[255:0];
reg [7:0] index;
reg [5:0] modify_seg1,

modify_seg2,
modify_seg3;

parameter
segment1 = 0, inc_seg1 = 1,
segment2 = 20, inc_seg2 = 2,
segment3 = 64, inc_seg3 = 4,
data = 128;

// test the index variable
if (index < segment2) begin

instruction = segment_area [index + modify_seg1];
index = index + inc_seg1;

end
else if (index < segment3)  begin

instruction = segment_area [index + modify_seg2];
index = index + inc_seg2;

end
else if (index < data) begin

instruction = segment_area [index + modify_seg3];
index = index + inc_seg3;

end
else

instruction = segment_area [index];
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9.5 Case statement

The casestatement is a multiway decision statement that tests whether an expression matches one of a nu
other expressions and branches accordingly. The case statement has the syntax shown in Syntax 9-6.

Syntax 9-6—Syntax for case statement

Thedefault statement shall be optional. Use of multiple default statements in one case statement shall be illeg

The case expression and the case item expression can be computed at runtime; neither expression is require
constant expression.

Examples:

A simple example of the use of the case statement is the decoding of regrega to produce a value forresult as fol-
lows:

case_statement ::=(From Annex A - A.6.7)
case (expression)

case_item { case_item }endcase
| casez ( expression)

case_item { case_item }endcase
| casex (expression)

case_item { case_item }endcase
case_item ::=

expression {, expression } : statement_or_null
| default [ : ] statement_or_null

function_case_statement ::=
case ( expression)

function_case_item { function_case_item }endcase
| casez ( expression)

function_case_item { function_case_item }endcase
| casex ( expression)

function_case_item { function_case_item }endcase
function_case_item ::=

expression {, expression } : function_statement_or_null
| default [ : ] function_statement_or_null
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Thecase item expressionsshall be evaluated and compared in the exact order in which they are given. During th
ear search, if one of thecase item expressions matches the case expression given in parentheses, then the sta
associated with that case item shall be executed. If all comparisons fail and the default item is given, then the
item statement shall be executed. If the default statement is not given and all of the comparisons fail, then non
case item statements shall be executed.

Apart from syntax, thecase  statement differs from the multiway if-else-if construct in two important ways:

a) The conditional expressions in the if-else-if construct are more general than comparing one expressi
several others, as in the case statement.

b) The case statement provides a definitive result when there arex  andz  values in an expression.

In a case expression comparison, the comparison only succeeds when each bit matches exactly with respect t
ues0, 1, x , andz . As a consequence, care is needed in specifying the expressions in thecase statement. The bit
length of all the expressions shall be equal so that exact bit-wise matching can be performed. The length of
case item expressions, as well as the case expression in the parentheses, shall be made equal to the leng
longest case expression and case item expression.

NOTE—The default length ofx  andz  is same as the default length of an integer.

The reason for providing a case expression comparison that handles thex andz values is that it provides a mecha
nism for detecting such values and reducing the pessimism that can be generated by their presence.

Examples:

Example 1—The following example illustrates the use of a case statement to handlex  andz  values properly.

reg [15:0] rega;
reg [9:0] result;

case (rega)
16’d0: result = 10’b0111111111;
16’d1: result = 10’b1011111111;
16’d2: result = 10’b1101111111;
16’d3: result = 10’b1110111111;
16’d4: result = 10’b1111011111;
16’d5: result = 10’b1111101111;
16’d6: result = 10’b1111110111;
16’d7: result = 10’b1111111011;
16’d8: result = 10’b1111111101;
16’d9: result = 10’b1111111110;
default result = ’bx;

endcase
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In this example, ifselect[1] is 0 and flaga is 0, then whether the value ofselect[2] is x or z , result
should be0—which is resolved by the third case.

Example 2—The following example shows another way to use a case statement to detectx  andz  values.

9.5.1 Case statement with don’t-cares

Two other types of case statements are provided to allow handling of don’t-care conditions in the case compa
One of these treats high-impedance values (z ) as don’t-cares, and the other treats both high-impedance and unkn
(x ) values as don’t-cares.

These case statements can be used in the same way as the traditional case statement, but they begin with
casez andcasex respectively.

Don’t-care values (z values for casez,z andx values for casex) in any bit of either the case expression or the c
items shall be treated as don’t-care conditions during the comparison, and that bit position shall not be cons
The don’t-care conditions in case expression can be used to control dynamically which bits should be comp
any time.

The syntax of literal numbers allows the use of the question mark(?) in place ofz in these case statements. Thi
provides a convenient format for specification of don’t-care bits in case statements.

Examples:

Example 1—The following is an example of the casez statement. It demonstrates an instruction decode, where
of the most significant bits select which task should be called. If the most significant bit ofir is a1, then the task
instruction1  is called, regardless of the values of the other bits ofir .

case (select[1:2])
2’b00: result = 0;
2’b01: result = flaga;
2’b0x,
2’b0z: result = flaga ? ’bx : 0;
2’b10: result = flagb;
2’bx0,
2’bz0: result = flagb ? ’bx : 0;
default result = ’bx;

endcase

case (sig)
1’bz: $display("signal is floating");
1’bx: $display("signal is unknown");
default:  $display("signal is %b", sig);

endcase
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Example 2—The following is an example of the casex statement. It demonstrates an extreme case of how don
conditions can be dynamically controlled during simulation. In this case, ifr = 8´b01100110 , then the task
stat2  is called.

9.5.2 Constant expression in case statement

A constant expression can be used for case expression. The value of the constant expression shall be c
against case item expressions.

Example:

The following example demonstrates the usage by modeling a 3-bit priority encoder.

Note that the case expression is a constant expression (1). The case items are expressions (bit-selects) and
pared against the constant expression for a match.

9.6 Looping statements

There are four types of looping statements. These statements provide a means of controlling the execution of
ment zero, one, or more times.

reg [7:0] ir;

casez (ir)
8’b1???????: instruction1(ir);
8’b01??????: instruction2(ir);
8’b00010???: instruction3(ir);
8’b000001??: instruction4(ir);

endcase

reg [7:0] r, mask;

mask = 8’bx0x0x0x0;
casex (r ^ mask)

8’b001100xx: stat1;
8’b1100xx00: stat2;
8’b00xx0011: stat3;
8’bxx010100: stat4;

endcase

reg [2:0] encode ;

case (1)
encode[2] : $display(“Select Line 2”) ;
encode[1] : $display(“Select Line 1”) ;
encode[0] : $display(“Select Line 0”) ;
default $display(“Error: One of the bits expected ON”);

endcase
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forever Continuously executes a statement.

repeat Executes a statement a fixed number of times. If the expression evaluates to unknown o
impedance, it shall be treated as zero, and no statement shall be executed.

while Executes a statement until an expression becomes false. If the expression starts out fal
statement shall not be executed at all.

for Controls execution of its associated statement(s) by a three-step process, as follows:

a) Executes an assignment normally used to initialize a variable that controls the number of
executed.

b) Evaluates an expression—if the result is zero, the for-loop shall exit, and if it is not zero
for-loop shall execute its associated statement(s) and then perform stepc . If the expression
evaluates to an unknown or high-impedance value, it shall be treated as zero.

c) Executes an assignment normally used to modify the value of the loop-control variable,
repeats stepb.

Syntax 9-7 shows the syntax for various looping statements.

Syntax 9-7—Syntax for the looping statements

The rest of this clause presents examples for three of the looping statements. The forever loop should only be
conjunction with the timing controls or the disable statement, therefore, this example is presented in 9.7.2.

Examples:

Example 1—Repeat statement: In the following example of a repeat loop, add and shift operators implem
multiplier.

function_loop_statement ::=(From Annex A - A.6.8)
forever function_statement

| repeat ( expression) function_statement
| while ( expression) function_statement
| for (  variable_assignment;  expression; variable_assignment)

function_statement
loop_statement ::=

forever statement
| repeat ( expression) statement
| while ( expression) statement
| for (  variable_assignment;  expression; variable_assignment)

statement
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Example 2—While statement: The following example counts the number of logic1 values inrega .

Example 3—For statement: The for statement accomplishes the same results as the following pseudo-code
based on the while loop:

The for loop implements this logic while using only two lines, as shown in the pseudo-code below.

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;

begin : mult
reg [longsize:1] shift_opa, shift_opb;
shift_opa = opa;
shift_opb = opb;
result = 0;
repeat (size) begin

if  (shift_opb[1])
result = result + shift_opa;

shift_opa = shift_opa << 1;
shift_opb = shift_opb >> 1;

end
end

begin : count1s
reg [7:0] tempreg;
count = 0;
tempreg = rega;
while (tempreg) begin

if  (tempreg[0])
count = count + 1;

tempreg = tempreg >> 1;
end

end

begin
initial_assignment;
while (condition) begin

statement
step_assignment;

end
end

for  (initial_assignment; condition; step_assignment)
statement
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9.7 Procedural timing controls

The Verilog HDL has two types of explicit timing control over when procedural statements can occur. The first t
a delay control, in which an expression specifies the time duration between initially encountering the stateme
when the statement actually executes. The delay expression can be a dynamic function of the state of the circu
can be a simple number that separates statement executions in time. The delay control is an important featu
specifying stimulus waveform descriptions. It is described in 9.7.1 and 9.7.7.

The second type of timing control is theevent expression, which allows statement execution to be delayed until t
occurrence of some simulation event occurring in a procedure executing concurrently with this procedure. A s
tion event can be a change of value on a net or variable (an implicit event) or the occurrence of an explicitly
event that is triggered from other procedures (an explicit event). Most often, an event control is a positive or ne
edge on a clock signal. Event control is discussed in 9.7.2 through 9.7.7.

The procedural statements encountered so far all execute without advancing simulation time. Simulation tim
advance by one of the following three methods:

— A delay  control, which is introduced by the symbol #
— An event  control, which is introduced by the symbol @
— The wait  statement, which operates like a combination of the event control and the while loop

Syntax 9-8 describes timing control in procedural statements.

Syntax 9-8—Syntax for procedural timing control

The gate and net delays also advance simulation time, as discussed in Section 6. The next subclauses discus
procedural timing control methods.

9.7.1 Delay control

A procedural statement following the delay control shall be delayed in its execution with respect to the proc
statement preceding the delay control by the specified delay. If the delay expression evaluates to an unknown
impedance value, it shall be interpreted as zero delay. If the delay expression evaluates to a negative value, it

delay_control ::=(From Annex A - A.6.5)
# delay_value

| # ( mintypmax_expression)
delay_or_event_control ::=

delay_control
| event_control
| repeat (expression) event_control

event_control ::=
@ event_identifier

| @ ( event_expression)
| @*
| @ (*)

event_expression ::=
expression

| hierarchical_identifier
| posedge expression
| negedge expression
| event_expressionor event_expression
| event_expression, event_expression
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Examples:

Example 1—The following example delays the execution of the assignment by 10 time units:

#10 rega = regb;

Example 2—The next three examples provide an expression following the number sign (#). Execution of the a
ment is delayed by the amount of simulation time specified by the value of the expression.

#d rega = regb; // d is defined as a parameter
#((d+e)/2) rega = regb;// delay is average of d and e
#regr regr = regr + 1; // delay is the value in regr

9.7.2 Event control

The execution of a procedural statement can be synchronized with a value change on a net or variable or th
rence of a declared event. The value changes on nets and variable can be used as events to trigger the exec
statement. This is known as detectingan implicit event. The event can also be based on the direction of the chang
that is, towards the value 1 (posedge) or towards the value 0 (negedge). The behavior of posedge and negedge eve
is shown in Table 9-1 and can be described as follows:

— A negedge shall be detected on the transition from1 to x , z , or0, and fromx  or z  to 0
— A posedge shall be detected on the transition from0 to x , z , or1, and fromx  or z  to 1

If the expression evaluates to more than a 1-bit result, the edge transition shall be detected on the least signifi
of the result. The change of value in any of the operands without a change in the value of the least significant b
expression result shall not be detected as an edge.

Example:

The following example shows illustrations of edge-controlled statements.

Table 9-1—Detecting posedge and negedge

To 0 1 x z

From

0 No edge posedge posedge posedge

1 negedge No edge negedge negedge

x negedge posedge No edge No edge

z negedge posedge No edge No edge
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9.7.3 Named events

A new data type, in addition to nets and variables, called “event” can be declared. An identifier declared as a
data type is called anamed event. A named event can be triggered explicitly. It can be used in an event expressi
control the execution of procedural statements in the same manner as event control described in 9.7.1. Name
can be made to occur from a procedure. This allows control over the enabling of multiple actions in other proce

An event name shall be declared explicitly before it is used. Syntax 9-9 gives the syntax for declaring events.

Syntax 9-9—Syntax for event declaration

An event shall not hold any data. The following are the characteristics of a named event:

— It can be made to occur at any particular time
— It has no time duration
— Its occurrence can be recognized by using the event control syntax described in

A declared event is made to occur by the activation of an event triggering statement with the syntax giv
Syntax 9-10.

Syntax 9-10—Syntax for event trigger

An event-controlled statement (for example, @trig rega = regb; ) shall cause simulation of its containing pro
cedure to wait until some other procedure executes the appropriate event-triggering statement (for example,
-> trig ).

Named events and event control give a powerful and efficient means of describing the communication betwe
synchronization of, two or more concurrently active processes. A basic example of this is a small waveform
generator that synchronizes control of a synchronous circuit by signalling the occurrence of an explicit event p
cally while the circuit waits for the event to occur.

event_declaration ::=(From Annex A - A.2.1.3)
event list_of_event_identifiers;

list_of_event_identifiers ::=(From Annex A - A.2.3)
event_identifier [ dimension { dimension }]

{ , event_identifier [ dimension { dimension }] }
dimension ::=(From Annex A - A.2.5)

[ dimension_constant_expression: dimension_constant_expression]

event_trigger ::=(From Annex A - A.6.5)
-> hierarchical_event_identifier;

@r rega = regb; // controlled by any value change in the reg r
@(posedge clock) rega = regb; // controlled by posedge on clock
forever @( negedge clock) rega = regb; // controlled by negative edge
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9.7.4 Event or operator

The logical or of any number of events can be expressed such that the occurrence of any one of the events trig
execution of the procedural statement that follows it. The keywordor or a comma character (,) is used as an event
logical or operator. A combination of these can be used in the same event expression. Comma-separated se
lists shall be synonymous toor-separated sensitivity lists.

Examples:

The next two examples show the logical or of two and three events respectively.

@(trig or enable) rega = regb; // controlled by trig or enable
@(posedge clk_a or posedge clk_b or trig) rega = regb;

The following examples show the use of the comma (, ) as an event logical or operator.

always @(a, b, c, d, e)
always @( posedge clk, negedge rstn)
always @(a or b, c, d or e)

9.7.5 Implicit event_expression list

Theevent_expression list of an event control is a common source of bugs in RTL simulations. Users ten
forget to add some of the nets or variables read in the timing control statement. This is often found when com
RTL and gate level versions of a design. The implicitevent_expression , @*, is a convenient shorthand tha
eliminates these problems by adding all nets and variables which are read by the statement (which can be a s
group) of aprocedural_timing_control_statement  to theevent_expression .

All net and variable identifiers which appear in the statement will be automatically added to the event expressio
these exceptions:

— Identifiers which only appear in wait or event expressions.
— Identifiers which only appear as ahierarchical_reg_identifierin the reg_lvalue of the left hand side of

assignments.

Nets and variables which appear on the right hand side of assignments, in function and task calls, or case an
tional expressions shall all be included by these rules.

Examples:

Example 1

always @(*)  // equivalent to @(a or b or c or d or f)
y = (a & b) | (c & d) | myfunction(f);

Example 2

always @* begin // equivalent to @(a or b or c or d or tmp1 or tmp2)
tmp1 = a & b;
tmp2 = c & d;
y = tmp1 | tmp2;

end
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Example 3

always @* begin  // equivalent to @(b)
@(i) kid = b;  // i is not added to @*

end

Example 4

always @* begin  // equivalent to @(a or b or c or d)
x = a ^ b;
@*             // equivalent to @(c or d)

x = c ^ d;
end

9.7.6 Level-sensitive event control

The execution of a procedural statement can also be delayed until a condition becomes true. This is accom
using thewait statement, which is a special form of event control. The nature of the wait statement is level-sen
as opposed to basic event control (specified by the@ character), which is edge-sensitive.

The wait statement shall evaluate a condition, and, if it is false, the procedural statements following the wait sta
shall remain blocked until that condition becomes true before continuing. The wait statement has the form g
Syntax 9-11.

Syntax 9-11—Syntax for wait statement

Example:

The following example shows the use of the wait statement to accomplish level-sensitive event control.

If the value ofenable is 1 when the block is entered, the wait statement will delay the evaluation of the next s
ment (#10 a = b; ) until the value ofenable changes to0. If enable is already0 when thebegin-end
block is entered, then the assignment “a = b; ” is evaluated after a delay of 10 and no additional delay occurs.

9.7.7 Intra-assignment timing controls

The delay and event control constructs previously described precede a statement and delay its execution. In
the intra-assignment delay and event controlsare contained within an assignment statement and modify the flow
activity in a different way. This subclause describes the purpose of intra-assignment timing controls and the
timing control that can be used in intra-assignment delays.

An intra-assignment delay or event control shall delay the assignment of the new value to the left-hand side,
right-hand side expression shall be evaluated before the delay, instead of after the delay. The syntax for intra

wait_statement ::=(From Annex A - A.6.5)
wait ( expression) statement_or_null

begin
wait (!enable) #10 a = b;
#10 c = d;

end
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Syntax 9-12—Syntax for intra-assignment delay and event control

The intra-assignment delay and event control can be applied to both blocking assignments and nonblocking
ments. The event expression shall be resolved to a 1-bit value. Therepeatevent control shall specify an intra-assign
ment delay of a specified number of occurrences of an event. If therepeatcount literal, or signed reg holding the
repeatcount, is less than or equal to0 at the time of evaluation, the assignment occurs as if there is norepeatcon-
struct.

Examples:

repeat (-3) @ (event_expression)
// will not execute event_expression.

repeat (a) @ (event_expression)
// if a is assigned -3 it will execute the event_expression
// if a is declared as an unsigned reg but not if it is signed.

This construct is convenient when events have to be synchronized with counts of clock signals.

Examples:

Table 9-2 illustrates the philosophy of intra-assignment timing controls by showing the code that could acco

blocking_assignment ::=(From Annex A - A.6.2)
variable_lvalue= [ delay_or_event_control ] expression

nonblocking_assignment ::=
variable_lvalue<= [ delay_or_event_control ] expression

delay_control ::=(From Annex A - A.6.5)
# delay_value

| # ( mintypmax_expression)
delay_or_event_control ::=

delay_control
| event_control
| repeat (expression) event_control

event_control ::=
@ event_identifier

| @ ( event_expression)
| @*
| @ (*)

event_expression ::=
expression

| hierarchical_identifier
| posedge expression
| negedge expression
| event_expressionor event_expression
| event_expression, event_expression
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the same timing effect without using intra-assignment.

The next three examples use the fork-join behavioral construct. All statements between the keywordsfork and join
execute concurrently. This construct is described in more detail in 9.8.2.

The following example shows a race condition that could be prevented by using intra-assignment timing cont

fork
#5 a = b;
#5 b = a;

join

The code in this example samples and sets the values of botha andb at the same simulation time, thereby creating
race condition. The intra-assignment form of timing control used in the next example prevents this race cond

fork // data swap
a = #5 b;
b = #5 a;

join

Intra-assignment timing control works because the intra-assignment delay causes the values ofa andb to be evalu-
atedbefore the delay, and the assignments to be madeafter the delay. Some existing tools that implement intra
assignment timing control use temporary storage in evaluating each expression on the right-hand side.

Intra-assignment waiting foreventsis also effective. In the following example, the right-hand side expressions
evaluated when the assignment statements are encountered, but the assignments are delayed until the risin
the clock signal.

fork // data shift
a = @( posedge clk) b;
b = @( posedge clk) c;

join

The following is an example of a repeat event control as the intra-assignment delay of a nonblocking assignm

Table 9-2—Intra-assignment timing control equivalence

Intra-assignment timing control

With intra-assignment construct Without intra-assignment construct

a = #5 b;
begin
temp = b;
#5 a = temp;
end

a = @( posedge clk) b;
begin
temp = b;
@(posedge clk) a = temp;
end

a = repeat(3)
@(posedge clk) b;

begin
temp = b;
@(posedge clk);
@(posedge clk);
@(posedge clk) a = temp;
end
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a <= repeat(5) @( posedge clk) data;

Figure 9-1 illustrates the activities that result from thisrepeat  event control.

Figure 9-1—Repeat event control utilizing a clock edge

In this example, the value ofdata is evaluated when the assignment is encountered. After five occurrence
posedgeclk , a is assigned the value ofdata .

The following is an example of a repeat event control as the intra-assignment delay of a procedural assignme

a = repeat(num) @(clk) data;

In this example, the value ofdata is evaluated when the assignment is encountered. After the number of transi
of clk  equals the value ofnum, a is assigned the value ofdata .

The following is an example of a repeat event control with expressions containing operations to specify both th
ber of event occurrences and the event that is counted:

a <= repeat(a+b) @( posedge phi1 or negedge phi2) data;

In this example, the value ofdata is evaluated when the assignment is encountered. After the sum of the pos
edges ofphi1 and the negative edges ofphi2 equals the sum ofa andb, a is assigned the value ofdata . Even if
posedge phi1  andnegedge phi2  occurred at the same simulation time, each will be detected separately.

9.8 Block statements

Theblock statementsare a means of grouping two or more statements together so that they act syntactically like
gle statement. There are two types of blocks in the Verilog HDL:

— Sequential block, also calledbegin-end block
— Parallel block, also calledfork-join block

clk

data

a

data is evaluated
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The sequential block shall be delimited by the keywordsbegin andend. The procedural statements in sequenti
block shall be executed sequentially in the given order.

The parallel block shall be delimited by the keywordsfork andjoin . The procedural statements in parallel block sha
be executed concurrently.

9.8.1 Sequential blocks

A sequential block shall have the following characteristics:

— Statements shall be executed in sequence, one after another
— Delay values for each statement shall be treated relative to the simulation time of the execution of the pr

statement
— Control shall pass out of the block after the last statement executes

Syntax 9-13 gives the formal syntax for a sequential block.

Syntax 9-13—Syntax for the sequential block

Examples:

Example 1—A sequential block enables the following two assignments to have a deterministic result:

The first assignment is performed andareg  is updated before control passes to the second assignment.

Example 2—Delay control can be used in a sequential block to separate the two assignments in time.

function_seq_block ::=(From Annex A - A.6.3)
begin [ : block_identifier

{ block_item_declaration } ] { function_statement }end
seq_block ::=

begin [ : block_identifier
{ block_item_declaration } ] { statement }end

block_item_declaration ::=(From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration

| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

begin
areg = breg;
creg = areg; // creg stores the value of breg

end
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Example 3—The following example shows how the combination of the sequential block and delay control ca
used to specify a time-sequenced waveform.

9.8.2 Parallel blocks

A parallel block shall have the following characteristics:

— Statements shall execute concurrently

— Delay values for each statement shall be considered relative to the simulation time of entering the bloc

— Delay control can be used to provide time-ordering for assignments

— Control shall pass out of the block when the last time-ordered statement executes

Syntax 9-14 gives the formal syntax for a parallel block.

Syntax 9-14—Syntax for the parallel block

The timing controls in a fork-join block do not have to be ordered sequentially in time.

par_block ::=(From Annex A - A.6.3)
fork  [ : block_identifier

{ block_item_declaration } ] { statement }join
block_item_declaration ::=(From Annex A - A.2.8)

{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

begin
areg = breg;
@(posedge clock) creg = areg; // assignment delayed until

end // posedge on clock

parameter d = 50; // d declared as a parameter and
reg [7:0] r; // r declared as an 8-bit reg

begin  // a waveform controlled by sequential delay
#d r = ’h35;
#d r = ’hE2;
#d r = ’h00;
#d r = ’hF7;
#d -> end_wave;//trigger an event called end_wave

end
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Example:

The following example codes the waveform description shown in example 3 of 9.8.1 by using a parallel block in
of a sequential block. The waveform produced on the reg is exactly the same for both implementations.

9.8.3 Block names

Both sequential and parallel blocks can be named by adding: name_of_block after the keywordsbeginor fork .
The naming of blocks serves several purposes:

— It allows local variables, parameters, and named events to be declared for the block.
— It allows the block to be referenced in statements such as the disable statement (Section 11).

All variables shall be static—that is, a unique location exists for all variables and leaving or entering blocks sh
affect the values stored in them.

The block names give a means of uniquely identifying all variables at any simulation time.

9.8.4 Start and finish times

Both sequential and procedural blocks have the notion of a start and finish time. For sequential blocks, the st
is when the first statement is executed, and the finish time is when the last statement has been executed. Fo
blocks, the start time is the same for all the statements, and the finish time is when the last time-ordered statem
been executed.

Sequential and parallel blocks can be embedded within each other, allowing complex control structures
expressed easily and with a high degree of structure. When blocks are embedded within each other, the ti
when a block starts and finishes is important. Execution shall not continue to the statement following a block u
finish time for the block has been reached—that is, until the block has completely finished executing.

Examples:

Example 1—The following example shows the statements from the example in 9.8.2 written in the reverse ord
still producing the same waveform.

fork
#50 r = ’h35;
#100 r = ’hE2;
#150 r = ’h00;
#200 r = ’hF7;
#250 -> end_wave;

join

fork
#250 -> end_wave;
#200 r = ’hF7;
#150 r = ’h00;
#100 r = ’hE2;
#50 r = ’h35;

join
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Example 2—When an assignment is to be made after two separate events have occurred, known as thejoining of
events, afork-join  block can be useful.

The two events can occur in any order (or even at the same simulation time) and thefork-join block will com-
plete and the assignment will be made. In contrast to this, if thefork-join block was abegin-end block and the
Bevent  occurred before theAevent , then the block would be waiting for the nextBevent .

Example 3—This example shows two sequential blocks, each of which will execute when its controlling event oc
Because the event controls are within afork-join block, they execute in parallel and the sequential blocks c
therefore also execute in parallel.

9.9 Structured procedures

All procedures in the Verilog HDL are specified within one of the following four statements:

— initial  construct
— always construct
— Task
— Function

The initial and always constructs are enabled at the beginning of a simulation. The initial construct shall execu
once and its activity shall cease when the statement has finished. In contrast, the always construct shall
repeatedly. Its activity shall cease only when the simulation is terminated. There shall be no implied order of
tion between initial and always constructs. The initial constructs need not be scheduled and executed be
always constructs. There shall be no limit to the number of initial and always constructs that can be defined in
ule.

begin
fork

@Aevent;
@Bevent;

join
areg = breg;

end

fork
@enable_a

begin
#ta wa = 0;
#ta wa = 1;
#ta wa = 0;

end
@enable_b

begin
#tb wb = 1;
#tb wb = 0;
#tb wb = 1;

end
join
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Tasks and functions are procedures that are enabled from one or more places in other procedures. Tasks and
are described in Section 10.

9.9.1 Initial construct

The syntax for theinitial construct is given in Syntax 9-15.

Syntax 9-15—Syntax for initial construct

Examples:

The following example illustrates use of the initial construct for initialization of variables at the start of simulat

Another typical usage of the initial construct is specification of waveform descriptions that execute once to p
stimulus to the main part of the circuit being simulated.

9.9.2 Always construct

Thealways constructrepeats continuously throughout the duration of the simulation. Syntax 9-16 shows the s
for the always construct.

Syntax 9-16—Syntax for always construct

The always construct, because of its looping nature, is only useful when used in conjunction with some form
ing control. If an always construct has no control for simulation time to advance, it will create a simulation dea
condition.

initial_construct ::=(From Annex A - A.6.2)
initial  statement

always_construct ::=(From Annex A - A.6.2)
always statement

initial begin
areg = 0; // initialize a reg
for  (index = 0; index < size; index = index + 1)

 memory[index] = 0; //initialize memory word
end

initial begin
inputs = ’b000000; //initialize at time zero
#10 inputs = ’b011001; // first pattern
#10 inputs = ’b011011; // second pattern
#10 inputs = ’b011000; // third pattern
#10 inputs = ’b001000; // last pattern

end
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The following code, for example, creates a zero-delay infinite loop.

always areg = ~areg;

Providing a timing control to the above code creates a potentially useful description as shown in the following

always #half_period areg = ~areg;
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Section 10

Tasks and functions

Tasks and functions provide the ability to execute common procedures from several different places in a desc
They also provide a means of breaking up large procedures into smaller ones to make it easier to read and d
source descriptions. This section discusses the differences between tasks and functions, describes how to d
invoke tasks and functions, and presents examples of each.

10.1 Distinctions between tasks and functions

The following rules distinguish tasks from functions:

— A function shall execute in one simulation time unit; a task can contain time-controlling statements.

— A function cannot enable a task; a task can enable other tasks and functions.

— A function shall have at least oneinput type argument and shall not have anoutput or inout type argument; a
task can have zero or more arguments of any type.

— A function shall return a single value; a task shall not return a value.

The purpose of afunction is to respond to an input value by returning a single value. Ataskcan support multiple
goals and can calculate multiple result values. However, only theoutput or inout type arguments pass result value
back from the invocation of a task. A function is used as an operand in an expression; the value of that operan
value returned by the function.

Example:

Either a task or afunctioncan be defined to switch bytes in a 16-bit word. The task would return the switched wo
an output argument, so the source code to enable a task calledswitch_bytes could look like the following exam-
ple:

switch_bytes (old_word, new_word);

The taskswitch_bytes would take the bytes inold_word , reverse their order, and place the reversed bytes
new_word .

A word-switching function would return the switched word as the return value of the function. Thus, the functio
for the functionswitch_bytes  could look like the following example:

new_word = switch_bytes (old_word);

10.2 Tasks and task enabling

A task shall be enabled from a statement that defines the argument values to be passed to the task and the
that receive the results. Control shall be passed back to the enabling process after the task has completed. T
task has timing controls inside it, then the time of enabling a task can be different from the time at which the c
is returned. A task can enable other tasks, which in turn can enable still other tasks—with no limit on the num
tasks enabled. Regardless of how many tasks have been enabled, control shall not return until all enabled ta
completed.
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10.2.1 Task declarations

The syntax for defining tasks is given in Syntax 10-1.

Syntax 10-1—Syntax for task declaration

There are two alternate task declaration syntaxes.

The first syntax shall begin with the keywordtask, followed by the optional keywordautomatic, followed by a name
for the task and a semicolon, and ending with the keywordendtask. The keywordautomatic declares an automatic
task that is reentrant with all the task declarations allocated dynamically for each concurrent task entry. Tas
declarations can specify the following:

— Input arguments
— Output arguments

task_declaration ::=(From Annex A - A.2.7)
task [ automatic ] task_identifier;
{ task_item_declaration }
statement

endtask
| task [ automatic ] task_identifier( task_port_list) ;

{ block_item_declaration }
statement

endtask
task_item_declaration ::=

block_item_declaration
| { attribute_instance } input_declaration
| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

task_port_list ::=
task_port_item {, task_port_item }

task_port_item ::=
{ attribute_instance } input_declaration

| { attribute_instance } output_declaration
| { attribute_instance } inout_declaration

block_item_declaration ::=(From Annex A - A.2.8)
{ attribute_instance } block_reg_declaration

| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

block_reg_declaration ::=
reg [ signed ] [ range ]
list_of_block_variable_identifiers;

list_of_block_variable_identifiers ::=
block_variable_type {, block_variable_type }

block_variable_type ::=
variable_identifier

| variable_identifier dimension { dimension }
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— Inout arguments

— All data types that can be declared in a procedural block

The second syntax shall begin with the keywordtask, followed by a name for the task and a parenthesis enclo
task_port_list. The task_port_listshall consist of zero or more comma separatedtask_port_items. There shall be a
semicolon after the close parenthesis. The task body shall follow and then the keywordendtask.

In both syntaxes, the declarations have the same syntax as the corresponding declarations in a module defin
12.3.3 and 3.2.2). Tasks without the optional keywordautomatic are static tasks, with all declared items being sta
cally allocated. These items shall be shared across all uses of the task executing concurrently. Task with the
keywordautomatic are automatic tasks. All items declared inside automatic tasks are allocated dynamically fo
invocation. Automatic task items can not be accessed by hierarchical references. Automatic tasks can be
through use of their hierarchical name.

10.2.2 Task enabling and argument passing

The task enabling statement shall pass arguments as a comma-separated list of expressions enclosed in pa
The formal syntax of the task enabling statement is given in Syntax 10-2.

Syntax 10-2—Syntax of the task enabling statement

The list of arguments for a task enabling statement shall be optional. If the list of arguments is provided, the lis
be an ordered list of expressions that has to match the order of the list of arguments in the task definition.

If an argument in the task is declared as aninput , then the corresponding expression can be any expression. The o
of evaluation of the expressions in the argument list is undefined. If the argument is declared as anoutput or aninout,
then the expression shall be restricted to an expression that is valid on the left-hand side of a procedural ass
(see 9.2). The following items satisfy this requirement:

— reg, integer, real, realtime, andtime variables

— Memory references

— Concatenations ofreg, integer, real, realtime andtime variables

— Concatenations of memory references

— Bit-selects and part-selects ofreg, integer, andtime variables

The execution of the task enabling statement shall pass input values from the expressions listed in the enablin
ment to the arguments specified within the task. Execution of the return from the task shall pass values from t
output andinout type arguments to the corresponding variables in the task enabling statement. All arguments
task shall be passed byvalue rather than by reference (that is, apointer to the value).

Examples:

Example 1—The following example illustrates the basic structure of a task definition with five arguments.

task_enable ::=(From Annex A - A.6.9)
hierarchical_task_identifier [( expression {, expression }) ] ;
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Or using the second form of a task declaration, the task could be defined as:

The following statement enables the task:

my_task (v, w, x, y, z);

The task enabling arguments(v, w, x, y, andz) correspond to the arguments(a, b, c, d, ande) defined by
the task. At task enabling time, theinput andinout type arguments(a, b, andc) receive the values passed inv,
w,  andx . Thus, execution of the task enabling call effectively causes the following assignments:

a = v;
b = w;
c = x;

As part of the processing of the task, the task definition formy_task shall place the computed result values intoc ,
d, ande. When the task completes, the following assignments to return the computed values to the calling proc
performed:

x = c;
y = d;
z = e;

Example 2—The following example illustrates the use of tasks by describing a traffic light sequencer:

task my_task;
input  a, b;
inout c;
output d, e;
begin

 . . .  // statements that perform the work of the task
. . .
c = foo1; // the assignments that initialize result regs
d = foo2;
e = foo3;

end
endtask

task my_task; ( input  a, b, inout c, output d, e);
begin

 . . .  // statements that perform the work of the task
. . .
c = foo1; // the assignments that initialize result regs
d = foo2;
e = foo3;

end
endtask
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10.2.3 Task memory usage and concurrent activation

A task may be enabled more than once concurrently. All variables of an automatic task shall be replicated o
concurrent task invocation to store state specific to that invocation. All variables of a static task shall be static
there shall be a single variable corresponding to each declared local variable in a module instance, regardle
number of concurrent activations of the task. However, static tasks in different instances of a module shall hav
rate storage from each other.

Variables declared in static tasks shall retain their values between invocations. They shall be initialized to the
initialization value as described in 3.2.2. Variables declared in automatic tasks shall be initialized to the defa
tialization value whenever execution enters their scope.

Because variables declared in automatic tasks are deallocated at the end of the task invocation, they shall no
in certain constructs that might refer to them after that point.

— They shall not be assigned values using non-blocking assignments or procedural continuous assignm
— They shall not be referenced by procedural continuous assignments or procedural force statements.

module traffic_lights;
reg clock, red, amber, green;
parameter on = 1, off = 0, red_tics = 350,

amber_tics = 30, green_tics = 200;

// initialize colors.
initial  red = off;
initial  amber = off;
initial  green = off;

always begin // sequence to control the lights.
red = on; // turn red light on
light(red, red_tics); // and wait.
green = on; // turn green light on
light(green, green_tics); // and wait.
amber = on; // turn amber light on
light(amber, amber_tics); // and wait.

end

// task to wait for ’tics’ positive edge clocks
// before turning ’color’ light off.
task light;
output color;
input  [31:0] tics;
begin

repeat (tics) @ ( posedge clock);
color = off; // turn light off.

end
endtask

always begin // waveform for the clock.
#100 clock = 0;
#100 clock = 1;

end
endmodule // traffic_lights.
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— They shall not be referenced in intra-assignment event controls of non-blocking assignments.
— They shall not be traced with system tasks such as$monitor and$dumpvars.

10.3 Functions and function calling

The purpose of a function is to return a value that is to be used in an expression. The rest of this clause expla
to define and use functions.

10.3.1 Function declarations

The syntax for defining a function is given in Syntax 10-3.

Syntax 10-3—Syntax for function declaration

A function definition shall begin with the keywordfunction, followed by the optional keywordautomatic, followed

function_declaration ::=(From Annex A - A.2.6)
function [ automatic ] [ signed ] [ range_or_type ]

function_identifier;
function_item_declaration { function_item_declaration }
function_statement

endfunction
| function [ automatic ] [ signed ] [ range_or_type ]

function_identifier( function_port_list ) ;
block_item_declaration { block_item_declaration }
function_statement

endfunction
function_item_declaration ::=

block_item_declaration
| input_declaration

function_port_list ::=
{ attribute_instance } input_declaration {, { attribute_instance }

input_declaration }
range_or_type ::=

range |integer | real | realtime | time
block_item_declaration ::=(From Annex A - A.2.8)

{ attribute_instance } block_reg_declaration
| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration
| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

block_reg_declaration ::=
reg [ signed ] [ range ]
list_of_block_variable_identifiers;

list_of_block_variable_identifiers ::=
block_variable_type {, block_variable_type }

block_variable_type ::=
variable_identifier

| variable_identifier dimension { dimension }
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by the optionalsigneddesignator, followed by the range or type of the return value from the function, followed by
name of the function, and then either a semicolon, or a function port list enclosed in parenthesis, and then a
lon, and then shall end with the keywordendfunction. The use of arange_or_typeshall be optional. A function spec-
ified without a range or type defaults to a one bit reg for the return value. If used,range_or_typeshall specify the
return value of the function is areal , aninteger , a time , arealtime or a value with a range of[n:m] bits. A
function shall have at least one input declared.

The keywordautomatic declares a recursive function with all the function declarations allocated dynamically
each recursive call. Automatic function items can not be accessed by hierarchical references. Automatic functi
be invoked through the use of their hierarchical name.

Function inputs shall be declared one of two ways. The first method shall have the name of the function followe
semicolon. After the semicolon one or more input declarations optionally mixed with block item declarations
follow. After the function item declarations there shall be a behavioral statement and then the endfunctionkeyword.

The second method shall have the name of the function, followed by an open parenthesis, and one or more in
larations, separated by commas. After all the input declarations, there shall be a close parenthesis, and a se
After the semicolon, there shall be zero or more block item declarations, followed by a behavioral statement, a
the endfunctionkeyword.

Example:

The following example defines a function calledgetbyte , using a range specification.

Or using the second form of a function declaration, the function could be defined as:

10.3.2 Returning a value from a function

The function definition shall implicitly declare a variable, internal to the function, with the same name as the
tion. This variable either defaults to a 1-bit reg or is the same type as the type specified in the function decla
The function definition initializes the return value from the function by assigning the function result to the int
variable with the same name as the function.

It is illegal to declare another object with the same name as the function in the scope where the function is de
Inside a function, there is an implied variable with the name of the function, which may be used in expressions
the function. It is, therefore, also illegal to declare another object with the same name as the function inside th
tion scope.

function [7:0] getbyte;
input  [15:0] address;
begin

// code to extract low-order byte from addressed word
. . .
getbyte = result_expression;

end
endfunction

function [7:0] getbyte ( input  [15:0] address);
begin

// code to extract low-order byte from addressed word
. . .
getbyte = result_expression;

end
endfunction
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The following line from the example in 10.3.1 illustrates this concept:

getbyte = result_expression;

10.3.3 Calling a function

A function call is an operand within an expression. The function call has the syntax given in Syntax 10-4.

Syntax 10-4—Syntax for function call

The order of evaluation of the arguments to a function call is undefined.

Example:

The following example creates a word by concatenating the results of two calls to the functiongetbyte (defined in
section 10.3.1):

word = control ? {getbyte(msbyte), getbyte(lsbyte)}:0;

10.3.4 Function rules

Functions are more limited than tasks. The following six rules govern their usage:

a) A function definition shall not contain any time-controlled statements—that is, any statements intro
with #, @, orwait.

b) Functions shall not enable tasks.

c) A function definition shall contain at least one input argument.

d) A function definition shall not have any argument declared as output or inout.

e) A function definition shall include an assignment of the function result value to the internal variable tha
the same name as the function name.

f) A function shall not have any non-blocking assignments.

Example:

This example defines a function calledfactorial that returns an integer value. Thefactorial function is
called iteratively and the results are printed.

function_call ::=(From Annex A - A.8.2)
hierarchical_function_identifier{ attribute_instance }( expression {, expression })
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The simulation results are as follows:

10.3.5 Use of constant functions

Constant function callsare used to support the building of complex calculations of values at elaboration time
12.1.3). Aconstant function callshall be a function invocation of aconstant functionlocal to the calling module
where the arguments to the function areconstant expressions. Constant functionsare a subset of normal Verilog func-
tions that shall meet the following constraints:

— They shall contain no hierarchical references.
— Any function invoked within aconstant functionshall be aconstant functionlocal to the current module. Sys-

tem functions shall not be invoked.
— They shall have no side effects.
— The only system task that may be invoked is$display , and it shall be ignored when invoked at elaboratio

time.
— All parameter values used within the function shall be defined before the use of the invokingconstant function

call (i.e. any parameter use in the evaluation of aconstant function callconstitutes a use of that parameter
the site of the originalconstant function call).

module tryfact;

// define the function
function automatic integer factorial;
input  [31:0] operand;
integer i;
if  (operand >= 2)

factorial = factorial (operand - 1) * operand;
else

factorial = 1;
endfunction

// test the function
integer result;
integer n;
initial begin

for (n = 0; n <= 7; n = n+1) begin
result = factorial(n);
$display("%0d factorial=%0d", n, result);

end
end
endmodule // tryfact

0 factorial=1
1 factorial=1
2 factorial=2
3 factorial=6
4 factorial=24
5 factorial=120
6 factorial=720
7 factorial=5040
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— All identifiers which are not parameters or functions shall be declared locally to the current function.
— If they use any parameter value that is affected directly or indirectly by adefparam statement (see 12.2.1), the

result is undefined. This can produce an error or the constant function can return an indeterminate va
— They shall not be declared inside a generate scope.
— They shall not themselves use constant functions in any context requiring a constant expression.

Constant function callsare evaluated at elaboration time. Their execution has no effect on the initial values o
variables used either at simulation time or among multiple invocations of a function at elaboration time. In e
these cases, the variables are initialized as they would be for normal simulation.

Example:

This example defines a function calledclogb2 that returns an integer which has the value of the ceiling of the
base 2.

An instance of thisram_model  with parameters assigned:

ram_model #(32,421) ram_a0(a_addr,a_wr,a_cs,a_data);

module ram_model (address, write, chip_select, data);
parameter data_width = 8;
parameter ram_depth = 256;
localparam adder_width = clogb2(ram_depth);
input  [adder_width - 1:0] address;
input  write, chip_select;
inout [data_width - 1:0] data;

  //define the clogb2 function
function integer clogb2;

input  depth;
integer i,result;
begin

for  (i = 0; 2 ** i < depth; i = i + 1)
        result = i + 1;
      clogb2 = result;

end
endfunction

    reg    [data_width - 1:0]   data_store[0:ram_depth - 1];
  //the rest to the ram model
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Section 11

Disabling of named blocks and tasks

The disablestatement provides the ability to terminate the activity associated with concurrently active proced
while maintaining the structured nature of Verilog HDL procedural descriptions. The disable statement gives a
anism for terminating a task before it executes all its statements, breaking from a looping statement, or skippin
ments in order to continue with another iteration of a looping statement. It is useful for handling exception cond
such as hardware interrupts and global resets.

The disable statement has the syntax form shown in Syntax 11-1.

Syntax 11-1—Syntax of disable statement

Either form of disable statement shall terminate the activity of a task or a named block. Execution shall resume
statement following the block or following the task enabling statement. All activities enabled within the named
or task shall be terminated as well. If task enable statements are nested—that is, one task enables another
one enables yet another—then disabling a task within the chain shall disable all tasks downward on the cha
task is enabled more than once, then disabling such a task shall disable all activations of the task.

The results of the following activities that may be initiated by a task are not specified if the task is disabled:

— Results of output and inout arguments
— Scheduled, but not executed, nonblocking assignments
— Procedural continuous assignments (assign andforce statements)

The disable statement can be used within blocks and tasks to disable the particular block or task containing
able statement. The disable statement can be used to disable named blocks within a function, but cannot be
disable functions. In cases where a disable statement within a function disables a block or a task that called th
tion, the behavior is undefined. Disabling an automatic task or a block inside an automatic task proceeds as for
tasks for all concurrent executions of the task.

Examples:

Example 1—This example illustrates how a block disables itself.

function_call ::=(From Annex A - A.8.2)
hierarchical_function_identifier{ attribute_instance }( expression {, expression })

begin : block_name
rega = regb;
disable block_name;
regc = rega; // this assignment will never execute

end
Section 11 Copyright 2000 IEEE. All rights reserved. 165
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

a for-

ask dis-
.

ts
block

-

Example 2—This example shows the disable statement being used within a named block in a manner similar to
wardgoto. The next statement executed after the disable statement is the one following the named block.

Example 3—This example shows the disable statement being used as an early return from a task. However, a t
abling itself using a disable statement is not a short-hand for thereturn statement found in programming languages

Example 4—This example shows the disable statement being used in an equivalent way to the two statemencon-
tinueandbreakin the C programming language. The example illustrates control code that would allow a named
to execute until a loop counter reachesn iterations or until the variablea is set to the value ofb. The named block
break contains the code that executes untila == b , at which point thedisable break; statement terminates
execution of that block. The named blockcontinue contains the code that executes for each iteration of thefor
loop. Each time this code executes thedisable continue; statement, thecontinue block terminates and exe-
cution passes to the next iteration of thefo r loop. For each iteration of thecontinue block, a set of statements exe
cutes if(a != 0 ). Another set of statements executesif(a!=b) .

begin : block_name
...
...
if  (a == 0)

disable block_name;
...

end // end of named block
// continue with code following named block

...

task proc_a;
begin

...

...
if  (a == 0)

disable proc_a; // return if true
...
...

end
endtask

begin : break
for  (i = 0; i < n; i = i+1)  begin : continue

@clk
if  (a == 0) // "continue" loop

disable continue;
statements
statements

@clk
if  (a == b) // "break" from loop

disable break;
statements
statements

end
end
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Example 5—This example shows the disable statement being used to disable concurrently a sequence of timi
trols and the taskaction , when thereset event occurs. The example shows afork /join block within which is
a named sequential block (event_expr ) and a disable statement that waits for occurrence of the eventreset . The
sequential block and the wait forreset execute in parallel. Theevent_expr block waits for one occurrence of
eventev1 and three occurrences of eventtrig . When these four events have happened, plus a delay ofd time units,
the taskaction executes. When the eventreset occurs, regardless of events within the sequential block,
fork /join  block terminates—including the taskaction .

Example 6—The next example is a behavioral description of a retriggerable monostable. The named eventretrig
restarts the monostable time period. Ifretrig  continues to occur within 250 time units, thenq will remain at1.

fork
begin : event_expr

@ev1;
repeat (3) @trig;
#d action (areg, breg);

end
@reset disable event_expr;

join

always begin : monostable
#250 q = 0;

end

always @retrig begin
disable monostable;
q = 1;

end
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Section 12

Hierarchical structures

The Verilog HDL supports a hierarchical hardware description structure by allowing modules to be embedded
other modules. Higher-level modules create instances of lower-level modules and communicate with them t
input, output, and bidirectional ports. These module input/output ports can be scalar or vector.

As an example of a module hierarchy, consider a system consisting of printed circuit boards (PCBs). The
would be represented as the top-level module and would create instances of modules that represent the boa
board modules would, in turn, create instances of modules that represent ICs, and the ICs could, in turn
instances of modules such as flip-flops, mux’s, and alu’s.

To describe a hierarchy of modules, the user provides textual definitions of the various modules. Each module
tion stands alone; the definitions are not nested. Statements within the module definitions create instances
modules, thus describing the hierarchy.

12.1 Modules

This clause gives the formal syntax for a module definition and then gives the syntax for module instantiation,
with an example of a module definition and a module instantiation.

A module definition shall be enclosed between the keywordsmodule andendmodule. The identifier following the
keywordmoduleshall be the name of the module being defined. The optional list of parameter definitions shall
ify an ordered list of the parameters for the module. The optional list of ports or port declarations shall spec
ordered list of the ports for the module. The order used used in defining the list of parameters i
module_parameter_port_list and in the list of ports can be significant when instantiating the module (
12.2.2.1 and 12.3.5). The identifiers in this list shall be declared in input, output, and inout statements within th
ule definition. Ports declared in the list of port declarations shall not be redeclared within the body of the modul
module items define what constitutes a module and they include many different types of declarations and defi
many of which have already been introduced.

The keywordmacromodule can be used interchangeably with the keywordmodule to define a module. An imple-
mentation can choose to treat module definitions beginning withmacromodule keyword differently.
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Syntax 12-1—Syntax for module

module_declaration ::=(From Annex A - A.1.3)
{ attribute_instance } module_keyword module_identifier [ module_parameter_port_list ]

[ list_of_ports ]; { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [ module_parameter_port_list ]
[ list_of_port_declarations ]; { non_port_module_item }
endmodule

module_keyword ::=module | macromodule
module_parameter_port_list ::=(From Annex A -A.1.4

# ( parameter_declaration {, parameter_declaration })
list_of_ports ::= ( port { , port } )
list_of_port_declarations ::= ( port_declaration {, port_declaration } ) | ( )
port ::= [ port_expression ] |. port_identifier( [ port_expression ])
port_expression ::= port_reference |{ port_reference {, port_reference }}
port_reference ::= port_identifier | port_identifier[ constant_expression]

| port_identifier[ range_expression]
port_declaration ::= {attribute_instance} inout_declaration

| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

module_item ::= module_or_generate_item(From Annex A - A.1.5)
| port_declaration
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

module_or_generate_item ::= { attribute_instance } module_or_generate_item_declaration
| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct

module_or_generate_item_declaration ::= net_declaration
| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

non_port_module_item ::= { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

parameter_override ::=defparam list_of_param_assignments;
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See 12.3 for the definitions of ports.

12.1.1 Top-level modules

Top-level modules are modules that are included in the source text but are not instantiated, as described in 12.

12.1.2 Module instantiation

Instantiation allows one module to incorporate a copy of another module into itself. Module definitions do no
That is, one module definition shall not contain the text of another module definition within itsmodule-endmodule
keyword pair. A module definition nests another module byinstantiatingit. The module instantiation statementcre-
ates one or more namedinstances of a defined module.

For example, a counter module might instantiate a D flip-flop module to create multiple instances of the flip-fl

Syntax 12-2 gives the syntax for specifying instantiations of modules.

Syntax 12-2—Syntax for module instantiation

The instantiations of modules can contain a range specification. This allows an array of instances to be crea
array of instances are described in 7.1. The syntax and semantics of arrays of instances defined for gates an
tives apply for modules as well.

One or more module instances (identical copies of a module) can be specified in a single module instantiatio
ment.

The list of port connections shall be provided only for modules defined with ports. The parentheses, howev
always required. When a list of port connections is given using the ordered port connection method, the first e

module_instantiation ::=(From Annex A - A.4.1)
module_identifier [ parameter_value_assignment ]

module_instance {, module_instance };
parameter_value_assignment ::=

# ( list_of_parameter_assignments)
list_of_parameter_assignments ::=

ordered_parameter_assignment {, ordered_parameter_assignment }
| named_parameter_assignment   {, named_parameter_assignment }

ordered_parameter_assignment ::=
expression

named_parameter_assignment ::=
. parameter_identifier( [ expression ])

module_instance ::=
name_of_instance( [ list_of_port_connections ])

name_of_instance ::=
module_instance_identifier [ range ]

list_of_port_connections ::=
ordered_port_connection {, ordered_port_connection }

| named_port_connection {, named_port_connection }
ordered_port_connection ::=

{ attribute_instance } [ expression ]
named_port_connection ::=

{ attribute_instance }.port_identifier( [ expression ] )
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in the list shall connect to the first port declared in the module, the second to the second port, and so on. See
a more detailed discussion of ports and port connection rules.

A connection can be a simple reference to a variable or a net identifier, an expression, or a blank. An express
be used for supplying a value to a module input port. A blank port connection shall represent the situation wh
port is not to be connected.

When connecting ports by name, an unconnected port can be indicated either by omitting it in the port list, or b
viding no expression in the parentheses [i.e.,.port_name () ].

Examples:

Example 1—The following example illustrates a circuit (the lower-level module) being driven by a simple wavef
description (the higher-level module) where the circuit module is instantiated inside the waveform module.

Example 2—The following example creates two instances of the flip-flop moduleffnand defined in example 1. It
connects only to theq output in one instance and only to theqbar  output in the other instance.

// Lower level module:
// module description of a nand flip-flop circuit
module ffnand (q, qbar, preset, clear);
output q, qbar; //declares 2 circuit output nets
input  preset, clear; //declares 2 circuit input nets

// declaration of two nand gates and their interconnections
nand g1 (q, qbar, preset),

g2 (qbar, q, clear);
endmodule

// Higher-level module:
// a waveform description for the nand flip-flop
module ffnand_wave;
wire out1, out2; //outputs from the circuit
reg in1, in2; //variables to drive the circuit
parameter d = 10;

// instantiate the circuit ffnand, name it “ff”,
// and specify the IO port interconnections
ffnand ff(out1, out2, in1, in2);

// define the waveform to stimulate the circuit
initial begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule
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12.1.3 Generated instantiation

After a Verilog design has been parsed, but before simulation begins, the design must have the modules being
tiated linked to the modules being defined, the parameters propagated among the various modules, and hie
references resolved.  This phase in understanding a Verilog description is termed elaboration.

Generate instantiations are resolved during elaboration because that is when the parameters associated with
become defined, hence, allowing the definition of the generated statements and declarations. Genvars
defined during the evaluation of the generate instantiations and do not exist during simulation of a design.

Generate statements facilitate the creation of parameterized models. When used with constant functions (see
parameters can be used to constrain other parameter(s) or localparam(s) in a generated design.

All generate instantiations are coded within a module scope and require the keywordsgenerate - endgenerate.

Generate statements allow control over the declaration of variables, functions and tasks, as well as contr
instantiations. Generated instantiations are one or more: modules, user defined primitives, Verilog gate prim
continuous assignments, initial blocks and always blocks. Generated declarations and instantiations can be co
ally instantiated into a design. Generated variable declarations and instantiations can be multiply instantiate
design. Generated instances have unique identifier names and can be referenced hierarchically as described

To support the interconnection between structural elements and/or procedural blocks, generate statements p
following Verilog data types to be declared within the generate scope:net, reg, integer, real, time, realtime, and
event. Generated data types have unique identifier names and can be referenced hierarchically as described

Parameter redefinition using by the ordered or namedparameter = value assignment ordefparam state-
ments can also be declared within the generate scope. However, adefparam statement within the generate scope o
within a hierarchy instantiated within the generate scope shall only modify the value of a parameter declared
the generate scope or within a hierarchy instantiated within the generate scope.

Tasks and functions declarations shall also be permitted within the generate scope, however not in a genera
Generated tasks and functions shall have unique identifier names and may be referenced hierarchically as des
12.4.

// a waveform description for testing
// the nand flip-flop, without the output ports
module ffnand_wave;
reg in1, in2; //variables to drive the circuit
parameter d = 10;
// make two copies of the circuit ffnand
// ff1 has qbar unconnected, ff2 has q unconnected
ffnand ff1(out1, , in1, in2),

 ff2(.qbar(out2), .clear(in2), .preset(in1), .q());
// ff3(.q(out3),.clear(in1),,,); is illegal

// define the waveform to stimulate the circuit
initial begin

#d in1 = 0; in2 = 1;
#d in1 = 1;
#d in2 = 0;
#d in2 = 1;

end
endmodule
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Module declarations and module items that shall not be permitted in a generate statement include: paramete
parameters, input declarations, output declarations, inout declarations and specify blocks.

Connections to generated module instances are handled the same way as they are handled with norma
instances as described in 12.1.2.

Generated statements are created using one of the following three methods: generate-loop, generate-condi
generate-case.

The syntax for generate instantiations is given in Syntax 12-3.
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Syntax 12-3—Syntax for generate blocks

module_item ::=(From Annex A - A.1.5)
module_or_generate_item

| port_declaration
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct

module_or_generate_item_declaration ::=
net_declaration

| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

generated_instantiation ::=(From Annex A -A.4.2)
generate { generate_item }endgenerate

generate_item_or_null ::=
generate_item |;

generate_item ::=
generate_conditional_statement

| generate_case_statement
| generate_loop_statement
| generate_block
| module_or_generate_item

generate_conditional_statement ::=
if (  constant_expression) generate_item_or_null  [else generate_item_or_null ]

generate_case_statement ::=case (constant_expression)
genvar_case_item { genvar_case_item }endcase

genvar_case_item ::=  constant_expression  {, constant_expression } :
generate_item_or_null  |default [ : ] generate_item_or_null

generate_loop_statement ::=
for (  genvar_assignment; constant_expression; genvar_assignment)

begin : generate_block_identifier { generate_item }end
genvar_assignment ::=

genvar_identifier= constant_expression
generate_block ::=

begin [ : generate_block_identifier ]  { generate_item }end
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12.1.3.1 genvar - generate statement index variable

An index variable that shall only be declared for use in generate statements shall be declared as agenvarand is
referred to as agenvar in the rest of this section.

The syntax for generate statement index variable declarations is given in Syntax 12-4.

Syntax 12-4—Syntax for generate statement index variable declaration

A genvarshall be declared within the module where the genvar is used. A genvar can be declared either inside
side of a generate scope. A genvar is a positive integer that is local to and shall only be used within a genera
that uses it as an index variable.

Genvars are only defined during the evaluation of the generate blocks (see 12.1.3), and do not exist during sim
of a Verilog design.

The value of a genvar shall only be defined by a generate loop. Two generate loops using the same genvar as
variable shall not be nested. The value of a genvar can be referenced in any context where the value of a pa
could be referenced.

12.1.3.2 generate-loop

A generate-loop permits one or more variable declarations, modules, user defined primitives, gate primitives,
uous assignments, initial blocks and always blocks to be instantiated multiple times using a for-loop. The inde
variable used in a generate for-loop shall be declared as a genvar. Both genvar assignments in the for-loop sha
to the same genvar, which is the loop index variable.

Examples:

Example 1—A parameterized gray-code to binary-code converter module using a loop to generate continuous
ments

genvar_declaration ::=(From Annex A - A.2.1.3
genvar list_of_genvar_identifiers;

list_of_genvar_identifiers ::=(From Annex A - A.2.3)
genvar_identifier {, genvar_identifier }

module gray2bin1 (bin, gray);
parameter SIZE = 8;      // this module is parameterizable
output [SIZE-1:0] bin;
input   [SIZE-1:0] gray;

genvar i;

generate for (i=0; i<SIZE; i=i+1) begin:bit
assign bin[i] = ^gray[SIZE-1:i];

end endgenerate
endmodule
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Example 2—The same gray-code to binary-code converter module in example 1 is built using a loop to ge
always blocks

The models in examples 3 and 4 are parameterized modules of ripple adders using a loop to generate Veri
primitives. Example 3 uses a two dimensional net declaration outside of the generate loop to make the conn
between the gate primitives while example 4 makes the net declaration inside of the generate loop to gene
wires needed to connect the gate primitives for each iteration of the loop.

module gray2bin2 (bin, gray);
parameter SIZE = 8;      // this module is parameterizable
output [SIZE-1:0] bin;
input   [SIZE-1:0] gray;
reg    [SIZE-1:0] bin;

genvar i;

generate for (i=0; i<SIZE; i=i+1) begin:bit
always @(gray[SIZE-1:i]) // fixed part select

        bin[i] = ^gray[SIZE-1:i];
end endgenerate

endmodule
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Example 3—Generated ripple adder with two-dimensional net declaration outside of the generate loop

module addergen1 (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;
output            co;
input   [SIZE-1:0] a, b;
input              ci;
wire   [SIZE  :0] c;
wire   [SIZE-1:0] t [1:3];
genvar            i;

assign c[0] = ci;

  // Generated instance names are:
  // xor gates: bit[0].g1 bit[1].g1 bit[2].g1 bit[3].g1
  //            bit[0].g2 bit[1].g2 bit[2].g2 bit[3].g2
  // and gates: bit[0].g3 bit[1].g3 bit[2].g3 bit[3].g3
  //            bit[0].g4 bit[1].g4 bit[2].g4 bit[3].g4
  // or  gates: bit[0].g5 bit[1].g5 bit[2].g5 bit[3].g5
  // Generated instances are connected with
  // multi-dimensional nets t[1][3:0] t[2][3:0] t[3][3:0]
  // (12 multi-dimensional nets total)

generate
for (i=0; i<SIZE; i=i+1) begin:bit

xor g1 ( t[1][i],    a[i],    b[i]);
xor g2 (  sum[i], t[1][i],    c[i]);
and g3 ( t[2][i],    a[i],    b[i]);
and g4 ( t[3][i], t[1][i],    c[i]);
or  g5 (  c[i+1], t[2][i], t[3][i]);

end
endgenerate

assign co = c[SIZE];
endmodule
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Example 4—Generated ripple adder with net declaration inside of the generate loop

The generated instance names in a multi-level generate loop are shown in example 5. The generated nam
scope at each generate loop is created by adding the "[genvar’s value]" string to the end of the generate bloc
fier for the loop. The generated names are now generated identifiers (see 2.7.2) which can be used in hier
path names (see 12.4).

module addergen1 (co, sum, a, b, ci);
parameter SIZE = 4;
output [SIZE-1:0] sum;
output            co;
input   [SIZE-1:0] a, b;
input              ci;
wire   [SIZE  :0] c;

genvar            i;

assign c[0] = ci;

  // Generated instance names are:
  // xor gates: bit[0].g1 bit[1].g1 bit[2].g1 bit[3].g1
  //            bit[0].g2 bit[1].g2 bit[2].g2 bit[3].g2
  // and gates: bit[0].g3 bit[1].g3 bit[2].g3 bit[3].g3
  //            bit[0].g4 bit[1].g4 bit[2].g4 bit[3].g4
  // or  gates: bit[0].g5 bit[1].g5 bit[2].g5 bit[3].g5
  // Generated instances are connected with
  // generated nets: bit[0].t1 bit[1].t1 bit[2].t1 bit[3].t1
  //                 bit[0].t2 bit[1].t2 bit[2].t2 bit[3].t2
  //                 bit[0].t3 bit[1].t3 bit[2].t3 bit[3].t3

generate
for (i=0; i<SIZE; i=i+1) begin:bit

wire   t1, t2, t3; // generated net declaration

xor g1 (     t1, a[i], b[i]);
xor g2 ( sum[i],   t1, c[i]);
and g3 (     t2, a[i], b[i]);
and g4 (     t3,   t1, c[i]);
or  g5 ( c[i+1],   t2,   t3);

end
endgenerate

assign co = c[SIZE];
endmodule
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Example 5—A multi-level generate loop

12.1.3.3 generate-conditional

A generate-conditional is an if-else-if generate construct that permits modules, user defined primitives, Verilo
primitives, continuous assignments, initial blocks and always blocks to be conditionally instantiated into an
module based on an expression that is deterministic at the time the design is elaborated.

Example 6 shows the implementation of a parameterized module. If either of the multiplier’sa_width or b_width
parameters are less than 8 (bits), a CLA multiplier is instantiated. If both of the multiplier’sa_width or b_width
parameters are greater than or equal to 8 (bits), a Wallace tree multiplier is instantiated.

parameter SIZE = 2;
genvar            i, j, k, m;
generate

for  (i=0; i<SIZE+1; i=i+1) begin:B1 // scope B1[i]
    M1 N1(); // instantiates B1[i].N1[i]

for  (j=0; j<SIZE; j=j+1) begin:B2 // scope B1[i].B2[j]
      M2 N2(); // instantiates B1[i].B2[j].N2

for  (k=0; k<SIZE; k=k+1) begin:B3 // scope B1[i].B2[j].B3[k]
        M3 N3(); // instantiates B1[i].B2[j].B3[k].N3

end
end
if  (i>0)

for  (m=0; m<SIZE; m=m+1) begin:B4 // scope B1[i].B4[m]
        M4 N4(); // instantiates B1[i].B4[m].N4

end
end

endgenerate

  // some of the generated instance names are:
  // B1[0].N1  B1[1].N1
  // B1[0].B2[0].N2  B1[0].B2[1].N2
  // B1[0].B2[0].B3[0].N3  B1[0].B2[0].B3[1].N3
  //    B1[0].B2[1].B3[0].N3
  // B1[1].B4[0].N4  B1[1].B4[1].N4
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Example 6—An implementation of a parameterized multiplier module

12.1.3.4 generate-case

A generate case construct permits modules, user defined primitives, Verilog gate primitives, continuous assig
initial blocks and always blocks to be conditionally instantiated into another module based on a select one-o
case construct. The selecting case expression must be deterministic at the time the design is elaborated.

Example 7—Generate with a case to handle widths less that 3

module multiplier(a,b,product);
parameter a_width = 8, b_width = 8;
localparam product_width = a_width+b_width; // can not be modified
// directly with the defparam statement
// or the module instance statement #
input     [a_width-1:0]    a;
input     [b_width-1:0]    b;
output   [product_width-1:0]    product;

generate
if ((a_width < 8) || (b_width < 8))

    CLA_multiplier #(a_width,b_width) u1(a, b, product);
    // instance a CLA  multiplier

else
    WALLACE_multiplier #(a_width,b_width) u1(a, b, product);
    // instance a Wallace-tree  multiplier
endgenerate
// The generated instance name is u1

endmodule

generate
case (WIDTH)

    1:  adder_1bit x1(co, sum, a, b, ci);
// 1-bit adder implementation
    2:  adder_2bit x1(co, sum, a, b, ci);
// 2-bit adder implementation

default: adder_cla #(WIDTH) x1(co, sum, a, b, ci);
// others - carry look-ahead adder

endcase
// The generated instance name is x1

endgenerate
Section 12 Copyright 2000 IEEE. All rights reserved. 181
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON
Example 8—A module of memory dimm

module dimm;
parameter [31:0] MEM_SIZE  = 8, // in mbytes

                  MEM_WIDTH = 16;
input  [11:0] adr;
input  [1:0]  ba;
input         rasx, casx, csx, wex;
input  [7:0]  dqm;
input         cke;
input  [7:0]  ds;
inout [63:0] data;
input  [3:0]  clk;

wire         rasb, casb, csb, web;
wire [7:0]   bex;

genvar i;

generate
case ({MEM_SIZE, MEM_WIDTH})

         {32’d8, 32’d16}: // 8Meg 16 bits wide.
begin
for  (i=0;i<4;i = i + 1)

begin:word
             sms_16b216t0 p
               (.clk(clk), .csb(csx), .cke(cke), .ba(ba[0]),
                .addr(adr[10:0]),...rasb(rasx), .casb(casx),
                .web(wex),.udqm(dqm[2*i+1]), .ldqm(dqm[2*i]),
                ...dqi(data[15+16*i:16*i]), .dev_id(dev_id3[4:0])
               );

end
task read_mem;

input  [31:0] address;
output [63:0] data;
begin

             word[3].p.read_mem(address, data[63:48]);
             word[2].p.read_mem(address, data[47:32]);
             word[1].p.read_mem(address, data[31:16]);
             word[0].p.read_mem(address, data[15:0]);

end
endtask
end
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12.2 Overriding module parameter values

There are two different ways that parameters can be defined. This first in themodule_parameter_port_list(see 12.1),
and the second is as amodule_item(see 3.11). A module declaration can contain parameter definitions of eithe
both types, or no parameter definitions.

A module parameter can have a type specification and a range specification. The effect of parameter overrid
parameter’s type and range shall be in accordance with the following rules:

— A parameter declaration with no type or range specification shall default to the type and range of th
override value assigned to the parameter.

— A parameter with a range specification, but with no type specification, shall be the range of the paramet
laration and shall be unsigned. An override value shall be converted to the type and range of the para

— A parameter with a type specification, but with no range specification, shall be of the type specified. An
ride value shall be converted to the type of the parameter. A signed parameter shall default to the rang
final override value assigned to the parameter.

// The generated instance names are word[3].p, word[2].p,
// word[1].p, word[0].p, and the task read_mem
         {32’d16, 32’d8}: // 16Meg 8 bits wide.

begin
for  (i=0;i<4;i = i + 1)

begin:byte
             sms_16b208t0 p
               (.clk(clk), .csb(csx), .cke(cke), .ba(ba[0]),
                .addr(adr[10:0]),

...rasb(rasx), .casb(casx), .web(wex), .dqm(dqm[i]),
                .dqi(data[8+8*i:8*i]),...dev_id(dev_id7[4:0])
               );

end
task read_mem;

input  [31:0] address;
output [63:0] data;
begin

             byte[7].p.read_mem(address, data[63:56]);
             byte[6].p.read_mem(address, data[55:48]);
             byte[5].p.read_mem(address, data[47:40]);
             byte[4].p.read_mem(address, data[39:32]);
             byte[3].p.read_mem(address, data[31:24]);
             byte[2].p.read_mem(address, data[23:16]);
             byte[1].p.read_mem(address, data[15:8]);
             byte[0].p.read_mem(address, data[7:0]);

end
endtask

        .....
endcase

endgenerate
  // The generated instance names are byte[7].p, byte[6].p,
  // byte[5].p, byte[4].p, byte[3].p, byte[2].p, byte[1].p,
  // byte[0].p and the task read_mem

endmodule
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tination,
— A parameter with a signed type specification and with a range specification shall be a signed, and shal
range of its declaration. An override value shall be converted to the type and range of the parameter.

Examples:

module generic_fifo
#(parameter MSB=3, LSB=0, DEPTH=4) // These parameters can be overridden

   (
input  [MSB:LSB] in,
input  clk, read, write, reset,
output [MSB:LSB] out,
output full, empty

   );

localparam FIFO_MSB = DEPTH*MSB; // These parameters are local, and
localparam FIFO_LSB = LSB;       // cannot be overridden. They can be

                                  // affected by altering the public
                                  // parameters above, and the module
                                  // will work correctly.

reg [FIFO_MSB:FIFO_LSB] fifo;
reg [LOG2(DEPTH):0] depth;

always @( posedge clk or reset) begin
casex ({read,write,reset})

      // implementation of fifo
endcase

end
endmodule

There are two ways to alter non-local parameter values: thedefparam statement, which allows assignment to parame
ters using their hierarchical names, and themodule instance parameter value assignment, which allows values to be
assigned inline during module instantiation. If a defparam assignment conflicts with a module instance parame
parameter in the module will take the value specified by the defparam. The module instance parameter value
ment comes in two forms, by ordered list or by name. The next two subclauses describe these two methods.

There are two kinds of parameter declarations. The first kind of parameter declaration has a type and or range
cation, and second does not. When an untyped and unranged parameter’s value is overridden, the paramete
the size and type of the override.

When a typed and/or ranged parameter is overriden, the new value is converted to the type and size of the des
and assigned to that parameter.

Example:

module foo(a,b);
real r1,r2;
parameter [2:0] A = 3’h2;
parameter B = 3’h2;
initial begin

      r1 = A;
      r2 = B;

$display("r1 is %f r2 is %f",r1,r2);
end

endmodule // foo
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module bar;
wire a,b;
defparam f1.A = 3.1415;
defparam f1.B = 3.1415;

   foo f1(a,b);
endmodule // bar

ParameterA is a typed and/or ranged parameter, so when its value is redefined, the parameter retains its origin
and sign. Therefore, the defparam off1.A with the value 3.1415 is performed by converting the floating point nu
ber 3.1415 into a fixed point number ’3’ and then the low 3 bits of 3 are assigned toA.

ParameterB is not a typed and/or ranged parameter, so when its value is redefined, the parameter type and ran
on the type and range of the new value. Therefore, the defparam off1.B with the value 3.1415 replacesB’s current
value of 3’h2 with the floating point number 3.1415.

12.2.1 defparam statement

Using thedefparam statement, parameter values can be changed in any module instance throughout the design
the hierarchical name of the parameter. However, a defparam statement in a hierarchy under a generate scop
of instances shall not change a parameter value outside that hierarchy. See 12.4 for hierarchical names.

The expression on the right-hand side of the defparam assignments shall be a constant expression involv
numbers and references to parameters. The referenced parameters (on the right-hand side of thedefparam) shall be
declared in the same module as the defparam statement.

The defparam statement is particularly useful for grouping all of the parameter value override assignments tog
one module.

In the case of multiple defparams for a single parameter, the parameter takes the value of the last defparam s
encountered in the source text. When defparams are encountered in multiple source files, e.g., found by
searching, the defparam from which the parameter takes it’s value is undefined.
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Example:

The moduleannotate has thedefparam statement which overridessize and delay parameter values for
instancesm1andm2in the top-level moduletop . The modulestop andannotate would both be considered top-
level modules.

12.2.2 Module instance parameter value assignment

An alternative method for assigning values to parameters within module instances is to use one of the two fo
module instance parameter value assignment. They are assignment by ordered list and assignment by name
types of module instance parameter value assignment shall not be mixed; parameter assignments to a particu
ule instance shall be entirely by order or entirely by name.

Module instance parameter value assignment by ordered list is similar in appearance to the assignment of de
ues to gate instances and assignment by name is similar to connecting module ports by name. It supplies va
particular instances of a module to any parameters that have been specified in the definition of that module.

12.2.2.1 Parameter value assignment by ordered list

The order of the assignments in the module instance parameter value assignment by ordered list shall follow th
of declaration of the parameters within the module. It is not necessary to assign values to all of the parameter
a module when using this method. However, it is not possible to skip over a parameter. Therefore, to assign v
a subset of the parameters declared within a module, the declarations of the parameters that make up this su

module top;
reg clk;
reg [0:4] in1;
reg [0:9] in2;
wire [0:4] o1;
wire [0:9] o2;

vdff m1 (o1, in1, clk);
vdff m2 (o2, in2, clk);
endmodule

module vdff (out, in, clk);
parameter size = 1, delay = 1;
input  [0:size-1] in;
input  clk;
output [0:size-1] out;
reg [0:size-1] out;

always @( posedge clk)
# delay out = in;

endmodule

module annotate;
defparam

top.m1.size = 5,
top.m1.delay = 10,
top.m2.size = 10,
top.m2.delay = 20;

endmodule
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precede the declarations of the remaining parameters. An alternative is to assign values to all of the paramete
use the default value (the same value assigned in the declaration of the parameter within the module definit
those parameters that do not need new values.

Example:

Consider the following example, where the parameters within module instancemod_a are changed during instantia
tion.

In this example, the name of the module being instantiated isvdff . The construct#(10,15) assigns values to
parameters used in themod_a instance ofvdff . The parametersize is assigned the value 10 and the parame
delay is assigned the value 15 for the instance of modulevdff calledmod_a. The construct#(.delay(12))
assigns the parameterdelay  the value 12 in the instance of modulevdff  calledmod_c.

12.2.2.2 Parameter value assignment by name

Parameter assignment by name consists of explicitly linking the parameter name and it's new value. The nam
parameter shall be the name specified in the instantiated module.

It is not necessary to assign values to all of the parameters within a module when using this method. Only
parameters that are assigned new values need to be specified.

The parameter expression is optional so that the instantiating module can document the existence of a parame
out assigning anything to it. The parentheses are required and in this case the parameter retains its default val
a parameter is assigned a value, there shall not be another assignment to this parameter name.

module m;
reg clk;
wire [0:4] out_c, in_c;
wire[1:10] out_a, in_a;
wire[1:5] out_b, in_b;

// create an instance and set parameters
vdff #(10,15) mod_a(out_a, in_a, clk);
// create an instance leaving default values
vdff mod_b(out_b, in_b, clk);
// create an instance and set one parameter
vdff #(.delay(12)) mod_c(out_c, in_c, clk);
endmodule

module vdff (out, in, clk);
parameter size = 5, delay = 1;
input  [0:size-1] in;
input  clk;
output [0:size-1] out;
reg [0:size-1] out;

always @( posedge clk)
# delay out = in;

endmodule
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12.2.3 Parameter dependence

A parameter (for example,memory_size ) can be defined with an expression containing another parameter
example, word_size ). Since memory_size depends on the value ofword_size , a modification of
word_size changes the value ofmemory_size . For example, in the following parameter declaration, an upd
of word_size , whether by defparam statement or in an instantiation statement for the module that defined
parameters, automatically updatesmemory_size.

parameter
    word_size = 32,
    memory_size = word_size * 4096;

12.3 Ports

Ports provide a means of interconnecting a hardware description consisting of modules, primitives, and mac
ules. For example, module A can instantiate module B, using port connections appropriate to module A. The
names can differ from the names of the internal nets and variables specified in the definition of module B.

12.3.1 Port definition

The syntax for ports and a list of ports is given in Syntax 12-5.

Syntax 12-5—Syntax for port

12.3.2 List of ports

The port reference for each port in the list of ports at the top of each module declaration can be one of the fo

— A simple identifier or escaped identifier
— A bit-select of a vector declared within the module
— A part-select of a vector declared within the module
— A concatenation of any of the above

list_of_ports ::=(From Annex A - A.1.4)
( port { , port } )

list_of_port_declarations ::=
( port_declaration {, port_declaration } )

| ( )
port ::=

[ port_expression ]
| . port_identifier( [ port_expression ])

port_expression ::=
port_reference

| { port_reference {, port_reference }}
port_reference ::=

port_identifier
| port_identifier[ constant_expression]
| port_identifier[ range_expression]

port_declaration ::=
{attribute_instance} inout_declaration

| {attribute_instance} input_declaration
| {attribute_instance} output_declaration
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The port expression is optional because ports can be defined that do not connect to anything internal to the
Once a port has been defined, there shall not be another port definition with this same name.

The first type of module port with only aport_expression is an implicit port. The second type is the explici
port. This explicitly specifies theport_identifier used for connecting module instance ports by name (s
12.3.6) and theport_expression which contains identifiers declared inside the module as described in 12
Use of named port connections shall not be used for implicit ports unless theport_expressionis a simple
port_identifier .

12.3.3 Port declarations

Eachport_expressionin the list of ports for the module declaration shall also be declared in the body of the modu
one of the following port declarations:input , output, or inout (bidirectional). This is in addition to any other data
type declaration for a particular port— for example, areg or wire. The syntax for port declarations is given in
Syntax 12-6.

Syntax 12-6—Syntax for port declarations

If a port declaration includes a net or variable type, then the port is considered completely declared and it is a
for the port to be declared again as a variable or net data type declaration. Because of this, all other aspects o
shall be declared in such a port declaration, including the signed and range definitions if needed.

If a port declaration does not include a net or variable type, then the port can be again declared in a net or v
declaration. If the net or variable is declared as a vector, the range specification between the two declarations
shall be identical. Once a name is used in a port declaration it shall not be declared again in another port dec
or in a data type declaration.

NOTE—Implementations may limit maximum number of ports in a module definition, but they will at least be 256.

Example:

input   aport;    // First declaration - okay.
input   aport;    // Error - multiple declaration, port declaration
output aport;    // Error - multiple declaration, port declaration

The signed attribute can be attached either to a port declaration or to the corresponding net or reg declaratio

inout_declaration ::=(From Annex A - A.2.1.2)
inout [ net_type ] [signed ] [ range ] list_of_port_identifiers;

input_declaration ::=
input  [ net_type ] [signed ] [ range ] list_of_port_identifiers;

output_declaration ::=
output [ net_type ] [signed ] [ range ]

list_of_port_identifiers;
| output [ reg ] [ signed ] [ range ]

list_of_port_identifiers;
| output reg [ signed ] [ range ]

list_of_variable_port_identifiers;
| output [ output_variable_type ]

list_of_port_identifiers;
| output output_variable_type

list_of_variable_port_identifiers;
list_of_port_identifiers ::=(From Annex A - A.2.3)

port_identifier { , port_identifier }
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both. If either the port or the net/reg is declared as signed, then the other shall also be considered signed.

Implicit nets shall be considered unsigned. Nets connected to ports without an explicit net declaration shall be
ered unsigned, unless the port is declared as signed.

Example:

module test(a,b,c,d,e,f,g,h);
input  [7:0] a; // no explicit declaration - net is unsigned
input  [7:0] b;
input signed [7:0] c;
input signed [7:0] d; // no explicit net declaration - net is signed
output [7:0] e; // no explicit declaration - net is unsigned
output [7:0] f;
output signed [7:0] g;
output signed [7:0] h; // no explicit net declaration - net is signed

wire signed [7:0] b; // port b inherits signed attribute from net decl.
wire [7:0] c; // net c inherits signed attribute from port
reg signed [7:0] f; // port f inherits signed attribute from reg decl.
reg [7:0] g; // reg g inherits signed attribute from port

endmodule

module complex_ports ({c,d}, .e(f));  // Nets {c,d} receive the first
                  // port bits. Name ’f’ is declared inside the module.
                  // Name ’e’ is defined outside the module.
                  // Can’t use named port connections of first port.

module split_ports (a[7:4], a[3:0]);   // First port is upper 4 bits of
                  // ’a’.
                  // Second port is lower 4 bits of ’a’.
                  // Can’t use named port connections because
                  // of part-select port ’a’.

module same_port (.a(i), .b(i)); // Name ’i’ is declared inside the
                  // module as a inout port. Names ’a’ and ’b’ are
                  // defined for port connections.

module renamed_concat (.a({b,c}), f, .g(h[1]));
// Names ’b’, ’c’, ’f’, ’h’ are defined inside the module.

                // Names ’a’, ’f’, ’g’ are defined for port connections.
                // Can use named port connections.

module same_input (a,a);
input  a;         // This is legal. The inputs are ored together.

12.3.4 Lists of ports declarations

An alternate syntax which minimizes the duplication of data can be used to specify the ports of a module. M
shall either be declared entirely with the list of ports syntax as described in 12.3.2 or entirely usin
list_of_port_declarations as described in this section.

Each declared port provides the complete information about the port. The port’s direction, width, net, or va
type, and whether the port is signed or unsigned is completely described. The same syntax for input, inout, and
declarations is used in the module header as would be used for the list of port style declaration, exce
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list_of_port_declarationsis included in the module header rather than separately (after the; which terminates the
module header).

As an example, the module named test given in the previous example could alternatively be declared as:

Example:

module test (
input  [7:0] a,
input signed [7:0] b, c, d, // multiple ports that share all

                            //  attributes can be declared together
output [7:0] e,           // every attribute of the declaration

                            //  must be in the one declaration
output signed reg  [7:0] f, g,
output signed  [7:0] h) ;

     // It is illegal to redeclare any ports of the module in the body
     // of the module.
endmodule

Theport_referencetype of module port declaration shall not be done usinglist_of_port_declarationsstyle of module
declarations. Also ports declared using thelist_of_port_declarationsshall only be simple identifiers. They shall no
be bit-selects, part-selects, or concatenations (as in the examplecomplex_ports ); nor can a port be split (as in the
examplesplit_ports ); nor can they be named ports (as in the examplesame_port ).

Designs may freely mix modules declared using each syntax; hence implementations desiring the above spec
of port declaration can be done using the firstlist_of_ports  syntax.

12.3.5 Connecting module instance ports by ordered list

One method of making the connection between the port expressions listed in a module instantiation and th
declared within the instantiated module is the ordered list—that is, the ports expressions listed for the m
instance shall be in the same order as the ports listed in the module declaration.

Example:

The following example illustrates a top-level module (topmod ) that instantiates a second module (modB). Module
modB has ports that are connected by an ordered list. The connections made are as follows:

— Portwa in themodB definition connects to the bit-selectv[0] in thetopmod  module.
— Portwb connects tov[3] .
— Portc  connects tow.
— Portd connects tov[4] .

In themodB definition, ports wa  andwb are declared asinouts  while portsc andd are declared asinput .
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During simulation of theb1 instance ofmodb, theand gateg2 activates first to produce a value onint . This value
triggers thenot gaten1  to produce output oncinvert , which then activates thetranif1  gateg1 .

12.3.6 Connecting module instance ports by name

The second way to connect module ports consists of explicitly linking the two names for each side of the conn
the port declaration name from the module declaration to the expression — the name used in the module dec
followed by the name used in the instantiating module. This compound name is then placed in the list of modu
nections. The port name shall be the name specified in the module declaration. The port name cannot be a bit-
part-select, or a concatenation of ports. If the module port declaration was implicit, theport_expression shall
be a simpleport_identifer which is used as the port name. If the module port declaration was explicit,
explicit name is used as the name of port.

The port expression can be any valid expression.

The port expression is optional so that the instantiating module can document the existence of the port witho
necting it to anything. The parentheses are required.

The two types of module port connections shall not be mixed; connections to the ports of a particular module in
shall be all by order or all by name.

Examples:

Example 1—In the following example, the instantiating module connects its signalstopA andtopB to the portsIn1
andOut defined by the moduleALPHA. At least one port provided byALPHAis unused; it is namedIn2 . There
could be other unused ports not mentioned in the instantiation.

ALPHA instance1 (.Out(topB),.In1(topA),.In2());

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (v[0], v[3], w, v[4]);
endmodule

module modB (wa, wb, c, d);
inout wa, wb;
input  c, d;

tranif1 g1 (wa, wb, cinvert);
not #(2, 6) n1 (cinvert, int);
and #(6, 5) g2 (int, c, d);

endmodule
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Example 2—This example defines the modulesmodBandtopmod , and thentopmod instantiatesmodBusing ports
connected by name.

Since these connections are made by name, the order in which they appear is irrelevant.

Multiple module instance port connections are not allowed, e.g., the following example is illegal:

Example 3—This example shows illegal port connections.

module test;
a ia (.i (a), .i (b), // illegal connection of input port twice.

.o (c), .o (d), // illegal connection of output port twice.

.e (e), .e (f)); // illegal connection of inout port twice.
endmodule

12.3.7 Real numbers in port connections

Thereal data type shall not be directly connected to a port. It shall be connected indirectly, as shown in the fo
ing example. The system functions$realtobits and$bitstoreal shall be used for passing the bit patterns across m
ule ports. (See 17.8 for a description of these system tasks.)

module topmod;
wire [4:0] v;
wire a,b,c,w;

modB b1 (.wb(v[3]),.wa(v[0]),.d(v[4]),.c(w));
endmodule

module modB(wa, wb, c, d);
inout wa, wb;
input  c, d;

tranif1 g1(wa, wb, cinvert);
not #(6, 2) n1(cinvert, int);
and #(5, 6) g2(int, c, d);

endmodule
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Example:

12.3.8 Connecting dissimilar ports

A port of a module can be viewed as providing a link or connection between two items (nets, regs, expre
etc.)—one internal to the module instance and one external to the module instance.

Examination of the port connection rules described in 12.3.9 will show that the item receiving the value throu
port (the internal item for inputs, the external item for outputs) shall be a structural net expression. The item th
vides the value can be any expression.

NOTE—A port that is declared as input (output) but used as an output (input) or inout may be coerced to inout. If not coe
inout, a warning has to be issued.

12.3.9 Port connection rules

The following rules shall govern the way module ports are declared and the way they are interconnected.

12.3.9.1 Rule 1

An input or inout port shall be of type net.

12.3.9.2 Rule 2

Each port connection shall be a continuous assignment of source to sink, where one connected item shall be
source and the other shall be a signal sink. The assignment shall be a continuous assignment from source to
input or output ports. The assignment is a nonstrength reducing transistor connection for inout ports. Only
structural net expressions shall be the sinks in an assignment.

A structural net expression is a port expression whose operands can be the following:

— A scalar net
— A vector net
— A constant bit-select of a vector net
— A part-select of a vector net
— A concatenation of structural net expressions

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);

endmodule

module receiver (net_r);
input  net_r;
wire [64:1] net_r;
real r;

initial assign r = $bitstoreal(net_r);

endmodule
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The following external items shall not be connected to the output or inout ports of modules:

— Variables
— Expressions other than

i) A scalar net

ii) A vector net

iii) A constant bit-select of a vector net

iv) A part-select of a vector net

v) A concatenation of the expressions listed above

12.3.10 Net types resulting from dissimilar port connections

When different net types are connected through a module port, the nets on both sides of the port can take on t
type. The resulting net type can be determined as shown in Table 12-1. In the table,external netmeans the net speci-
fied in the module instantiation, andinternal netmeans the net specified in the module definition. The net whose t
is used is said to be thedominating net. The net whose type is changed is said to be thedominated net. It is permissi-
ble to merge the dominating and dominated nets into a single net, whose type shall be that of the dominating n
resulting net is called thesimulated net, and the dominated net is called acollapsed net.

The simulated net shall take the delay specified for the dominating net. If the dominating net is of the typetrireg , any
strength value specified for the trireg net shall apply to the simulated net.

12.3.10.1 Net type resolution rule

When the two nets connected by a port are of different net type, the resulting single net can be assigned one o
lowing:

— The dominating net type if one of the two nets is dominating,or
— The net type external to the module

When a dominating net type does not exist, the external net type shall be used.

12.3.10.2 Net type table

Table 12-1 shows the net type dictated by net type resolution rule.

The simulated net shall take the net type specified in the table and the delay specified for that net. If the simula
selected is atrireg , any strength value specified for the trireg net applies to the simulated net.

Table 12-1—Net types resulting from dissimilar port connections

Internal
net

External net

wire,
 tri

wand,
 triand

wor,
trior trireg tri0 tri1 supply0 supply1

wire,
tri

ext ext ext ext ext ext ext ext

wand,
triand

int ext warn warn warn warn ext ext
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12.3.11 Connecting signed values via ports

The sign attribute shall not cross hierarchy. In order to have the signed type cross hierarchy, the signed keywo
be used in the object's declaration at the different levels of hierarchy. Any expressions on a port shall be treate
other expression in an assignment. It shall be typed, sized, evaluated and the resulting value assigned to the
the other side of the port using the same rules as an assignment.

12.4 Hierarchical names

Every identifier in a Verilog HDL description shall have a uniquehierarchical path name. The hierarchy of modules
and the definition of items such as tasks and named blocks within the modules shall define these names. Th
chy of names can be viewed as a tree structure, where each module instance, generated instance, task, fu
namedbegin-end or fork-join block defines a new hierarchical level, or scope, in a particular branch of
tree.

At the top of the name hierarchy are the names of one or more root modules of which no instances have been
This root or these parallel root modules make up one or more hierarchies in adesign descriptionor description. Inside
any module, each module instance (including an arrayed or generated instance), task definition, function de
and namedbegin-end or fork-join block shall define a new branch of the hierarchy. Named blocks wit
named blocks and within tasks and functions shall create new branches. Only non-recursively referenced au
tasks and/or functions create visible branches that can be referenced. Recursively called tasks and functions,
using the automatic keyword and recursively called from within the same task or function, do not create v
branches that can be referenced. See 10.2.1 and 10.3.1 for a discussion of automatic tasks and functions.

Each node in the hierarchical name tree shall be a separate scope with respect to identifiers. A particular ident
be declared at most once in any scope. See 12.6 for a discussion of scope rules and 3.12 for a discussion
spaces.

wor,
trior

int warn ext warn warn warn ext ext

trireg int warn warn ext ext ext ext ext

tri0 int warn warn int ext warn ext ext

tri1 int warn warn int warn ext ext ext

supply0 int int int int int int ext warn

supply1 int int int int int int warn ext

KEY
ext = The external net type is used
int = The internal net type is used
warn = A warning is issued and the external net type is used

Table 12-1—Net types resulting from dissimilar port connections  (continued)

Internal
net

External net

wire,
 tri

wand,
 triand

wor,
trior trireg tri0 tri1 supply0 supply1
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Any named Verilog object orhierarchical name referencecan be referenced uniquely in its full form by concatena
ing the names of the modules, module instance names, tasks, functions, or named blocks that contain it. Th
character shall be used to separate each of the names in the hierarchy, except for escaped identifiers embed
hierarchical name reference, which are followed by separators composed of white space and a period-chara
complete path name to any object shall start at a top-level (root) module. This path name can be used from a
in the hierarchy or from a parallel hierarchy. The first node name in a path name can also be the top of a hierar
starts at the level where the path is being used (which allows and enables downward referencing of items) w
exceptions of items of automatic tasks and automatic task item declarations. These declarations can not be
by their hierarchical names.

The syntax for hierarchical path names is given in Syntax 12-7.

Syntax 12-7—Syntax for hierarchical path names

escaped_hierarchical_identifier1 ::= (From Annex A - A.9.3)
escaped_hierarchical_branch

[ {  .simple_hierarchical_branch | .escaped_hierarchical_branch } ]
escaped_identifier ::=

\ {Any_ASCII_character_except_white_space} white_space
hierarchical_identifier ::=

simple_hierarchical_identifier
| escaped_hierarchical_identifier

simple_hierarchical_identifier2 ::=
simple_hierarchical_branch [ .escaped_identifier ]

simple_identifier3 ::= [ a-zA-Z_ ] { [ a-zA-Z0-9_$ ] }
simple_hierarchical_branch2 ::= (From Annex A - A.9.4)

simple_identifier [ [ unsigned_number ] ]
[ { .simple_identifier [ [ unsigned_number ] ] } ]

escaped_hierarchical_branch1 ::=
escaped_identifier [ [ unsigned_number ] ]

[ { .escaped_identifier [ [ unsigned_number ] ] } ]
white_space ::=(From Annex A - A.9.5)

space | tab | newline | eof4

1The period inescaped_hierarchical_identifierand escaped_hierarchical_branchshall be preceded by
white_space, but shall not be followed bywhite_space.

2The period (.) in simple_hierarchical_identifierandsimple_hierarchical_branchshall not be preceded or
followed bywhite_space.

3A simple_identifierandarrayed_referenceshall start with an alpha or underscore (_) character, shall have at
least one character, and shall not have any spaces.

4End of file.
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Examples:

Example 1—The code in this example defines a hierarchy of module instances and named blocks.

Figure 12-1 illustrates the hierarchy implicit in this Verilog code.

Figure 12-1—Hierarchy in a model

module mod (in); module cct (stim1, stim2);
input  in; input stim1, stim2;

always @(posedge in) begin : keep // instantiate mod
reg hold; mod amod(stim1), bmod(stim2);

hold = in; endmodule
end
endmodule

module wave;
reg stim1, stim2;

cct a(stim1, stim2); // instantiate cct

initial begin :wave1
#100 fork  :innerwave

reg hold;
join

#150 begin
stim1 = 0;

end
end
endmodule

wave1  a

amod bmod

keep keep

innerwave

wave
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Figure 12-2 is a list of the hierarchical forms of the names of all the objects defined in the code.

Figure 12-2—Hierarchical path names in a model

Hierarchical name referencing allows free data access to any object from any level in the hierarchy. If the uniqu
archical path name of an item is known, its value can be sampled or changed from anywhere within the desc

Example 2—The next example shows how a pair of named blocks can refer to items declared within each othe

12.5 Upwards name referencing

The name of a module or module instance is sufficient to identify the module and its location in the hierarc
lower-level module can reference items in a module above it in the hierarchy.Variables can be referenced if th
of the higher-level module or its instance name is known. For tasks, functions, and named blocks, Verilog sha
in the enclosing module for the name until it is found or until the root of the hierarchy is reached. It shall only s
in higher enclosing modules for the name, not instances. The syntax for an upward reference is given in Syn

Syntax 12-8—Syntax for upward name referencing

upward_name_reference ::=(Not in the Annex A BNF)
module_identifier.item_name

item_name ::=
function_identifier

| block_identifier
| net_identifier
| parameter_identifier
| port_identifier
| task_identifier
| variable_identifier

wave wave.a.bmod
wave.stim1 wave.a.bmod.in
wave.stim2 wave.a.bmod.keep
wave.a wave.a.bmod.keep.hold
wave.a.stim1 wave.wave1
wave.a.stim2 wave.wave1.innerwave
wave.a.amod wave.wave1.innerwave.hold
wave.a.amod.in
wave.a.amod.keep
wave.a.amod.keep.hold

begin
fork :mod_1

reg x;
mod_2.x = 1;

join
fork :mod_2

reg x;
mod_1.x = 0;

join
end
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Upwards name references can also be done with names of the form

module_instance_name.item_name

A name of this form shall be resolved as follows:

a) Look in the current module for a module instance namedmodule_instance_name . If found, this name
reference shall be treated as a downward reference, and the item name shall be resolved in the corres
module.

b) Look in the parent module for a module instance namedmodule_instance_name . If found, the item
name shall be resolved from that instance, which is the sibling of the module containing the reference

c) Repeat step b), going up the hierarchy.

There shall be no spaces within the hierarchical name reference, except for escaped identifiers embedded in
archical name reference, which are followed by separators composed of white space and a period-character.

Example:

In this example, there are four modules,a, b, c, andd. Each module contains an integeri . The highest-level mod-
ules in this segment of a model hierarchy area andd. There are two copies of moduleb because modulea andd
instantiateb. There are four copies ofc.i  because each of the two copies ofb instantiatesc  twice.

module a;
integer i;
b a_b1();
endmodule

module b;
integer i;
c b_c1(), b_c2();
initial // downward path references two copies of i:

#10 b_c1.i = 2; // a.a_b1.b_c1.i, d.d_b1.b_c1.i
endmodule

module c;
integer i;
initial begin // local name references four copies of i:

i = 1; // a.a_b1.b_c1.i, a.a_b1.b_c2.i,
// d.d_b1.b_c1.i, d.d_b1.b_c2.i

b.i = 1; // upward path references two copies of i:
// a.a_b1.i, d.d_b1.i

end
endmodule

module d;
integer i;
b d_b1();
initial begin // full path name references each copy of i

a.i = 1; d.i = 5;
a.a_b1.i = 2; d.d_b1.i = 6;
a.a_b1.b_c1.i = 3; d.d_b1.b_c1.i = 7;
a.a_b1.b_c2.i = 4; d.d_b1.b_c2.i = 8;

end
endmodule
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12.6 Scope rules

The following four elements define a new scope in Verilog:

— Modules
— Tasks
— Functions
— Named blocks

An identifier shall be used to declare only one item within a scope. This rule means it is illegal to declare two or
variables that have the same name, or to name a task the same as a variable within the same module, or to g
instance the same name as the name of the net connected to its output.

If an identifier is referenced directly (without a hierarchical path) within a task, function, or named block, it sha
declared either locally within the task, function, or named block, or within a module, task or named block t
higher in the same branch of the name tree that contains the task, function, or named block. If it is declared
then the local item shall be used; if not, the search shall continue upward until an item by that name is found o
a module boundary is encountered. If the item is a variable, it shall stop at a module boundary; if the item is
function, or named block it continues to search higher-level modules until found. The search shall cross named
task, and function boundaries but not module boundaries. This fact means that tasks and functions can use an
the variables within the containing module by name, without going through their ports.

If an identifier is referenced with a hierarchical name, the path can start with an module name, instance nam
function, or named block. The names shall be searched first at the current level, then in higher-level module
found. Since both module names and instance names can be used, precedence is given to instance names if
module named the same as an instance name.

Because of the upward searching, path names which are not strictly on a downward path can be used.
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Example:

Example 1—In Figure 12-3, each rectangle represents a local scope. The scope available to upward searching
outward to all containing rectangles—with the boundary of the module A as the outer limit. Thus block G can di
reference identifiers in F, E, and A; it cannot directly reference identifiers in H, B, C, and D.

Figure 12-3—Scopes available to upward name referencing

Example 2—The following example shows an incompletely defined downward reference that can be accessed

block B

task C

func D

task E

block F

block G

block H

module A

Scopes available
to block G

Scopes not
available to
block G

task t;
reg r, s;
begin : b

// redundant assignments to reg r
t.b.r = 0; // poorly defined but found by upward search
t.s = 0; // fully defined downward reference

end
endtask
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Section 13

Configuring the contents of a design

13.1 Introduction

To facilitate both the sharing of Verilog designs between designers and/or design groups, and the repeatabilit
exact contents of a given simulation (or other tool) session, the concept ofconfigurationsis used in the Verilog lan-
guage. A configuration is simply an explicit set of rules to specify the exact source description to be used to re
each instance in a design. The operation of selecting a source representation for an instance is referred to abinding
the instance.

The example below shows a simple configuration problem.

Example:

file top.v file adder.v file adder.vg

module top(); module adder(...); module adder(...);

adder a1(...); // rtl adder description  // gate-level adder description

adder a2(...); ... ...

endmodule endmodule endmodule

Consider using thertl adder description inadder.v for instancea1 in module top and the gate-level adde
description inadder.vg for instancea2 . In order to specify this particular set of instance bindings and to av
having to change the source description to specify a new set, a configuration can be used.

config cfg1; // specify rtl adder for top.a1, gate-level adder for top.a2

designrtlLib.top;

default liblist  rtlLib;

instancetop.a2 liblist  gateLib;

endconfig

The elements of aconfigare explained in subsequent sections, but this simple example illustrates some imp
points aboutconfigs. As evidenced by theconfig-endconfigsyntax, the config is a design element, similar to a mo
ule, which exists in the Verilog namespace. The config contains a set of rules which are applied when searchi
source description tobind to a particular instance of the design.

A Verilog design description starts with a top-level module (or modules), which is not instantiated elsewhere
design. From this module’s source description, the instantiated modules (or children) are found, and then the
descriptions for the module definitions of these subinstances shall be located, and so on until every instanc
design is mapped to a source description.

13.1.1 Library notation

In order to map a Verilog instance to a source description, the concept of a symboliclibrary, which is simply a logical
collection of design elements (such as modules, macromodules, primitives, or configs) can be used. These de
ments can be referred to ascells. The cell name shall be the same as the name of the module/macromodule/prim
config being processed. Syntax 13-1 specifies a cell from a given library.
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Syntax 13-1—Syntax for cell

This notation gives a symbolic method of referring to source descriptions; the method of mapping source desc
into libraries is shown in greater detail in 13.2.1. The optional:config extension shall be used explicitly to refer to
a config in the case where a config has the same name as a module/macromodule/primitive.

For the purposes of this example, suppose the filestop.v andadder.v , thertl descriptions, have been mappe
into the libraryrtlLib , and the fileadder.vg , the gate-level description of theadder , has been mapped into the
library gateLib . The actual mechanism for mapping source descriptions to libraries is detailed in 13.2.

13.1.2 Basic configuration elements

Thedesignstatement inconfig cfg1 of the first example of 13.1 specifies the top-level module in the design
what source description is to be used. In this example, thertlLib.top notation indicates the top-level module
description shall be taken fromrtlLib . Since top.v and adder.v were mapped to this library, the actua
description for the module is known to come fromtop.v .

Thedefault statement coupled with theliblist clause specifies, by default, all subinstances of top (i.e.,top.a1 and
top.a2 ) shall be taken fromrtlLib , which means the descriptions intop.v andadder.v , which were mapped
to this library, shall be used. For a basic design, which can be completelyrtl , this can be sufficient to specify com-
pletely the binding for the entire design. However, here thetop.a2 instance of adder to the gate-level descriptio
shall be bound.

The instance statement specifies, for the particular instancetop.a2 , the source description shall be taken from
gateLib . The instance statement overrides the default rule for this particular instance. Sinceadder.vg was
mapped togateLib , this statement dictates the gate-level description inadder.vg  be used for instancetop.a2 .

13.2 Libraries

As mentioned in the previous section, a library is a logical collection of cells which are mapped to particular s
description files. The symboliclib. cell[:config ] notation supports the separate compilation of source files by p
viding a file system-independent name to refer to source descriptions when instances in a design are bound
allows multiple tools, which can have different invocation use-models, to share the same configuration.

13.2.1 Specifying libraries - the library map file

When parsing a source description file (or files), the parser shall first read the library mapping information from
defined file prior to reading any source files. The name of this file and the mechanism for reading it shall be to
cific, but all compliant tools shall provide a mechanism to specify one or more library mapping files to be used
particular invocation of the tool. If multiple mapping files are specified, then they shall be read in the order in w
they are specified.

For the purposes of this discussion, assume the existence of a file namedlib.map in the current working directory,
which is automatically read by the parser prior to parsing any source files specified on the command line. The
for declaring a library in the library map file is shown in Syntax 13-2.

library_cell ::=(Not in the Appendix A BNF)
[library_identifier.]cell_identifier[:config]
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Syntax 13-2—Syntax for declaring library in the library map file

NOTES

1—The file_path uses file system-specific notation to specify an absolute or relative path to a particular file or set of files. T
lowing shortcuts/wildcards can be used:

? single character wildcard (matches any single character)
* multiple character wildcard (matches any number of characters in a directory/file name)
... hierarchical wildcard (matches any number of hierarchical directories)
.. specifies the parent directory
. specifies the directory containing thelib.map

Paths which end in / shall include all files in the specified directory. Identical to /* .
Paths which do not begin with / are relative to the directory in which the current lib.map file is located.

2—The paths ./*.v and *.v are identical and both specify all files with a .v suffix in the current directory.

Any file encountered by the compiler which does not match any library’s file_path specification shall by defa
compiled into a library namedwork .

To perform the library mapping discussed in the example in 13.1, use the following library definitions in
lib.map  file:

library rtlLib *.v ;                // matches all files in the current directory with a.v  suffix

library gateLib ./*.vg ; // matches all files in the current directory with a.vg  suffix

13.2.1.1 File path resolution

If a file name potentially matches multiple file path specifications, the path specifications shall be resolved in t
lowing order:

a) File path specifications which end with an explicit filename
b) File path specifications which end with a wildcarded filename
c) File path specifications which end with a directory

escaped_hierarchical_identifier1 ::= (From Annex A - A.1.1)
library_text ::=

{ library_descriptions }
library_descriptions ::=

library_declaration
| include_statement
| config_declaration

library_declaration ::=
library  library_identifier file_path_spec [ {, file_path_spec } ]

[ -incdir  file_path_spec [ {, file_path_spec } ];
file_path_spec ::=

file_path
include_statement ::=

include <file_path_spec>;

1The period inescaped_hierarchical_identifierand escaped_hierarchical_branchshall be preceded by
white_space, but shall not be followed bywhite_space.
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If a file name matches path specifications in multiple library definitions (after the above resolution rules have
applied), it shall be an error.

Using these rules with the library definitions in thelib.map file, all source files encountered by the parser/compi
can be mapped to a unique library. Once the source descriptions have been mapped to libraries, the cells
therein are available for binding.

NOTE—Tool implementers may find it convenient to provide a command-line argument to explicitly specify the library into w
the file being parsed is to be mapped, which shall override any library definitions in thelib.map file. If these libraries do not
exist in thelib.map  file, they can only be accessed via an explicit config.

If multiple cells with the same name map to the same library, then theLAST cell encountered shall be written to the
library. This is to support a “separate-compile” use-model (see 13.4.3), where it is assumed encountering a cel
has previously been compiled is intended to be a recompiling of the cell. In the case where multiple modules w
same name are mapped to the same library in a single invocation of the compiler, then a warning message
issued.

13.2.2 Using multiple library mapping files

In addition to specifying library mapping information, alib.map file can also include references to otherlib.map
files. Theinclude command is used to insert the entire contents of a library mapping file in another file during
ing. The result is as though the contents of the included mapping file appear in place of theinclude command.

The syntax of alib.map file is limited to library specifications, include statements, and standard Verilog comm
syntax. Syntax 13-3 shows the syntax for theinclude command.

Syntax 13-3—Syntax for include command

If the file path specification, whether in an include or library statement, describes a relative path, it shall be rela
the location of the file which contains the file path. Library providers shall include a local library mapping file in a
tion to the source contents of the library. Individual users can then simply include the provider’s library mappin
in their own map file to gain access to the contents of the provided library.

13.2.3 Mapping source files to libraries

For each cell definition encountered during parsing/compiling, the name of the source file being parsed is co
to the file path specifications of the library declarations in all of the library map files being used. The cell is ma
into the library whose file path specification matches the source file name.

13.3 Configurations

As mentioned in the introduction of this chapter, a configuration is simply a set of rules to apply when searchi
library cells to which to bind instances. The syntax for configurations is shown in 13.3.1.

13.3.1 Basic configuration syntax

The configuration syntax is shown in Syntax 13-4.

include_statement ::=(From Annex A - A.1.1)
include <file_path_spec>;
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Syntax 13-4—Syntax for configuration

13.3.1.1 Design statement

Thedesignstatement names the library and cell of the top-level module or modules in the design hierarchy c
ured by the config. There shall be one and only one design statement, but multiple top-level modules can be
the design statement. The cell or cells identified can not be configurations themselves. It is possible the design
fied can have the same name as configs, however.

Thedesign statement shall appear before any config rule statements in the config.

If the library identifier is omitted, then the library which contains the config shall be used to search for the cell

13.3.1.2 The default clause

The syntax for thedefault clause is specified in Syntax 13-5.

Syntax 13-5—Syntax for default clause

The default clause selects all instances which do not match a more specific selection clause. Theuse expansion
clause (see 13.3.1.6) can not be used with adefault selection clause. For other expansion clauses, there can no
more than onedefault clause which specifies the expansion clause.

For simple design configurations, it might be sufficient to specify adefault liblist (see 13.3.1.5).

13.3.1.3 The instance clause

The instanceclause is used to specify the specific instance to which the expansion clause shall apply.The syn
the instance clause is specified in Syntax 13-6.

config_declaration ::=(From Annex A -A.1.2)
config config_identifier;
design_statement
{config_rule_statement}
endconfig

design_statement ::=
design { [library_identifier.]cell_identifier } ;

config_rule_statement ::=
default_clause liblist_clause

| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use_clause

default_clause ::=(From Annex A - A.1.2)
default
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Syntax 13-6—Syntax for instance clause

The instance name associated with theinstanceclause is a Verilog hierarchical name, starting at the top-level mod
of the config (i.e., the name of the cell in thedesign statement).

13.3.1.4 The cell clause

Thecell selection clause names the cell to which it applies. The syntax for thecell clause is specified in Syntax 13-7

Syntax 13-7—Syntax for cell clause

If the optional library name is specified then the selection rule applies to any instance which is bound or is und
sideration for being bound to the selected library and cell. It is an error if a library name is included in acell selection
clause and the corresponding expansion clause is a library list expansion clause.

13.3.1.5 The liblist clause

The liblist clause defines an ordered set of libraries to be searched to find the current instance. The syntax forlib-
list clause is specified in Syntax 13-8.

Syntax 13-8—Syntax for liblist clause

liblists are inherited hierarchically downward as instances are bound. When searching for a cell to bind to the
unbound instance, and in the absence of an applicable binding expansion clause, the specified library list is s
in the specified order.

The current library list is selected by the selection clauses. If no library list clause is selected, or the selected
list is empty, then the library list contains the single name which is the library in which the cell containing
unbound instance is found (i.e., the parent cell’s library).

13.3.1.6 The use clause

The use clause specifies a specific binding for the selected cell. The syntax for theuse clause is specified in
Syntax 13-9.

inst_clause ::=(From Annex A - A.1.2)
instance inst_name

inst_name ::=
topmodule_identifier{.instance_identifier}

cell_clause ::=(From Annex A - A.1.2)
cell [ library_identifier.]cell_identifier

liblist_clause ::=(From Annex A - A.1.2)
liblist  [{library_identifier}]
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Syntax 13-9—Syntax for use clause

A useclause can only be used in conjunction with aninstanceor cell selection clause. It specifies the exact librar
and cell to which a selected cell or instance is bound. Auseclause with no library or cell indicates the selected cell
unbound.

Theuseclause has no effect on the current value of the library list. It can be common in practice to specify mu
config rule statements, one of which specifies a binding and the other of which specifies a library list.

If the lib.cell being referred to by theuseclause is a config which has the same name as a module/macromodule/
itive in the same library, then the optional:config suffix can be added to thelib.cell to specify the config
explicitly.

If the library name is omitted, the library shall be inherited from the parent cell.

The binding statement can create situations where the unbound instance’s module name and the cell name to
is bound are different. This condition is common in VHDL, but has never before been possible in Verilog.

13.3.2 Hierarchical configurations

For situations where it is desirable to specify a special set of configuration rules for a subsection of a design, it
sible to bind a particular instance directly to a configuration using the binding clause:

instance top.a1.foo use lib1.foo:config;
// bind to the config foo in library lib1

specifies the instancetop.a1.foo is to be replaced with the design hierarchy specified by the configura
lib1.foo:config . The design statement inlib1.foo:config shall specify the actual binding for the
instancetop.a1.foo , and the rules specified in the config shall determine the configuration of all other su
stances undertop.a1.foo .

It shall be an error for an instance clause to specify a hierarchical path to an instance which occurs within a hie
specified by another config.

config bot;

design lib1.bot;

default liblist  lib1 lib2;

instance bot.a1 liblist  lib3;

endconfig

config top;

design lib1.top;

default liblist  lib2 lib1;

instance top.bot use lib1.bot:config;

instance top.bot.a1 liblist  lib4;
// ERROR - can’t set liblist for top.bot.a1 from this config

endconfig

use_clause ::=(From Annex A - A.1.2)
use [library_identifier.]cell_identifier[:config]
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13.4 Using libraries and configs

The following section describes potential use-models for referencing configs on the command line. It is includ
clarification purposes.

The traditional Verilog simulation use-model takes a file-based approach, where the source descriptions for all
the design are specified on the command line for each invocation of the tool. With the advent of compiled-code
lators, the configuration mechanism shall also support a use-model which allows for the source files to be pr
piled and then for the pre-compiled design objects to be referenced on the command line. This section shall
how configurations can be used in both of these scenarios.

13.4.1 Precompiling in a single-pass use-model

The single-pass use-model is the traditional use-model with which most users are familiar. In this use-mode
the source description files shall be provided to the simulator via the command line, and only these source d
tions can be used to bind cell instances in the current design. A precompiling strategy in this scenario actually
every cell description provided on the command line and map it into the library without regard to whether th
actually is used in the design. The tool can optionally check to see if the cell already exists in the library, and
up-to-date (i.e. the source description has not changed since the last time the cell was compiled) the tool c
recompiling the cell. After all cells on the command line have been compiled, then the tool can locate the top
cell (discussed in Section 12), and proceed down the hierarchy, binding each instance as it is encountered in
archy.

NOTE—With this use-model it is not necessary for library objects to persist from one tool invocation to another (although fo
formance considerations it is recommended they do).

13.4.2 Elaboration-time compiling in a single-pass use-model

An alternate strategy which can be used with a single-pass tool is to parse the source files only to find the to
module(s), without actually compiling anything into the library during this scanning process. Once the top-level
ule(s) has been found, then it can be compiled into the library, and the tool can proceed down the hierarchy, on
piling the source descriptions necessary to bind the design successfully. Based on the binding rules in place,
source files which match the current library specification need to be parsed to find the current cell’s source des
to compile. As with the precompiled single-pass use-model, it is not necessary for library cells to persist fro
invocation to another using this strategy.

13.4.3 Precompiling using a separate compilation tool

When using a separate compilation tool, it is essential library cells persist, and the compiled forms shall the
exist somewhere in the file system. The exact format and location for holding these compiled forms shall be v
tool-specific. Using this separate compiler strategy, the source descriptions shall be parsed and compiled
library using one or more invocations of the compiler tool. The only restriction is all cells in a design shall be pre
piled prior to binding the design (typically via an invocation of a separate tool). Using this strategy, the tool w
actually does the binding only needs to be told the top-level module(s) of the design to be bound, and then it s
the precompiled form of the cell description(s) from the library to determine the subinstances and descend hie
cally down the design binding each cell as it is located.

13.4.4 Command line considerations

In each of the three preceding strategies, the binding rules can either be specified via a config, or the defau
(from the library map file) can be used. In the single-pass use-models, the config can be specified by includ
source description file on the command line. In the case where the config includes a design statement, then th
fied cell shall be the top-level module, regardless of the presence of any uninstantiated cells in the rest of the
files. When using a separate compilation tool, the tool which actually does the binding only needs to be giv
lib.cell specification for the top-level cell(s) and/or the config to be used. In this strategy, the config itself shall a
precompiled.
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13.5 Configuration examples

Consider the following set of source descriptions:

Example:

All of the examples in this section shall assume thetop.v , adder.v and adder.vg files get compiled with the
given lib.map  file. This yields the following library structure:

rtlLib.top // from top.v
rtlLib.foo // from top.v
aLib.adder // from adder.v
aLib.foo // rtl from adder.v
gateLib.adder // from adder.vg
gateLib.foo // from adder.vg

13.5.1 Default configuration from library map file

With no configuration, the libraries are searched according to the library declaration order in the library map file
means all instances of moduleadder shall useaLib.adder (sinceaLib is the first library specified which con-
tains a cell namedadder ), and all instances of modulefoo shall usertlLib.foo (sincertlLib is the first
library which containsfoo ).

13.5.2 Using the default clause

To always use the foo definition from fileadder.v , use the following simple configuration:

config cfg1;
design rtlLib.top
default liblist  aLib rtlLib;

endconfig

The default liblist statement overrides the library search order in thelib.map file, so aLib is always searched
beforertlLib . Since thegateLib library is not included in theliblist , the gate-level descriptions ofadder
andfoo  shall not be used.

To use the gate-level representations ofadder  andfoo , add to the config as follows:

config cfg2;
design rtlLib.top
default liblist  gateLib aLib rtlLib;

endconfig

file top.v
module top(...);
...
adder a1(...);
adder a2(...);
endmodule
module foo(...);
... // rtl
endmodule

file adder.v
module adder(...);
... // rtl
foo f1(...);
foo f2(...);
endmodule
module foo(...);
... // rtl
endmodule

file adder.vg
module adder(...);
... // gate-level
foo f1(...);
foo f2(...);
endmodule
module foo(...);
... // gate-level
endmodule

file lib.map
library  rtlLib top.v;
library  aLib adder.*;
library  gateLib

adder.vg;
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This shall cause the gate representation always to be taken before thertl representation, using the module defin
tions foradder andfoo from adder.vg . Thertl view of top shall be taken since there is no gate representa
available.

13.5.3 Using the cell clause

To modify the config to use thertl  view ofadder  and the gate-level representation offoo  from gateLib :

config cfg3;
design rtlLib.top
default liblist  aLib rtlLib;

cell foo use gateLib.foo;
endconfig

The cell clause selects all cells namedfoo  and explicitly binds them to the gate representation ingateLib .

13.5.4 Using the instance clause

To modify the config so thetop.a1 adder (and its descendants) use the gate representation and thetop.a2
adder  (and its descendants) use thertl  representation fromaLib :

config cfg4
design rtlLib.top
default liblist  gateLib rtlLib;
instance top.a2 liblist  aLib;

endconfig

Since theliblist  is inherited, all of the descendants oftop.a2  inherit itsliblist  from the instance selection clause.

13.5.5 Using a hierarchical config

Now suppose all this work has only been on the adder module by itself and a config which uses thertlLib.foo
cell for f1 , and thegateLib.foo  cell for f2  has already been developed. Then use:

config cfg5;
design aLib.adder;
default liblist  gateLib aLib;
instance adder.f1 liblist  rtlLib;

endconfig

To use this configurationcfg5 for the top.a2 instance ofadder and take the full defaultaLib adder for the
top.a1  instance, use the following config:

config cfg6;
design rtlLib.top;
default liblist  aLib rtlLib;
instance top.a2 use work.cfg5:config

endconfig

The binding clause specifies thework.cfg5:config configuration is to be used to resolve the bindings
instancetop.a2 and its descendants. It is the design statement in configcfg5 which defines the exact binding for
the top.a2 instance itself. The rest ofcfg5 defines the rules to bind the descendants oftop.a2 . Notice the
instance clause incfg5  is relative to its own top-level module,adder .
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13.6 Displaying library binding information

It shall be possible to display the actual library binding information for module instances during simulation. Th
mat specifier%l or %Lshall print out thelibrary.cell binding information for the module instance containin
the display (or other textual output) command. This is similar to the%mformat specifier which prints out the hierar
chical path name of the module containing it.

It shall also be able to use the VPI interface to display the binding information. The following newvpiProper-
ties  shall exist for objects of typevpiModule :

— vpiUseBinding  - thelibrary.cell  binding information for a module instance
— vpiLibrary  - the library name into which the module was compiled
— vpiCell  - the name of the cell bound to the module instance
— vpiConfig  - thelibrary.cell  name of the config controlling the binding of the module instance

These properties shall be ofstring  type, similar to thevpiName  andvpiFullName  properties.

13.7 Reserved words

The keywordsconfig, endconfig, anddefault shall be treated as reserved words in the language. The following k
words shall be reserved words inside of aconfig-endconfig  block only:

design
instance
cell
use
liblist

13.8 Library mapping examples

In the absence of a configuration, it is possible to perform basic control of the library searching order when bin
design.

When a config is used, the config overrides the rules specified here.

13.8.1 Using the command line to control library searching

In the absence of a configuration, it shall be necessary for all compliant tools to provide a mechanism of spec
library search order on the command line which overrides the default order from the library mapping file. This m
anism shall include specification of library names only, with the definitions of these libraries to be taken fro
library mapping file.

NOTE—It is recommended all compliant tools use "-L <library_name>" to specify this search order.

13.8.2 File path specification examples

Example:

Given the following set of files:

/proj/lib1/rtl/a.v
/proj/lib2/gates/a.v
/proj/lib1/rtl/b.v
/proj/lib2/gates/b.v
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From the/proj library , the following absolutefile_path_specs  are resolved as shown:

/proj/lib*/*/a.v =/proj/lib1/rtl/a.v, /proj/lib2/gates/a.v
.../a.v =/proj/lib1/rtl/a.v, /proj/lib2/gates/a.v
/proj/.../b.v =/proj/lib1/rtl/b.v, /proj/lib2/gates/b.v
.../rtl/*.v =/proj/lib1/rtl/a.v, /proj/lib1/rtl/b.v

From the/proj/lib1  directory, the following relativefile_path_specs  are resolved as shown:

../lib2/gates/*.v = /proj/lib2/gates/a.v, /proj/lib2/gates/b.v

./rtl/?.v = /proj/lib1/rtl/a.v, /proj/lib1/rtl/b.v

./rtl/ = /proj/lib1/rtl/a.v, /proj/lib1/rtl/b.v

13.8.3 Resolving multiple path specifications

Example:

library lib1 “/proj/lib1/foo*.v”;
library lib2 “/proj/lib1/foo.v”;
library lib3 “../lib1/”;
library lib4 “/proj/lib1/*ver.v”;

When evaluated from the directory/proj/tb directory, the following source files shall map into the specifie
library:

../lib1/foobar.v - lib1 // potentially matcheslib1  andlib3 . Sincelib1  includes
a filename andlib3  only specifies a directory;lib1  takes precedence

/proj/lib1/foo.v - lib2 // takes precedence overlib1  andlib3  path specifications
/proj/lib1/bar.v - lib3
/proj/lib1/barver.v - lib4 // takes precedence overlib3  path specification
/proj/lib1/foover.v - ERROR// matcheslib1  andlib4
/test/tb/tb.v - work  // does not match any library specifications.
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Section 14

Specify blocks

Two types of HDL constructs are often used to describe delays for structural models such as ASIC cells. The

— Distributed delays, which specify the time it takes events to propagate through gates and nets inside the
ule (see 7.14)

— Module path delays, which describe the time it takes an event at a source (input port or inout port) to pr
gate to a destination (output port or inout port)

This section describes how paths are specified in a module and how delays are assigned to these paths.

14.1 Specify block declaration

A block statement called thespecify blockis the vehicle for describing paths between a source and a destination
for assigning delays to these paths. The syntax for specify block is shown in Syntax 14-1.

Syntax 14-1—Syntax of specify block

The specify block shall be bounded by the keywordsspecifyandendspecify, and it shall appear inside a module dec
laration. The specify block can be used to perform the following tasks:

— Describe various paths across the module.
— Assign delays to those paths.
— Perform timing checks to ensure that events occurring at the module inputs satisfy the timing constra

the device described by the module (see Section 15).

The paths described in the specify block, calledmodule paths, pair a signal source with a signal destination. Th
source may be unidirectional (an input port) or bidirectional (an inout port) and is referred to as themodule path
source. Similarly, the destination may be unidirectional (an output port) or bidirectional (an inout port) and is ref
to as themodule path destination.

specify_item ::=(From Annex A - A.7.1)
specparam_declaration

| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check
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Example:

The first two lines following the keywordspecifydeclare specify parameters, which are discussed in 3.11.3. The
following the declarations of specify parameters describes a module path and assigns delays to that module p
specify parameters determine the delay assigned to the module path. Specifying module paths is presented
Assigning delays to module paths is discussed in 14.3. The line preceding the keywordendspecifyinstantiates one of
the system timing checks, which are discussed further in Section 15.

14.2 Module path declarations

There are two steps required to set up module path delays in a specify block:

a) Describe the module paths

b) Assign delays to those paths (see 14.3)

The syntax of the module path declaration is described in Syntax 14-2.

Syntax 14-2—Syntax of the module path declaration

A module path may be described as asimple path, anedge sensitive path, or astate dependent path. A module path
shall be defined inside a specify block as a connection between a source signal and a destination signal. Modu
can connect any combination of vectors and scalars.

Example:

Figure 14-1 illustrates a circuit with module path delays. More than one source (A, B, C, andD) may have a module
path to the same destination (Q), and different delays may be specified for each input to output path.

path_declaration ::=(From Annex A - A.7.2)
simple_path_declaration;

| edge_sensitive_path_declaration;
| state_dependent_path_declaration;

specify
specparam tRise_clk_q = 150, tFall_clk_q = 200;
specparam tSetup = 70;

(clk => q) = (tRise_clk_q, tFall_clk_q);

$setup(d, posedge clk, tSetup);
endspecify
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Figure 14-1—Module path delays

14.2.1 Module path restrictions

Module paths have the following restrictions:

— The module path source shall be a net that is connected to a module input port or inout port.
— The module path destination shall be a net or variable that is connected to a module output port or ino
— The module path destination shall have only one driver inside the module.

14.2.2 Simple module paths

The syntax for specifying a simple module path is given in Syntax 14-3.

MODULE PATHS:
from A to Q
from B to Q
from C to Q
from D to Q

= module path delay
n

A

B

C
D

Q

22

10

12

18
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Syntax 14-3—Syntax for simple module path

Simple path can be declared in one of the two forms:

— source*>  destination
— source=> destination

The symbols*> and=> each represent a different kind of connection between the module path source and the
ule path destination. The operator*> establishes afull connectionbetween source and destination. The operator=>
establishes aparallel connectionbetween source and destination. Refer to 14.2.5 for a description of full connec
and parallel connection paths.

Example:

The following three examples illustrate valid simple module path declarations.

14.2.3 Edge-sensitive paths

When a module path is described using an edge transition at the source, it is called anedge-sensitive path. The edge-

simple_path_declaration ::=(From Annex A - A.7.2)
parallel_path_description= path_delay_value

| full_path_description= path_delay_value
parallel_path_description ::=

( specify_input_terminal_descriptor [ polarity_operator ]=>
specify_output_terminal_descriptor )

full_path_description ::=
( list_of_path_inputs [ polarity_operator ]*>  list_of_path_outputs)

list_of_path_inputs ::=
specify_input_terminal_descriptor {, specify_input_terminal_descriptor }

list_of_path_outputs ::=
specify_output_terminal_descriptor {, specify_output_terminal_descriptor }

specify_input_terminal_descriptor ::=(From Annex A - A.7.3)
input_identifier

| input_identifier[ constant_expression]
| input_identifier[ range_expression]

specify_output_terminal_descriptor ::=
output_identifier

| output_identifier[ constant_expression]
| output_identifier[ range_expression]

input_identifier ::=
input_port_identifier | inout_port_identifier

output_identifier ::=
output_port_identifier | inout_port_identifier

polarity_operator ::=(From Annex A - A.7.4)
+ | -

(A => Q) = 10;
(B => Q) = (12);
(C, D *> Q) = 18;
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sensitive path construct is used to model the timing of input to output delays, which only occur when a specifie
occurs at the source signal.

The syntax of the edge-sensitive path declaration is shown in Syntax 14-4.

Syntax 14-4—Syntax of the edge-sensitive path declaration

The edge identifier may be one of the keywordsposedgeor negedge, associated with an input terminal descripto
which may be any input port or inout port. If a vector port is specified as the input terminal descriptor, the edge
sition shall be detected on the least significant bit. If the edge transition is not specified, the path shall be con
active on any transition at the input terminal.

An edge-sensitive path may be specified with full connections (*> ) or parallel connections (=>). For parallel connec-
tions (=>), the destination shall be any scalar output or inout port or one of its bit-selects. For full connections*> ),
the destination shall be a list of one or more of the vector or scalar output and inout ports, and bit-selects o
selects of those ports. Refer to 14.2.5 for a description of parallel paths and full connection paths.

The data source expression is an arbitrary expression, which serves as a description of the flow of data to the p
tination. This arbitrary data path description does not affect the actual propagation of data or events throu
model; how an event at the data path source propagates to the destination depends on the internal logic of the
The polarity operator describes whether the data path is inverting or noninverting.

Examples:

Example 1—The following example demonstrates an edge-sensitive path declaration with a positive polarity ope

( posedge clock => ( out +: in ) ) = (10, 8);

In this example, at the positive edge ofclock , a module path extends fromclock to out using a rise delay of 10
and a fall delay of 8. The data path is fromin  to out , andin  is not inverted as it propagates toout .

Example 2—The following example demonstrates an edge-sensitive path declaration with a negative po
operator:

( negedge clock[0] => ( out -: in ) ) = (10, 8);

In this example, at the negative edge ofclock[0] , a module path extends fromclock[0] to out using a rise
delay of 10 and a fall delay of 8. The data path is fromin  to out , andin  is inverted as it propagates toout .

edge_sensitive_path_declaration ::=(From Annex A - A.7.4)
parallel_edge_sensitive_path_description= path_delay_value

| full_edge_sensitive_path_description= path_delay_value
parallel_edge_sensitive_path_description ::=

( [ edge_identifier ] specify_input_terminal_descriptor=>
specify_output_terminal_descriptor [ polarity_operator ]: data_source_expression)

full_edge_sensitive_path_description ::=
( [ edge_identifier ] list_of_path_inputs*>

list_of_path_outputs [ polarity_operator ] : data_source_expression)
data_source_expression ::=

expression
edge_identifier ::=

posedge | negedge
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Example 3—The following example demonstrates an edge-sensitive path declaration with no edge identifier:

( clock => ( out : in ) ) = (10, 8);

In this example, at any change inclock , a module path extends fromclock  to out .

14.2.4 State-dependent paths

A state-dependent pathmakes it possible to assign a delay to a module path that affects signal propagation
through the path only if specified conditions are true.

A state-dependent path description includes the following items:

— A conditional expression that, when evaluated true, enables the module path
— A module path description
— A delay expression that applies to the module path

The syntax for the state-dependent path declaration is shown in Syntax 14-5.

Syntax 14-5—Syntax of state-dependent paths

14.2.4.1 Conditional expression

The operands in the conditional expression shall be constructed from the following:

— Scalar or vector module input ports or inout ports or their bit-selects or part-selects
— Locally defined variables or nets or their bit-selects or part-selects
— Compile time constants (constant numbers and specify parameters)

Table 14-1 contains a list of valid operators that may be used in conditional expressions:

state_dependent_path_declaration ::=(From Annex A - A.7.4)
if ( module_path_expression) simple_path_declaration

| if ( module_path_expression) edge_sensitive_path_declaration
| ifnone simple_path_declaration

Table 14-1—List of valid operators in state dependent path delay expression

Operator Description Operator Description

~ bit-wise negation & reduction and

& bit-wise and | reduction or

| bit-wise or ^ reduction xor

^ bit-wise xor ~& reduction nand

^~ ~^ bit-wise xnor ~| reduction nor

== logical equality ^~ ~^ reduction xnor

!= logical inequality {} concatenation

&& logical and { {} } replication
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A conditional expression shall evaluate to true(1) for the state-dependent path to be assigned a delay value. If
conditional expression evaluates tox or z , it shall be treated as true. If the conditional expression evaluates to m
ple bits, the least significant bit shall represent the result. The conditional expression can have any number
ands and operators.

14.2.4.2 Simple state-dependent paths

If the path description of a state-dependent path is a simple path, then it is called asimple state-dependent path. The
simple path description is discussed in 14.2.2.

Examples:

Example 1—The following example uses state-dependent paths to describe the timing of an XOR gate.

In this example, first two state-dependent paths describe a pair of output rise and fall delay times when theXORgate
(x1) inverts a changing input. The last two state-dependent paths describe another pair of output rise and fa
times when theXOR gate buffers a changing input.

Example 2—The following example models a partial ALU. The state-dependent paths specify different delays fo
ferent ALU operations.

|| logical or ?: conditional

! logical not

Table 14-1—List of valid operators in state dependent path delay expression  (continued)

Operator Description Operator Description

module XORgate (a, b, out);
input  a, b:
output out;

xor x1 (out, a, b);

specify
specparam noninvrise = 1, noninvfall = 2
specparam invertrise = 3, invertfall = 4;
if  (a) (b => out) = (invertrise, invertfall);
if  (b) (a => out) = (invertrise, invertfall);
if  (~a)(b => out) = (noninvrise, noninvfall);
if  (~b)(a => out) = (noninvrise, noninvfall);

endspecify
endmodule
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In the preceding example, the first three path declarations declare paths extending from operand inputsi1 andi2 to
the o1 output. The delays on these paths are assigned to operations on the basis of the operation specifie
inputs onopcode . The last path declaration declares a path from theopcode  input to theo1  output.

14.2.4.3 Edge-sensitive state-dependent paths

If the path description of a state-dependent path describes an edge-dependent path, then the state-depende
called an edge-sensitive state-dependent path. The edge-sensitive paths are discussed in 14.2.3.

Different delays can be assigned to the same edge-sensitive path as long as the following criteria are met:

— The edge, condition, or both make each declaration unique.
— The port is referenced in the same way in all path declarations (entire port, bit-select, or part-select).

Examples:

Example 1

In this example, if the positive edge ofclock occurs whenreset andclear are low, and a module path extend
from clock to out  using a rise delay of 10 and a fall delay of 8.

Example 2—The following example shows four edge-sensitive path declarations. Note that each path has a
edge or condition.

module ALU (o1, i1, i2, opcode);
input  [7:0] i1, i2;
input  [2:1] opcode;
output [7:0] o1;

//functional description omitted
specify

// add operation
if  (opcode == 2’b00) (i1,i2 *> o1) = (25.0, 25.0);
// pass-through i1 operation
if  (opcode == 2’b01) (i1 => o1) = (5.6, 8.0);
// pass-through i2 operation
if  (opcode == 2’b10) (i2 => o1) = (5.6, 8.0);
// delays on opcode changes
(opcode => o1) = (6.1, 6.5);

endspecify
endmodule

if  ( !reset && !clear )
( posedge clock => ( out +: in ) ) = (10, 8) ;
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Example 3—The two state-dependent path declarations shown below are not legal because even though they h
ferent conditions, the destinations are not specified in the same way: the first destination is a part-select, the s
a bit-select.

14.2.4.4 The ifnone condition

The ifnone keyword is used to specify a default state-dependent path delay when all other conditions for the p
false. Theifnone condition shall specify the same module path source and destination as the state-dependent
paths. The following rules apply to module paths specified with theifnone condition:

— Only simple module paths may be described with anifnone condition.
— The state-dependent paths that correspond to theifnone path may be either simple module paths or edge-se

sitive paths.
— If there are no corresponding state-dependent module paths to theifnone module path, then theifnone mod-

ule path shall be treated the same as an unconditional simple module path.
— It is illegal to specify both anifnone condition for a module path and an unconditional simple module path

the same module path.

Examples:

Example 1—The following are valid state-dependent path combinations.

specify
( posedge clk => ( q[0] : data ) ) = (10, 5);
( negedge clk => ( q[0] : data ) ) = (20, 12);

if  (reset)
( posedge clk => ( q[0] : data ) ) = (15, 8);

if  (!reset && cntrl)
( posedge clk => ( q[0] : data ) ) = (6, 2);

endspecify

specify
if  (reset)

( posedge clk => (q[3:0]:data)) = (10,5);
if  (!reset)

( posedge clk => (q[0]:data)) = (15,8);
endspecify
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Example 2—The following module path description combination is illegal because it combines a state-dependen
using anifnone condition and an unconditional path for the same module path.

14.2.5 Full connection and parallel connection paths

The operator*> shall be used to establish afull connectionbetween source and destination. In a full connectio
every bit in the source shall connect to every bit in the destination. The module path source need not have th
number of bits as the module path destination.

The full connection can handle most types of module paths, since it does not restrict the size or number of sou
nals and destination signals. The following situations require the use of full connections:

— To describe a module path between a vector and a scalar

— To describe a module path between vectors of different sizes

— To describe a module path with multiple sources or multiple destinations in a single statement (see 14

The operator=> shall be used to establish aparallel connectionbetween source and destination. In a parallel conne
tion, each bit in the source shall connect to one corresponding bit in the destination. Parallel module paths can
ated only between sources and destinations that contain the same number of bits.

Parallel connections are more restrictive than full connections. They only connect one source to one dest
where each signal contains the same number of bits. Therefore, a parallel connection may only be used to de
module path between two vectors of the same size. Since scalars are one bit wide, either *> or => may be use
up bit-to-bit connections between two scalars.

Examples:

Example 1—Figure 14-2 illustrates how a parallel connection differs from a full connection between two 4
vectors.

if  (C1) (IN => OUT) = (1,1);
ifnone (IN => OUT) = (2,2);

// add operation
if  (opcode == 2’b00) (i1,i2 *> o1) = (25.0, 25.0);
// pass-through i1 operation
if  (opcode == 2’b01) (i1 => o1) = (5.6, 8.0);
// pass-through i2 operation
if  (opcode == 2’b10) (i2 => o1) = (5.6, 8.0);
// all other operations
ifnone (i2 => o1) = (15.0, 15.0);

( posedge CLK => (Q +: D)) = (1,1);
ifnone (CLK => Q) = (2,2);

if  (a) (b => out) = (2,2);
if  (b) (a => out) = (2,2);
ifnone (a => out) = (1,1);
(a => out) = (1,1);
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Figure 14-2—The difference between parallel and full connection paths

Example 2—The following example shows module paths for a2:1 multiplexor with two 8-bit inputs and one 8-bit
output.

The module path froms to q uses a full connection (*>) because it connects a scalar source—the 1-bit select lin
to a vector destination—the 8-bit output bus. The module paths from both input linesin1 andin2 to q use a parallel
connection (=>) because they set up parallel connections between two 8-bit buses.

14.2.6 Declaring multiple module paths in a single statement

Multiple module paths may be described in a single statement by using the symbol*> to connect a comma-separate
list of sources to a comma-separated list of destinations. When describing multiple module paths in one statem
lists of sources and destinations may contain a mix of scalars and vectors of any size.

The connection in a multiple module path declaration is always a full connection.

 Parallel module path

0

1

2

3

0

1

2

3

Input bits                   Output bits
0

1

2

3

0

1

2

3

Input bits                   Output bits

N = number of bits = 4

Number of paths = N =

Use => to define path

4

bit-to-bit connections

Full module path

Number of paths = N * N =

Use to define path

16

bit-to-vector connections

*>

module mux8 (in1, in2, s, q) ;
output [7:0] q;
input  [7:0] in1, in2;
input  s;
// Functional description omitted ...
specify

(in1 => q) = (3, 4) ;
(in2 => q) = (2, 3) ;
(s *> q) = 1;

endspecify
endmodule
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Example:

(a, b, c *> q1, q2) = 10;

is equivalent to the following six individual module path assignments:

14.2.7 Module path polarity

The polarity of a module path is an arbitrary specification indicating whether or not the direction of a signal tran
is inverted as it propagates from the input to the output. This arbitrary polarity description does not affect the
propagation of data or events through the model; how a rise or a fall at the source propagates to the des
depends on the internal logic of the module.

Module paths may specify any of three polarities:

— Unknown polarity
— Positive polarity
— Negative polarity

14.2.7.1 Unknown polarity

By default, module paths shall haveunknown polarity—that is, a transition at the path source may propagate to
destination in an unpredictable way, as follows:

— A rise at the source may cause either a rise transition, a fall transition, or no transition at the destinatio
— A fall at the source may cause either a rise transition, a fall transition, or no transition at the destinatio

A module path specified either as a full connection or a parallel connection, but without a polarity operator+ or - ,
shall be treated as a module path with unknown polarity.

14.2.7.2 Positive polarity

For module paths withpositive polarity, any transition at the source may cause the same transition at the destin
as follows:

— A rise at the source may cause either a rise transition or no transition at the destination.
— A fall at the source may cause either a fall transition or no transition at the destination.

A module path with positive polarity shall be specified by prefixing the+ polarity operator to=> or *> .

14.2.7.3 Negative polarity

For module paths withnegative polarity, any transition at the source may cause the opposite transition at the des
tion, as follows:

— A rise at the source may cause either a fall transition or no transition at the destination.
— A fall at the source may cause either a rise transition or no transition at the destination.

(a *> q1) = 10 ;
(b *> q1) = 10 ;
(c *> q1) = 10 ;
(a *> q2) = 10 ;
(b *> q2) = 10 ;
(c *> q2) = 10 ;
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A module path with negative polarity shall be specified by prefixing the-  polarity operator to=> or *> .

Examples:

The following examples show each type of path polarity:

14.3 Assigning delays to module paths

The delays that occur at the module outputs where paths terminate shall be specified by assigning delay valu
module path descriptions. The syntax for specifying delay values is shown in Syntax 14-6.

Syntax 14-6—Syntax for path delay value

In module path delay assignments, a module path description (see 14.2) is specified on the left-hand side, an
more delay values are specified on the right-hand side. The delay values may be optionally enclosed in a
parentheses. There may be one, two, three, six, or twelve delay values assigned to a module path, as des
14.3.1. The delay values shall be constant expressions containing literals or specparams, and there may be
expression of the formmin:typ:max .

path_delay_value ::=(From Annex A - A.7.4)
list_of_path_delay_expressions

| ( list_of_path_delay_expressions)
list_of_path_delay_expressions ::=

t_path_delay_expression
| trise_path_delay_expression, tfall_path_delay_expression
| trise_path_delay_expression, tfall_path_delay_expression, tz_path_delay_expression
| t01_path_delay_expression, t10_path_delay_expression, t0z_path_delay_expression,

tz1_path_delay_expression, t1z_path_delay_expression, tz0_path_delay_expression
| t01_path_delay_expression, t10_path_delay_expression, t0z_path_delay_expression,

tz1_path_delay_expression, t1z_path_delay_expression, tz0_path_delay_expression
t0x_path_delay_expression, tx1_path_delay_expression, t1x_path_delay_expression,
tx0_path_delay_expression, txz_path_delay_expression, tzx_path_delay_expression

t_path_delay_expression ::=
path_delay_expression

// Positive polarity
(In1 +=> q) = In_to_q ;
(s + * > q) = s_to_q ;

// Negative polarity
(In1 -=> q) = In_to_q ;
(s - * > q) = s_to_q ;

// Unknown polarity
(In1 => q) = In_to_q ;
(s * > q) = s_to_q ;
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Example:

In the example above, the specify parameters declared following thespecparamkeyword specify values for the mod-
ule path delays. The module path assignments assign those module path delays to the module paths.

14.3.1 Specifying transition delays on module paths

Each path delay expression may be a single value—representing the typical delay—or a colon-separated list
values—representing aminimum, typical, andmaximumdelay, in that order. If the path delay expression results in
negative value, it shall be treated as zero. Table 14-2 describes how different path delay values shall be as
with various transitions. The path delay expression names refer to the names used in Syntax 14-6.

Table 14-2—Associating path delay expressions with transitions

Number of path delay expressions specified

Transitions 1 2 3 6 12

0 -> 1 t trise trise t01 t01

1 -> 0 t tfall tfall t10 t10

0 -> z t trise tz t0z t0z

z -> 1 t trise trise tz1 tz1

1 -> z t tfall tz t1z t1z

z -> 0 t tfall tfall tz0 tz0

0 -> x * * * * t0x

x -> 1 * * * * tx1

1 -> x * * * * t1x

x -> 0 * * * * tx0

x -> z * * * * txz

z -> x * * * * tzx

* See 14.3.2.

specify
// Specify Parameters
specparam tRise_clk_q = 45:150:270, tFall_clk_q=60:200:350;
specparam tRise_Control = 35:40:45, tFall_control=40:50:65;

// Module Path Assignments
(clk => q) = (tRise_clk_q, tFall_clk_q);
(clr, pre *> q) = (tRise_control, tFall_control);

endspecify
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Example:

14.3.2 Specifying x transition delays

If the x transition delays are not explicitly specified, the calculation of delay values for x transitions is based o
following two pessimistic rules:

— Transitions from a known state tox shall occur as quickly as possible—that is, the shortest possible d
shall be used for any transition tox .

— Transitions fromx to a known state shall take as long as possible—that is, the longest possible delay sh
used for any transition fromx .

Table 14-3 presents the general algorithm for calculating delay values for x transitions, along with specific exa
The following two groups of x transitions are represented in the table:

a) Transition from a known states  to x : s ’ x

b) Transition fromx  to a known states : x ’ s

// one expression specifies all transitions
(C => Q) = 20;
(C => Q) = 10:14:20;

// two expressions specify rise and fall delays
specparam tPLH1 = 12, tPHL1 = 25;
specparam tPLH2 = 12:16:22, tPHL2 = 16:22:25;
(C => Q) = ( tPLH1, tPHL1 ) ;
(C => Q) = ( tPLH2, tPHL2 ) ;

// three expressions specify rise, fall, and z transition delays
specparam tPLH1 = 12, tPHL1 = 22, tPz1 = 34;
specparam tPLH2 = 12:14:30, tPHL2 = 16:22:40, tPz2 = 22:30:34;
(C => Q) = (tPLH1, tPHL1, tPz1);
(C => Q) = (tPLH2, tPHL2, tPz2);

// six expressions specify transitions to/from 0, 1, and z
specparam t01 = 12, t10 = 16, t0z = 13,

 tz1 = 10, t1z = 14, tz0 = 34 ;
(C => Q) = ( t01, t10, t0z, tz1, t1z, tz0) ;
specparam  T01 = 12:14:24, T10 = 16:18:20, T0z = 13:16:30 ;
specparam  Tz1 = 10:12:16, T1z = 14:23:36, Tz0 = 15:19:34 ;
(C => Q) = ( T01, T10, T0z, Tz1, T1z, Tz0) ;

// twelve expressions specify all transition delays explicitly
specparam t01=10, t10=12, t0z=14, tz1=15, t1z=29, tz0=36,

 t0x=14, tx1=15, t1x=15, tx0=14, txz=20, tzx=30 ;
(c => Q) = (t01, t10, t0z, tz1, t1z, tz0,

t0x, tx1, t1x, tx0, txz, tzx) ;
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14.3.3 Delay selection

The simulator shall determine the proper delay to use when a specify path output must be scheduled to tra
There may be specify paths to the output from more than one input, and the simulator must decide which spec
to use.

The simulator shall do this by first determining which specify paths to the output are active. Active specify pat
those whose input has transitioned most recently in time, and which have either no condition or whose conditi
true. In the presence of simultaneous input transitions, it is possible for many specify paths to an output to be s
neously active.

Once the active specify paths are identified, a delay must be selected from among them. This is done by com
the correct delay for the specific transition being scheduled from each specify path, and choosing the smalles

Examples:

Example 1:

(A => Y) = (6, 9);
(B => Y) = (5, 11);

Table 14-3—Calculating delays for x transitions

X transition Delay value

General algorithm

s -> x minimum (s-> other known signals)

x -> s maximum (other known signals-> s)

Specific transitions

0 -> x minimum (0 -> z delay, 0-> 1 delay)

1 -> x minimum (1 -> z delay, 1-> 0 delay)

z -> x minimum (z -> 1 delay, z-> 0 delay)

x -> 0 maximum (z-> 0 delay, 1-> 0 delay)

x -> 1 maximum (z-> 1 delay, 0-> 1 delay)

x -> z maximum (1-> z delay, 0-> z delay)

Usage:     (C => Q)  =  (5, 12, 17, 10, 6, 22) ;

0 -> x minimum (17, 5) = 5

1 -> x minimum (6, 12) = 6

z -> x minimum (10, 22) = 10

x -> 0 maximum (22, 12) = 22

x -> 1 maximum (10, 5) = 10

x -> z maximum (6, 17) = 17
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For aY transition from0 to 1, if A transitioned more recently thanB a delay of6 will be chosen. But ifB transitioned
more recently thanA, a delay of5 will be chosen. And if the last time they transitionedA andB did so simultaneously,
then the smallest of the two rise delays would be chosen, which is the rise delay fromB of 5. The fall delay fromA of
9 would be chosen ifY was instead to transition from1 to 0.

Example 2:

if  (MODE < 5) (A => Y) = (5, 9);

if  (MODE < 4) (A => Y) = (4, 8);

if  (MODE < 3) (A => Y) = (6, 5);

if  (MODE < 2) (A => Y) = (3, 2);

if  (MODE < 1) (A => Y) = (7, 7);

Anywhere from zero to five of these specify paths might be active depending upon the value ofMODE. For instance,
whenMODEis 2 the first three specify paths are active. A rise transition would select a delay of4, because that is the
smallest rise delay among the first three. A fall transition would select a delay of5, because that is the smallest fa
delay among the first three.

14.4 Mixing module path delays and distributed delays

If a module contains module path delays and distributed delays (delays on primitive instances within the modu
larger of the two delays for each path shall be used.

Examples:

Example 1—Figure 14-3 illustrates a simple circuit modeled with a combination of distributed delays and path d
(only the D input to Q output path is illustrated). Here, the delay on the module path from inputD to outputQ= 22 ,
while the sum of the distributed delays =0 + 1 = 1. Therefore, a transition onQcaused by a transition onDwill occur
22  time units after the transition onD.

Figure 14-3—Module path delays longer than distributed delays

Example 2—In Figure 14-4, the delay on the module path fromD to Q= 22 , but the distributed delays along that mod
ule path now add up to10 + 20 = 30 . Therefore, an event onQcaused by an event onDwill occur 30 time units after
the event onD.

A

B

C

D

Q1

0

0

22

  = distributed delayn

= module path delay
n
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Figure 14-4—Module path delays shorter than distributed delays

14.5 Driving wired logic

Module path output nets shall not have more than one driver within the module. Therefore, wired logic is not al
at module path outputs.

Figure 14-6 illustrates a violation of this wired-output rule and a method of avoiding the rule violation.

Figure 14-5—Legal and illegal module paths

In Figure 14-5 (a), any module path toS is illegal because the path destination has two drivers.

Assuming signalS in Figure 14-5 (a) is awired-and, this limitation can be circumvented by replacing wired log
with gated logic to create a single driver to the output. Figure 14-5 (b) shows how adding a thirdand gate—the
shaded gate—solves the problem for the module in Figure 14-5 (a).

The example in Figure 14-6 is also illegal. In this example, when the outputsQandR are wired together, it creates a
condition where both paths have multiple drivers from within the same module.
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D
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n
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Figure 14-6—Illegal module paths

Although multiple output drivers to a path destination are prohibitedinsidethe same module, they are allowedoutside
the module. The example in Figure 14-7 is legal sinceQandReach have only one driver within the module in whic
the module paths are specified.

Figure 14-7—Legal module paths

14.6 Detailed control of pulse filtering behavior

Two consecutive scheduled transitions closer together in time than the module path delay is deemed a pu
default, pulses on a module path output are rejected. Consecutive transitions cannot be closer together than
ule path delay, and this is known as the inertial delay model of pulse propagation.

Pulse width ranges control how to handle a pulse presented at a module path output. They are:

— A pulse width range for which a pulse shall be rejected
— A pulse width range for which a pulse shall be allowed to propagate to the path destination
— A pulse width range for which a pulse shall generate a logicx  on the path destination
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Two pulse limit values define the pulse width ranges associated with each module path transition delay. Th
limit values are called the error limit (e-limit) and the rejection limit (r-limit). The e-limit must always be at leas
large as the r-limit. Pulses greater than or equal to the e-limit pass unfiltered. Pulses less than the e-limit but
than or equal to the r-limit are filtered toX. Pulses less than the r-limit are rejected and no pulse emerges. By de
both the e-limit and the r-limit are set equal to the delay. These default values yield full inertial pulse behavior,
ing all pulses smaller than the delay.

Example:

The rise delay from inputA to outputY is 7, and the fall delay is9. By default, the e-limit and the r-limit for the rise
delay are both7. The e-limit and the r-limit for the fall delay are both9. The pulse limits associated with the dela
forming the trailing edge of the pulse determine if and how the pulse should be filtered. WaveformY' shows the wave-
form resulting from no pulse filtering. The width of the pulse is2, which is less than the reject limit for the rise dela
of 7, and so the pulse is filtered as shown in waveformY.

There are three ways to modify the pulse limits from their default values. First, the Verilog language provid
PATHPULSE$ specparam to modify the pulse limits from their default values. Second, invocation options can
ify percentages applying to all module path delays to form the corresponding e-limits and r-limits. Third, SDF
tation can individually annotate the e-limit and r-limit of each module path transition delay.

14.6.1 Specify block control of pulse limit values

Pulse limit values may be set from within the specify block with thePATHPULSE$ specparam. The syntax for using
PATHPULSE$ to specify the reject limit and error limit values is given in Syntax 14-7.

Syntax 14-7—Syntax for PATHPULSE$ pulse control

pulse_control_specparam ::=(From Annex A - A.2.4)
PATHPULSE$ = ( reject_limit_value [, error_limit_value ]) ;

| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= ( reject_limit_value [, error_limit_value ]) ;

error_limit_value ::=
limit_value

reject_limit_value ::=
limit_value

limit_value ::=
constant_mintypmax_expression

(A =>Y ) = 7, 9;

pulse width = 4

// Pulse considered
// at module path output

pulse width = 4

Y

Y’

A

// Pulse is filtered

// Module path
// delay for a buffer
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If only the reject limit value is specified, it shall apply to both the reject limit and the error limit.

The reject limit and error limit may be specified for a specific module path. When no module path is specifie
reject limit and error limit shall apply to all module paths defined in a module. If both path-specificPATHPULSE$
specparams and a non-path-specificPATHPULSE$ specparam appear in the same module, then the path-spe
specparams shall take precedence for the specified paths.

The module path input terminals and output terminals shall conform to the rules for module path inputs and o
with the following restriction: the terminals may not be a bit-select or part-select of a vector.

When a module path declaration declares multiple paths, thePATHPULSE$ specparam shall only be specified fo
the first path input terminal and the first path output terminal. The reject limit and error limit specified shall app
all other paths in the multiple path declaration. APATHPULSE$ specparam which specifies anything other than t
first path input and path output terminals shall be ignored.

Example:

In the following example, the path(clk=>q) acquires a reject limit of2 and an error limit of9, as defined by the
first PATHPULSE$ declaration. The paths(clr*>q) and(pre*>q) receive a reject limit of0 and an error limit
of 4, as specified by the secondPATHPULSE$ declaration. The path(data=>q) is not explicitly defined in any of
thePATHPULSE$ declarations, and so it acquires reject and error limit of3, as defined by the lastPATHPULSE$
declaration.

14.6.2 Global control of pulse limit values

Two invocation options can specify percentages applying globally to all module path transition delays. The erro
invocation option specifies the percentage of each module path transition delay used for its error limit valu
reject limit invocation option specifies the percentage of each module path transition delay used for its rejec
value. The percentage values shall be an integer between0 and100 .

The default values for both the reject and error limit invocation options are100%. When neither option is present then
100% of each module transition delay is used as the reject and error limits.

It is an error if the error limit percentage is smaller than the reject limit percentage. In such cases the error lim
centage is set equal to the reject limit percentage.

When bothPATHPULSE$ and global pulse limit invocation options are present, thePATHPULSE$ values shall
take precedence.

14.6.3 SDF annotation of pulse limit values

SDF annotation can be used to specify the pulse limit values of module path transition delays. Section 16 de
this in greater detail.

specify
(clk => q) = 12;
(data => q) = 10;
(clr, pre *> q) = 4;

specparam
PATHPULSE$clk$q = (2,9),
PATHPULSE$clr$q = (0,4),
PATHPULSE$ = 3;

endspecify
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When bothPATHPULSE$, global pulse limit invocation options, and SDF annotation of pulse limit values
present, SDF annotation values shall take precedence.

14.6.4 Detailed pulse control capabilities

The default style of pulse filtering behavior has two drawbacks. First, pulse filtering to theX state may be insuffi-
ciently pessimistic with anX state duration too short to be useful. Second, unequal delays can result in pulse rej
whenever the trailing edge precedes the leading edge, leaving no indication that a pulse was rejected. This
introduces more detailed pulse control capabilities.

14.6.4.1 On-event versus on-detect pulse filtering

When an output pulse must be filtered toX, greater pessimism can be expressed if the module path output transi
immediately toX (on-detect) instead of at the already scheduled transition time of the leading edge of the puls
event).

The on-event method of pulse filtering toX is the default. When an output pulse must be filtered toX, the leading edge
of the pulse becomes a transition toX and the trailing edge a transition fromX. The times of transition of the edges do
not change.

Just like on-event, the on-detect method of pulse filtering changes the leading edge of the pulse into a transitX
and the trailing edge to a transition fromX, but the time of the leading edge is changed to occur immediately u
detection of the pulse.

Figure 14-8 illustrates this behavior using a simple buffer with asymmetric rise/fall times and both the r-limits a
limits equal to0. An output waveform is shown for both on-detect and on-event approaches.

Figure 14-8—On-detect -vs.- on-event

On-detect versus on-event behavior can be selected in two different ways. First, one may be selected globall
module path outputs through use of the on-detect or on-event invocation option. Second, one may be selecte
through use of specify block pulse style declarations.

in

rise/fall

4/6

outin

12 14 1810

out (on-event)
(default)

out (on-detect)
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The syntax for pulse style declarations is shown in Syntax 14-8.

Syntax 14-8—Syntax for pulse style declarations

It is an error if a module path output appears in a pulse style declaration after it has already appeared in a mod
declaration.

The pulse style invocation options take precedence over pulse style specify block declarations.

14.6.4.2 Negative pulse detection

When the delays to a module path output are unequal, it is possible for the trailing edge of a pulse to be sched
a time earlier than the schedule time of the leading edge, yielding a pulse with a negative width. Under normal
tion, if the schedule for a trailing pulse edge is earlier than the schedule for a leading pulse edge, then the
edge is cancelled. No transition takes place when the initial and final states of the pulse are the same, leaving
cation a schedule was ever present.

Negative pulses can be indicated with theX state by use of the showcancelled style of behavior. When the trai
edge of a pulse would be scheduled before the leading edge, this style causes the leading edge to be schedX,
and the trailing edge to be scheduled fromX. With on-event pulse style, the schedule toX replaces the leading edge
schedule. With on-detect pulse style, the schedule toX is made immediately upon detection of the negative pulse.

showcancelledbehavior can be enabled in two different ways. First, it may be enabled globally for all module
outputs through use of theshowcancelledand noshowcancelledinvocation options. Second, it may be enable
locally through use of specify blockshowcancelled declarations.

The syntax forshowcancelled declarations is shown in Syntax 14-9.

Syntax 14-9—Syntax for showcancelled declarations

It is an error if a a module path output appears in a showcancelled declaration after it has already appeared in
ule path declaration. The showcancelled invocation options take precedence over the showcancelled speci
declarations.

The showcancelledbehavior is illustrated in Figure 14-9, which shows a narrow pulse presented at the inpu
buffer with unequal rise/fall delays. This causes the trailing edge of the pulse to be scheduled earlier than
edge. The leading edge of the input pulse schedules an output event 6 units later at the point marked byA. The pulse
trailing edge occurs one time unit later, which schedules an output event4 units later marked by pointB. This second
schedule on the output is for a time prior to the already existing schedule for the leading output pulse edge.

The output waveform is shown for three different operating modes. The first waveform shows the default be
with showcancelled behavior not enabled and with the default on-event style. The waveform shows showca

pulsestyle_declaration ::=(From Annex A- A.7.1)
pulsestyle_onevent list_of_path_outputs;

| pulsestyle_ondetect list_of_path_outputs;

showcancelled_declaration ::=(From Annex A- A.7.1)
showcancelled list_of_path_outputs;

| noshowcancelled list_of_path_outputs;
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Figure 14-9—Current event cancellation problem and correction

This same situation can also arise with nearly simultaneous input transitions, which is defined as two inputs
tioning closer together in time than the difference in their respective delays to the output. Figure 14-10 shows
forms for a 2-input NAND gate where initiallyA is high andB is low. B transitions0->1 at time10 , causing a1->0
output schedule at time24 . A transitions1->0 at time12 , causing a0->1 schedule at time22 . Arrows mark the
output transitions caused by the transitions on inputsA andB.

The output waveform is shown for three different operating modes. The first waveform shows the default be
with showcancelled behavior not enabled and with the default on-event style. The second shows showca
behavior in conjunction with on-event. The third shows showcancelled behavior in conjunction with on-detect

in

(in=>out)=(4,6);

outin

out (default)

15 1610 11

B A

out (showcancelled with on-event)

out (showcancelled with on-detect)
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closer
lves
Figure 14-10—NAND gate with nearly simultaneous input switching
                where one event is scheduled prior to another that has not matured

One drawback of the on-event style with showcancelled behavior is that as the output pulse edges draw
together, the duration of the resultingX state becomes smaller. Figure 14-11 illustrates how the on-detect style so
this problem.

out (default)

24

.

10 2212
A

B

(A=>Q) = 10;
(B=>Q) = 14;

out (showcancelled with on-event)

out (showcancelled with on-detect)
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default

e con-
Figure 14-11—Input NAND gate with nearly simultaneous input switching
 with output event scheduled at same time.

Examples:

Example 1:

specify
(a=>out)=(2,3);
(b =>out)=(3,4);

endspecify

Since no pulse style or showcancelled declarations appear within the specify block, the compiler applies the
modes of on-event and noshowcancelled.

Example 2:

specify
(a=>out)=(2,3);
showcancelled out;
(b =>out)=(3,4);

endspecify

This showcancelled declaration is in error because it follows use of out in a module path declaration. It would b
tradictory forout  to have noshowcancelled behavior from inputa, but showcancelled behavior from inputb.

out (default)

10

A

B

(A=>Q) = 10
(B=>Q) = 14

14 24

out (showcancelled with on-event)

out (showcancelled with on-detect)
240 Copyright 2000 IEEE. All rights reserved. Section 14
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

-
Example 2—Both these specify blocks produce the same result. Outputsout andout_b are both declared showcan
celled and on_detect.

specify
showcancelled out;
pulsestyle_ondetect out;
(a =>out)=(2,3);
(a=>out)=(4,5);
showcancelled out_b;
pulsestyle_ondetect out_b;
(b=>out_b)=(5,6);
(b=>out_b)=(3,4);

endspecify

specify
showcancelled out,out_b;
pulsestyle_ondetect out,out_b;
(a =>out)=(2,3);
(b=>out)=(3,4);
(a =>out_b)=(3,4);
(b=>out_b)=(5,6);

endspecify
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Section 15

Timing checks

This section describes how timing checks are used in specify blocks to determine if signals obey the timin
straints.

15.1 Overview

Timing checks can be placed in specify blocks to verify the timing performance of a design by making sure c
events occur within given time limits. The syntax for system timing checks is given in Syntax 15-1.
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system_timing_check ::=(From Annex A - A.7.5.1)
$setup_timing_check

| $hold _timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check

$setup_timing_check ::=
$setup ( data_event, reference_event, timing_check_limit [, [ notify_reg ] ] ) ;

$hold _timing_check ::=
$hold ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

$setuphold_timing_check ::=
$setuphold ( reference_event, data_event, timing_check_limit,  timing_check_limit

[ , [ notify_reg ] [, [ stamptime_condition ] [, [ checktime_condition ]
[ , [ delayed_reference ] [, [ delayed_data ] ] ] ] ] ]) ;

$recovery_timing_check ::=
$recovery ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

$removal_timing_check ::=
$removal ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

$recrem_timing_check ::=
$recrem ( reference_event, data_event, timing_check_limit, timing_check_limit

[ , [ notify_reg ] [, [ stamptime_condition ] [, [ checktime_condition ]
[ , [ delayed_reference ] [, [ delayed_data ] ] ] ] ] ]) ;

$skew_timing_check ::=
$skew ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

$timeskew_timing_check ::=
$timeskew ( reference_event, data_event, timing_check_limit

[ , [ notify_reg ] [, [ event_based_flag ] [, [ remain_active_flag ] ] ] ]) ;
$fullskew_timing_check ::=

$fullskew ( reference_event, data_event, timing_check_limit, timing_check_limit
[ , [ notify_reg ] [, [ event_based_flag ] [, [ remain_active_flag ] ] ] ]) ;

$period_timing_check ::=
$period ( controlled_reference_event, timing_check_limit [, [ notify_reg ] ]) ;

$width_timing_check ::=
$width ( controlled_reference_event, timing_check_limit,

threshold [, [ notify_reg ] ]) ;
$nochange_timing_check ::=

$nochange ( reference_event, data_event, start_edge_offset,
end_edge_offset [, [ notify_reg ] ]) ;
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scribed
The syntax for check time conditions and timing check events are given in Syntax 15-2.

Syntax 15-2—Syntax for check time conditions and timing check events

For ease of presentation, the timing checks are divided into two groups. The first group of timing checks are de

checktime_condition ::=(From Annex A - A.7.5.2)
mintypmax_expression

controlled_reference_event ::=
controlled_timing_check_event

data_event ::=
timing_check_event

delayed_data ::=
terminal_identifier

| terminal_identifier[ constant_mintypmax_expression]
delayed_reference ::=

terminal_identifier
| terminal_identifier[ constant_mintypmax_expression]

end_edge_offset ::= mintypmax_expression
event_based_flag ::= constant_expression
notify_reg ::= variable_identifier
reference_event ::= timing_check_event
remain_active_flag ::= constant_mintypmax_expression
stamptime_condition ::= mintypmax_expression
start_edge_offset ::= mintypmax_expression
threshold ::=constant_expression
timing_check_limit ::= expression
timing_check_event ::=(From Annex A - A.7.5.3)

[timing_check_event_control] specify_terminal_descriptor [&&&  timing_check_condition ]
controlled_timing_check_event ::=

timing_check_event_control specify_terminal_descriptor [&&&  timing_check_condition ]
timing_check_event_control ::=posedge | negedge | edge_control_specifier
specify_terminal_descriptor ::=

specify_input_terminal_descriptor
| specify_output_terminal_descriptor

edge_control_specifier ::=edge [ edge_descriptor [, edge_descriptor ] ]
edge_descriptor1 ::= 01 | 10 | z_or_x zero_or_one | zero_or_one z_or_x
zero_or_one ::=0 | 1
z_or_x ::=x | X | z | Z
timing_check_condition ::=
          scalar_timing_check_condition
        |( scalar_timing_check_condition)
scalar_timing_check_condition ::=
          expression
        |~ expression
        | expression== scalar_constant
        | expression=== scalar_constant
        | expression!= scalar_constant
        | expression!== scalar_constant
scalar_constant ::=1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0

1Embedded spaces are illegal.
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in terms of stability time windows:

$setup $hold $setuphold
$recovery $removal $recrem

The timing checks in the second group check clock and control signals, and are described in terms of the differ
time between two events (the$nochange check involves three events):

$skew $timeskew $fullskew
$width $period $nochange

Although they begin with a$, timing checks are not system tasks. The leading$ is present because of historical rea
sons, and timing checks shall not be confused with system tasks. In particular, no system task can appear in a
block, and no timing check can appear in procedural code.

Some timing checks can accept negative limit values. This topic is discussed in detail in 15.8.

All timing checks have both a reference event and a data event, and boolean conditions can be associated w
Some of the checks have two signal arguments, one of which is the reference event and the other the data eve
checks have only one signal argument, and the reference and data events are derived from it. Reference ev
data events shall only be detected by timing checks when their associated conditions are true. See 15.6 for mo
mation about conditions in timing checks.

Timing check evaluation is based upon the times of two events, called the timestamp event and the timechec
A transition on the timestamp event signal causes the simulator to record (stamp) the time of transition for futu
in evaluating the timing check. A transition on the timecheck event signal causes the simulator to actually evalu
timing check to determine whether a violation has taken place.

For some checks the reference event is always the timestamp event, while the data event is always the tim
event, while for other checks the reverse is true. And for yet other checks the decision as to which is the tim
and which the timecheck event is based upon factors to be discussed later in greater detail.

Every timing check can include an optional notifier which toggles whenever the timing check detects a violatio
model can use the notifier to make behavior a function of timing check violations. Notifiers are discussed in g
detail in 15.5.

Like expressions for module path delays, timing check limit values are constant expressions which can includ
params.

15.2 Timing checks using a stability window

These timing checks are discussed in this section:

$setup $hold $setuphold
$recovery $removal $recrem

These checks accept two signals, the reference event and the data event, and define a time window with respe
signal while checking the time of transition of the other signal with respect to the window. In general they all pe
the following steps:

a) Define a time window with respect to the reference signal using the specified limit or limits;

b) Check the time of transition of the data signal with respect to the time window;

c) Report a timing violation if the data signal transitions within the time window.
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15.2.1 $setup

The$setup timing check syntax is shown in Syntax 15-3.

Syntax 15-3—Syntax for $setup

Table 15-1 defines the$setup timing check.

The data event is usually a data signal, while the reference event is usually a clock signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit

(end of time window) = (timecheck time)

The$setup timing check reports a timing violation in the following case:

(beginning of time window) < (timestamp time) < (end of time window)

The endpoints of the time window are not part of the violation region. When the limit is zero, the$setupcheck shall
never issue a violation.

15.2.2 $hold

The$hold timing check syntax is shown in Syntax 15-4.

 $setup_timing_check ::=(From Annex A - A.7.5.1)
$setup ( data_event, reference_event, timing_check_limit [, [ notify_reg ] ] ) ;

data_event ::=(From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

timing_check_limit ::=
expression

Table 15-1—$setup arguments

Argument Description

data_event Timestamp event

reference_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg
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Table 15-2 defines the$hold timing check.

The data event is usually a data signal, while the reference event is usually a clock signal.

The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The$hold timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. When the limit is zero, the$hold check shall
never issue a violation.

15.2.3 $setuphold

The$setuphold timing check syntax is shown in Syntax 15-5.

$hold _timing_check ::=(From Annex A - A.7.5.1)
$hold ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

data_event ::=(From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

timing_check_limit ::=
expression

Table 15-2—$hold arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg
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Table 15-3 defines the$setuphold timing check.

The$setuphold timing check can accept negative limit values. This is discussed in greater detail in 15.8.

The data event is usually a data signal, while the reference event is usually a clock signal.

$setuphold_timing_check ::=(From Annex A - A.7.5.1)
$setuphold (reference_event, data_event, timing_check_limit, timing_check_limit

[ , [ notify_reg ] [, [ stamptime_condition ] [, [ checktime_condition ]
[ , [ delayed_reference ] [, [ delayed_data ] ] ] ] ] ]) ;

checktime_condition ::=(From Annex A - A.7.5.2)
mintypmax_expression

data_event ::=
timing_check_event

delayed_data ::=
terminal_identifier

| terminal_identifier[ constant_mintypmax_expression]
delayed_reference ::=

terminal_identifier
| terminal_identifier[ constant_mintypmax_expression]

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

stamptime_condition ::=
mintypmax_expression

timing_check_limit ::=
expression

Table 15-3—$setuphold arguments

Argument Description

reference_event Timecheck or timestamp event when setup limit is positive
Timestamp event when setup limit is negative

data_event Timecheck or timestamp event when hold limit is positive
Timestamp event when hold limit is negative

setup_limit Constant expression

hold_limit Constant expression

notifier (optional) Reg

timestamp_cond (optional) Timestamp condition for negative timing checks

timecheck_cond (optional) Timecheck condition for negative timing checks

delayed_reference (optional) Delayed reference signal for negative timing checks

delayed_data (optional) Delayed data signal for negative timing checks
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When both the setup limit and the hold limit are positive, either the reference event or the data event can
timecheck event. It shall depend upon which occurs first in the simulation.

When either the setup limit or the hold limit is negative the restriction becomes:

setup_limit + hold_limit > (simulation unit of precision)

The$setupholdtiming check combines the functionality of the$setupand$hold timing checks into a single timing
check. Therefore, the following invocation:

$setuphold( posedge clk, data, tSU, tHLD );

is equivalent in functionality to the following, if tSU  and tHLD  are not negative:

$setup( data, posedge clk, tSU );
$hold( posedge clk, data, tHLD );

When both setup and hold limits are positive and the data event occurs first, the endpoints of the time wind
determined as follows:

(beginning of time window) = (timecheck time) - limit

(end of time window) = (timecheck time)

And the$setuphold timing check reports a timing violation in the following case:

(beginning of time window) < (timecheck time) <= (end of time window)

Only the beginning of the time window is not part of the violation region. The$setupholdcheck shall report a timing
violation when the reference and data events occur simultaneously.

When both setup and hold limits are positive and the data event occurs second, the endpoints of the time win
determined as follows:

beginning of time window) = (timestamp time)

(end of time window) = (timestamp time) + limit

And the$setuphold timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. The$setupholdcheck shall report a timing viola-
tion when the reference and data events occur simultaneously.

When both limits are zero, the$setuphold check shall never issue a violation.

15.2.4 $removal

The$removal timing check syntax is shown in Syntax 15-6.
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Table 15-4 defines the$removal timing check.

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock s

The endpoints of the time window are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

The$removal timing check reports a timing violation in the following case:

(beginning of time window) < (timestamp time) < (end of time window)

The endpoints of the time window are not part of the violation region. When the limit is zero, the$removal check
shall never issue a violation.

15.2.5 $recovery

The$recovery timing check syntax is shown in Syntax 15-7.

$removal_timing_check ::=(From Annex A - A.7.5.1)
$removal ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

data_event ::=(From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

timing_check_limit ::=
expression

Table 15-4—$removal arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg
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Table 15-5 defines the$recoverytiming check.

The reference event is usually a control signal like clear, reset or set, while the data event is usually a clock s

The endpoints of the time window are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

The$recovery timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. When the limit is zero, the$recoverycheck shall
never issue a violation.

15.2.6 $recrem

The$recrem timing check syntax is shown in Syntax 15-8.

$recovery_timing_check ::=(From Annex A - A.7.5.1)
$recovery ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

data_event ::=(From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

timing_check_limit ::=
expression

Table 15-5—$recovery arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg
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Syntax 15-8—Syntax for $recrem

Table 15-6 defines the$recrem timing check.

The$recrem timing check can accept negative limit values. This is discussed in greater detail in 15.8.

When both the removal limit and the recovery limit are positive, either the reference event or the data event can
timecheck event. It shall depend upon which occurs first in the simulation.

$recrem_timing_check ::= (From Annex A - A.7.5.1)
$recrem ( reference_event, data_event, timing_check_limit, timing_check_limit

[ , [ notify_reg ] [, [ stamptime_condition ] [, [ checktime_condition ]
[ , [ delayed_reference ] [, [ delayed_data ] ] ] ] ] ]) ;

checktime_condition ::=(From Annex A - A.7.5.2)
mintypmax_expression

data_event ::=
timing_check_event

delayed_data ::=
terminal_identifier

| terminal_identifier[ constant_mintypmax_expression]
delayed_reference ::=

terminal_identifier
| terminal_identifier[ constant_mintypmax_expression]

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

stamptime_condition ::=
mintypmax_expression

timing_check_limit ::=
expression

Table 15-6—$recrem arguments

Argument Description

reference_event Timecheck or timestamp event when removal limit is positive
Timestamp event when removal limit is negative

data_event Timecheck or timestamp event when recovery limit is positive
Timestamp event when recovery limit is negative

recovery_limit Constant expression

removal_limit Constant expression

notifier (optional) Reg

timestamp_cond (optional) Timestamp condition for negative timing checks

timecheck_cond (optional) Timecheck condition for negative timing checks

delayed_reference (optional) Delayed reference signal for negative timing checks

delayed_data (optional) Delayed data signal for negative timing checks
Section 15 Copyright 2000 IEEE. All rights reserved. 253
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

indow

e win-

imit. For
. In gen-
When either the removal limit or the recovery limit is negative the restriction becomes:

removal_limit + recovery_limit > (simulation unit of precision)

The $recrem timing check combines the functionality of the$removal and$recovery timing checks into a single
timing check. Therefore, the following invocation:

$recrem( posedge clear, posedge clk, tREC, tREM );

is equivalent in functionality to the following, if tREC and tREM  are not negative:

$removal( posedge clear, posedge clk, tREM );
$recovery( posedge clear, posedge clk, tREC );

When both removal and recovery limits are positive and the data event occurs first, the endpoints of the time w
are determined as follows:

(beginning of time window) = (timecheck time) - limit
(end of time window) = (timecheck time)

And the$recrem timing check reports a timing violation in the following case:

(beginning of time window) < (timecheck time) <= (end of time window)

Only the beginning of the time window is not part of the violation region. The$recrem check shall report a timing
violation when the reference and data events occur simultaneously.

When both removal and recovery limits are positive and the data event occurs second, the endpoints of the tim
dow are determined as follows:

(beginning of time window) = (timestamp time)
(end of time window) = (timestamp time) + limit

And the$recrem timing check reports a timing violation in the following case:

(beginning of time window) <= (timecheck time) < (end of time window)

Only the end of the time window is not part of the violation region. The$recremcheck shall report a timing violation
when the reference and data events occur simultaneously.

When both limits are zero, the$setuphold check shall never issue a violation.

15.3 Timing checks for clock and control signals

The following timing checks are discussed in this section:

$skew $timeskew $fullskew $period $width $nochange

These checks accept one or two signals and verify transitions on them are never separated by more than the l
those checks specifying only one signal, the reference event and data event are derived from that one signal
eral these checks all perform the following steps:

a) Determine the elapsed time between two events;

b) Compare the elapsed time to the specified limit;
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c) Report a timing violation if the elapsed time violates the limit.

The skew checks have two different violation detection mechanisms, event-based and timer-based. Event-bas
checking is performed only when a signal transitions, while timer-based skew checking takes place as soon
simulation time equal to the skew limit has elapsed.

The$nochange check involves three events rather than two.

15.3.1 $skew

The$skew timing check syntax is shown in Syntax 15-9.

Syntax 15-9—Syntax for $skew

Table 15-7 defines the$skewtiming check.

The$skew timing check reports a violation in the following case:

(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can never cause$skewto report a timing violation, even
when the skew limit value is zero.

The$skewtiming check is event-based; it is evaluated only after a data event. If there is never a data event (i
data event is infinitely late), the$skewtiming check shall never be evaluated, and no timing violation shall ever
reported. In contrast, the$timeskewand$fullskew checks are timer-based by default, and they shall be used if vio
tion reports are absolutely required and the data event can be very late or even absent altogether. These check
cussed in 15.3.2 and 15.3.3.

$skewshall wait indefinitely for the data event once it has detected a reference event and it shall not report a

$skew_timing_check ::=(From Annex A - A.7.5.1)
$skew ( reference_event, data_event, timing_check_limit [, [ notify_reg ] ]) ;

data_event ::=(From Annex A - A.7.5.2)
timing_check_event

notify_reg ::=
variable_identifier

reference_event ::=
timing_check_event

timing_check_limit ::=
expression

Table 15-7—$skew arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg
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violation until the data event takes place. A second consecutive reference event shall cancel the old wait for t
event and begin a new one.

After a reference event, the$skewtiming check shall never stop checking data events for a timing violation.$skew
shall report timing violations for all data events occurring beyond the limit after a reference event.

15.3.2 $timeskew

The syntax for$timeskew is shown in Syntax 15-10.

Syntax 15-10—Syntax for $timeskew

Table 15-8 defines the$timeskewtiming check arguments.

The$timeskew timing check reports a violation only in the following cases:

(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals can never cause$timeskew to report a timing violation,
even when the skew limit value is zero.

The default behavior for$timeskewis timer-based. Violations are reported immediately upon an elapse of time a

$timeskew_timing_check ::=(From Annex A - A.7.5.1)
$timeskew ( reference_event, data_event, timing_check_limit

[ , [ notify_reg ] [, [ event_based_flag ] [, [ remain_active_flag ] ] ] ]) ;
data_event ::=(From Annex A - A.7.5.2)

timing_check_event
event_based_flag ::=

constant_expression
notify_reg ::=

variable_identifier
reference_event ::=

timing_check_event
remain_active_flag ::=

constant_mintypmax_expression
timing_check_limit ::=

expression

Table 15-8—$timeskew arguments

Argument Description

reference_event Timestamp event

data_event Timecheck event

limit Non-negative constant expression

notifier (optional) Reg

event_based_flag (optional) Constant expression

remain_active_flag (optional) Constant expression
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the reference event equal to the limit, and the check shall become dormant and report no more violations (
response to data events) until after the next reference event. This check shall also become dormant if it detects
ence event when its condition is false.

The $timeskew check's default timer-based behavior can be altered to event-based using the event based
behaves like the$skewcheck when both the event based flag and the remain active flag are set. The$timeskewcheck
behaves like the$skewcheck when only the event based flag is set, except it becomes dormant after reporting th
violation.

Example:

$timeskew ( posedge CP &&& MODE, negedge CPN, 50);

Figure 15-1—Sample $timeskew

Case 1: Event based flag and remain active flag not set.

After the first reference event onCPat A, a violation is reported atB as soon as50 time units have passed. No fur-
ther violations are reported.

Case 2: Event based flag set, remain active flag not set.

The first three negative transitions onCPNat pointsC, D andE shall cause timing violations. The second referen
event atF occurs while MODE is false, turning the$timeskew check dormant, and no further violations are reporte

Case 3: Event based flag and remain active flag both set.

Every negative edge on CPN is reported as a violation, which is identical to$skew behavior.

15.3.3 $fullskew

The syntax for$fullskew is shown in Syntax 15-11.

MODE

CP

A

50 F

CPN
C D E

B
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Syntax 15-11—Syntax for $fullskew

Table 15-9 defines the$fullskew timing check arguments.

$fullskew is identical to$timeskewexcept the reference and data events can transition in either order. The first
is the maximum time by which the data event can follow the reference event. The second limit is the maximum
by which the reference event can follow the data event.

The reference event is the timestamp event and the data event is the timecheck event when the reference e
cedes the data event. The data event is the timestamp event and the reference event is the timecheck event
data event precedes the reference event.

The$fullskew timing check reports a violation only in the following case, where limit is set to limit1 when the re
ence event transitions first, and to limit2 when the data event transitions first:

(timecheck time) - (timestamp time) > limit

Simultaneous transitions on the reference and data signals shall never cause$fullskew to report a timing violation,
even when the skew limit value is zero.

$fullskew_timing_check ::=(From Annex A - A.7.5.1)
$fullskew ( reference_event, data_event, timing_check_limit, timing_check_limit

[ , [ notify_reg ] [, [ event_based_flag ] [, [ remain_active_flag ] ] ] ]) ;
data_event ::=(From Annex A - A.7.5.2)

timing_check_event
event_based_flag ::=

constant_expression
notify_reg ::=

variable_identifier
reference_event ::=

timing_check_event
remain_active_flag ::=

constant_mintypmax_expression
timing_check_limit ::=

expression

Table 15-9—$fullskew arguments

Argument Description

reference_event Timestamp or timecheck event

data_event Timestamp or timecheck event

limit 1 Non-negative constant expression

limit 2 Non-negative constant expression

notifier (optional) Reg

event_based_flag (optional) Constant expression

remain_active_flag (optional) Constant expression
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The default behavior for$fullskew is timer-based. Violations shall be reported immediately upon an elapse of
after the timestamp event equal to the limit. It then becomes dormant and reports no more violations, even in re
to timecheck events, until after the next timestamp event. This check shall also become dormant if it detects a
tamp event when the associated condition is false.

The $fullskew check's default timer-based behavior can be altered to event-based using the event based
behaves like the$skewcheck when both the event based flag and the remain active flag are set. The$timeskewcheck
behaves like the$skewcheck when only the event based flag is set, except it becomes dormant after it reports th
violation.

Example:

$fullskew ( posedge CP &&& MODE, negedge CPN, 50, 70);

Figure 15-2—Sample $fullskew

Case 1: Event based flag and remain active flag not set.

The transition atA of CPwhile MODEis true begins a wait for a negative transition onCPN, and a violation is reported
at B as soon as a period of time equal to50 time units has passed. This resets the check and readies it for the
active transition.

A negative transition onCPNoccurs next atC, beginning a wait for a positive transition onCPwhile MODEis true. At
Da time equal to70 time units has passed without a positive edge onCPwhile MODEis true, so a violation is reported
and the check is again reset to await the next active transition.

A transition onCPNat E also results in a timing violation, as does the transition atF, because even thoughCPtransi-
tions, MODEis no longer true. Transitions atG andH also result in timing violations, but not the transition atI,
because it is followed by a positive transition onCP while MODE is true.

Case 2: Event based flag set, remain active flag not set.

The transition atA of CPwhile MODEis true begins a wait for a negative transition onCPN, and a violation is reported
at C on CPNbecause it occurs beyond the50 time unit limit. This transition atB also begins a wait of70 time units
for a positive transition onCPwhile MODEis true. But for transitions onCPNatB throughH there is no positive tran-
sition onCPwhile MODEis true, and so no timing violations are reported. The transition atI onCPNbegins a wait of
70  time units, and this is satisfied by the positive transition onCP at J  while MODE is true.

Case 3: Event based flag and remain active flag both set.

MODE

CP

A

50

B

J

B

70

D
70

C E F G H I

CPN
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The transition atA of CPwhile MODEis true begins a wait for a negative transition onCPN, and a violation is reported
atConCPN, and it shall also begin a wait for a positive transition onCPwhile MODEis true. No such transition onCP
ever takes place afterCPNtransitionsC throughH, but no violations are reported becauseCPnever experiences a pos
itive transition whileMODEis true. TransitionI also reports no violation because a positive transition atI on CP
while MODE is true occurs within the70  time unit skew limit.

15.3.4 $width

The$width timing check syntax is shown in Syntax 15-12.

Syntax 15-12—Syntax for $width

If the comma before the threshold is present, the comma before the notifier shall also be present, even thou
arguments are optional.

Table 15-10 defines the$width timing check.

The$width timing check monitors the width of signal pulses by measuring the time from the timestamp event
timecheck event. Since a data event is not passed to$width, it is derived from the reference event, as follows:

data event = reference event signal with opposite edge

Because of the way the data event is derived for$width, an edge triggered event has to be passed as the refer
event. A compilation error shall occur if the reference event is not an edge specification.

While the$width timing check can be defined in terms of a time window, it is simpler to express it as the differ
between the timecheck and timestamp times. The$width timing check reports a violation in the following case:

$width_timing_check ::=(From Annex A - A.7.5.1)
$width ( controlled_reference_event, timing_check_limit,

threshold [, [ notify_reg ] ]) ;
controlled_reference_event ::=(From Annex A - A.7.5.2)

controlled_timing_check_event
notify_reg ::=

variable_identifier
threshold ::=

constant_expression
timing_check_limit ::=

expression

Table 15-10—$width arguments

Argument Description

reference_event Timestamp edge triggered event

(data_event - implicit) Timecheck edge triggered event

limit Non-negative constant expression

threshold (optional) Non-negative constant expression

notifier (optional) Reg
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threshold < (timecheck time) - (timestamp time) < limit

The pulse width has to be greater than or equal to limit in order to avoid a timing violation, but no violatio
reported for glitches smaller than the threshold.

The threshold argument shall be included if the notifier argument is required. It is permissible to not specify bo
threshold and notifier arguments, making the default value for the threshold zero (0). If the notifier is present, a non-
null value for the threshold shall also be present. Here is a legal$width check when the notifier is required and th
threshold is not:

$width ( posedge clk, 6, 0, ntfr_reg);

The data event and the reference event shall never occur at the same simulation time because these event
gered by opposite transitions.

Example:

The following example demonstrates some examples of legal and illegal calls:

15.3.5 $period

The$period timing check syntax is shown in Syntax 15-13.

Syntax 15-13—Syntax for $period

Table 15-11 defines the$period timing check.

$period_timing_check ::=(From Annex A - A.7.5.1)
$period ( controlled_reference_event, timing_check_limit [, [ notify_reg ] ]) ;

controlled_reference_event ::=(From Annex A - A.7.5.2)
controlled_timing_check_event

notify_reg ::=
variable_identifier

timing_check_limit ::=
expression

Table 15-11—$period arguments

Argument Description

reference_event Timestamp edge triggered event

(data_event - implicit) Timestamp edge triggered event

// Legal Calls
$width ( negedge clr, lim );
$width ( negedge clr, lim, thresh, notif );
$width ( negedge clr, lim, 0, notif );

// Illegal Calls
$width ( negedge clr, lim, , notif );
$width ( negedge clr, lim, notif );
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Since the data event is not passed as an argument to$period, it is derived from the reference event, as follows:

data event = reference event signal with the same edge

Because of the way the data event is derived for$period, an edge triggered event shall be passed as the refere
event. A compilation error shall occur if the reference event is not an edge specification.

While the$period timing check can be defined in terms of a time window, it is simpler to express it as the differ
between the timecheck and timestamp times.The$period timing check reports a violation in the following case:

(timecheck time) - (timestamp time) < limit

15.3.6 $nochange

The$nochange syntax is shown in Syntax 15-14.

Syntax 15-14—Syntax for $nochange

Table 15-12 defines the$nochangetiming check arguments.

limit Non-negative constant expression

notifier (optional) Reg

$nochange_timing_check ::= (From Annex A - A.7.5.1)
$nochange ( reference_event, data_event, start_edge_offset,

end_edge_offset [, [ notify_reg ] ]) ;
data_event ::=(From Annex A - A.7.5.2)

timing_check_event
end_edge_offset ::=

mintypmax_expression
notify_reg ::=

variable_identifier
reference_event ::=

timing_check_event
start_edge_offset ::=

mintypmax_expression

Table 15-12—$nochange arguments

Argument Description

reference_event Edge triggered timestamp and/or timecheck event

data_event Timestamp or timecheck event

start_edge_offset Constant expression

end_edge_offset Constant expression

notifier (optional) Reg

Table 15-11—$period arguments  (continued)
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The$nochangetiming check reports a timing violation if the data event occurs during the specified level of the
trol signal (the reference event). The reference event can be specified with theposedgeor thenegedgekeyword, but
the edge control specifiers (see 15.4) can not be used.

The start edge and end edge offsets can expand or shrink the timing violation region, which is defined by the d
of the reference event signal after the edge. For example, if the reference event is a posedge, then the durat
period during which the reference signal is high. A positive offset for start edge extends the region by starting th
ing violation region earlier; a negative offset for start edge shrinks the region by starting the region later. Simil
positive offset for the end edge extends the timing violation region by ending it later, while a negative offset f
end edge shrinks the region by ending it earlier. If both the offsets are zero, the size of the region shall not ch

Unlike other timing checks,$nochangeinvolves three, rather than two, transitions. The leading edge of the refere
event defines the beginning of the time window, while the trailing edge of the reference event defines the end
time window. A violation results if the data event occurs anytime within the time window.

The endpoints of the time window are determined as follows:

(beginning of time window) =
(leading reference edge time) - start_edge_offset
(end of time window) = (trailing reference edge time) + end_edge_offset

The$nochange timing check reports a timing violation in the following case:

beginning of time window) < (data event time) < (end of time window)

The endpoints of the time window are not included. The values ofstart_edge_offset and
end_edge_offset play a significant role in determining which signal, the reference event or the data event,
timestamp or timecheck event.

Example:

$nochange( posedge clk, data, 0, 0) ;

In this example,$nochangesystem task shall report a violation if thedata signal changes whileclk is high. It shall
not be a violation ifposedge clk  and a transition ondata  occur simultaneously.

15.4 Edge-control specifiers

The edge-control specifiers can be used to control events in timing checks based on specific edge transitions
0, 1, andx . Syntax 15-15 shows the syntax for edge-control specifiers.

Syntax 15-15—Syntax for edge control specifier

edge_control_specifier ::=(From Annex A - A.7.5.3)
edge [ edge_descriptor [, edge_descriptor ] ]

edge_descriptor1 ::=
01

| 10
| z_or_x zero_or_one
| zero_or_one z_or_x

zero_or_one ::=0 | 1
z_or_x ::=x | X | z | Z

1Embedded spaces are illegal.
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Edge-control specifiers contain the keywordedgefollowed by a square bracketed list of from one to six pairs of ed
transitions between0, 1 andx , as follows:

01 Transition from0 to 1
0x Transition from0 to x
10 Transition from1 to 0
1x Transition from1 to x
x0 Transition fromx  to 0
x1 Transition fromx  to 1

Edge transitions involvingz  are treated the same way as edge transitions involvingx .

Theposedgeandnegedgekeywords can be used as a shorthand for certain edge-control specifiers. For examp
construct:

posedge clr

is equivalent to the following:

edge[01, 0x, x1] clr

Similarly, the construct

negedge clr

is the same as the following:

edge[10, x0, 1x] clr

However, edge-control specifiers offer the flexibility to declare edge transitions other thanposedge andnegedge.

15.5 Notifiers: user-defined responses to timing violations

Timing check notifiers detect timing check violations behaviorally, and, therefore, take an action as soon as a
tion occurs. Such notifiers can be used to print an informative error message describing the violation or to pro
anx  value at the output of the device which reported the violation.

The notifier is a reg—declared in the module where timing check tasks are invoked—which is passed as the la
ment to a system timing check. Whenever a timing violation occurs, the system task updates the value of the n

The notifier is an optional argument to all system timing checks and can be omitted from the system task call w
adversely affecting its operation.

Table 15-13 shows how the notifier values are toggled when timing violations occur.

Table 15-13—User-defined responses to timing violations

BEFORE violation  AFTER violation

x 0

0 1

1 0

z z
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Examples:

Example 1

Example 2—Consider a more complex example of how to use notifiers in a behavioral model. The following exa
uses a notifier to set the D flip-flop output tox  when a timing violation occurs in an edge-sensitive UDP.

$setup( data, posedge clk, 10, notify_reg ) ;
$width( posedge clk, 16, notify_reg ) ;

primitive  posdff_udp(q, clock, data, preset, clear, notifier);
output q; reg q;
input  clock, data, preset, clear, notifier;
table
//clock data p c notifier state  q
//-------------------------------------

r    0    1 1    ?    :  ?  : 0 ;
r    1    1 1    ?    :  ?  : 1 ;

p    1    ? 1    ?    :  1  : 1 ;
p    0    1 ?    ?    :  0  : 0 ;

n    ?    ? ?    ?    :  ?  : - ;
?    *    ? ?    ?    :  ?  : - ;

?    ?    0 1    ?    :  ?  : 1 ;
?    ?    * 1    ?    :  1  : 1 ;

?    ?    1 0    ?    :  ?  : 0 ;
?    ?    1 *    ?    :  0  : 0 ;
?    ?    ? ?    *    :  ?  : x ; // At any notifier event

// output x
endtable
endprimitive
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NOTE—This model applies to edge-sensitive UDPs only; for level-sensitive models, an additional UDP forx propagation has to
be generated.

15.5.1 Requirements for accurate simulation

In order to accurately model negative value timing checks:

a) A timing violation shall be triggered if the signal changes in the violation window, exclusive of the endpo
Violation windows smaller than two units of simulation precision can not yield timing violations.

b) The value of the latched data shall be the one which is stable during the violation window, again, exclus
the endpoints.

To facilitate these modeling requirements, delayed copies of the data and reference signals are generated in th
checks, and these are used internally for timing check evaluation at run-time. The setup and hold times used in

module dff(q, qbar, clock, data, preset, clear);
output q, qbar;
input  clock, data, preset, clear;
reg notifier;

and (enable, preset, clear);
not (qbar, ffout);
buf (q, ffout);
posdff_udp (ffout, clock, data, preset, clear, notifier);

specify
// Define timing check specparam values
specparam tSU = 10, tHD = 1, tPW = 25, tWPC = 10, tREC = 5;
// Define module path delay rise and fall min:typ:max values
specparam tPLHc = 4:6:9 , tPHLc = 5:8:11;
specparam tPLHpc = 3:5:6 , tPHLpc = 4:7:9;

// Specify module path delays
(clock *> q,qbar) = (tPLHc, tPHLc);
(preset,clear *> q,qbar) = (tPLHpc, tPHLpc);

// Setup time : data to clock, only when preset and clear are 1
$setup(data, posedge clock &&& enable, tSU, notifier);

// Hold time: clock to data, only when preset and clear are 1
$hold( posedge clock, data &&& enable, tHD, notifier);

// Clock period check
$period( posedge clock, tPW, notifier);
// Pulse width : preset, clear
$width( negedge preset, tWPC, 0, notifier);
$width( negedge clear, tWPC, 0, notifier);

// Recovery time: clear or preset to clock
$recovery( posedge preset, posedge clock, tREC, notifier);
$recovery( posedge clear, posedge clock, tREC, notifier);

endspecify
endmodule
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are adjusted so as to shift the violation window and make it overlap the reference signal.

Delayed data and reference signals can be declared within the timing check so they can be used in the mode
tional implementation to insure accurate simulation. If no delayed signals are declared in the timing check, a
negative setup or hold value is present, then implicit delayed signals are created. Since implicit delayed sign
not be used in defining model behavior, such a model can possibly behave incorrectly.

Examples:

Example 1:

$setuphold( posedge CLK, DATA, -10, 20);

Implicit delayed signals shall be created forCLKandDATA, but it shall not be possible to access them. The$setup-
hold check shall be properly evaluated, but functional behavior shall not always be accurate. The oldDATAvalue
shall be incorrectly clocked in ifDATA transitions betweenposedge CLK  and 10  time units later.

Example 2:

$setuphold( posedge CLK, DATA1, -10, 20);
$setuphold( posedge CLK, DATA2, -15, 18);

Implicit delayed signals shall be created forCLK, DATA1andDATA2, one for each. Even thoughCLK is referenced
in two different timing checks, only one implicit delayed signal is created, and it is used for both timing check

Example 3:

If a given signal has a delayed signal in some timing checks but not in others, the delayed signal shall be used
cases:

$setuphold( posedge CLK, DATA1, -10, 20,,,, del_CLK, del_DATA1);
$setuphold( posedge CLK, DATA2, -15, 18);

Explicit delayed signals ofdel_CLK anddel_DATA1 are created forCLK andDATA1, while an implicit delayed
signal is created forDATA2. In other words,CLK has only one delayed signal created for it,del_CLK , rather than
one explicit delayed signal for the first check, and another implicit delayed signal for the second check.

The delayed versions of the signals, whether implicit or explicit, shall be used in the$setup, $hold, $setuphold,
$recovery, $removal, $recrem, $width, $period and$nochangetiming checks, and these checks shall have th
limits adjusted accordingly. This ensures the notifier shall be toggled at the proper moment. If the adjuste
becomes less than or equal to0, the limit shall be set to0 and the simulator shall issue a warning.

The delayed versions of the signals shall not be used for the$skew, $fullskew and$timeskewtiming checks because
it can possibly result in the reversal of the order of signal transitions. This causes the notifiers for these timing
to toggle at the wrong time relative to the rest of the model, perhaps resulting in transitions toX due to a timing check
violation being canceled. This issue shall be addressed in the model, possibly by using separate notifiers f
checks.

It is possible for a set of negative timing check values to be mutually inconsistent and produce no solution
delay values of delayed signals. In these situations the simulator shall issue a warning message. The incon
shall be resolved by changing the smallest negative limit value to0 and recalculating the delays for the delayed si
nals, and this shall be repeated until a solution is reached. This procedure shall always produce a solution be
the worst case all negative limit values become0, and no delayed signals are needed.

The delayed timing check signals are only actually delayed when negative limit values are present. If a timing
signal becomes delayed by more than the propagation delay from that signal to an output, that output shall tak
than its propagation delay to change. It shall instead transition at the same time which the delayed timing chec
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changes. Thus, the output shall behave as if its specify path delay were equal to the delay applied to the timin
signal. This situation can only arise when unique setup/hold or removal/recovery times are given for each edg
data signal.

Example:

(CLK = Q) = 6;
$setuphold ( posedge CLK, posedge D, -3,  8, , , , dCLK, dD);
$setuphold ( posedge CLK, negedge D, -7, 13, , , , dCLK, dD);

The setup time of-7 (the larger in absolute value of-3 and-7 ) creates a delay of7 for dCLK, and so outputQshall
not change until7 time units after a positive edge onCLK, rather than the 6 time units given in the specify path.

15.5.2 Conditions in negative timing checks

Conditions can be associated with both the reference and data signals by using the&&&operator, but when either the
setup or hold time is negative the conditions need to be paired with reference and data signals in a more flexib
This example illustrates why.

This pair of$setup and$hold checks work together to provide the same check as a single$setuphold:

$setup (data, clk&&&cond1, tsetup, ntfr);
$hold (clk, data&&&cond1, thold, ntfr);

clk is the timecheck event for the$setupcheck, while data is the timecheck event for the$hold check. This can not
be represented in a single$setupholdcheck, and so additional arguments are provided to make this possible. T
arguments are timestamp_cond and timecheck_cond, and they immediately follow the notifier (see 15.2.3). Th$set-
uphold check is equivalent to the separate$setup and$hold checks shown above:

$setuphold( clk, data, tsetup, thold, ntfr, , cond1);

The timestamp_cond argument is null, while the timecheck_cond argument iscond1 .

The timestamp_cond and timecheck_cond arguments are associated with either the reference or data signals
which delayed version of these signals occurs first. timestamp_cond is associated with the delayed signal whi
sitions first, while timecheck_cond is associated with the delayed signal which transitions second.

Delayed signals are only created for the reference and data signals, and not for any condition signals associa
them. Therefore, timestamp_cond and timecheck_cond are not implicitly delayed by the simulator. Delayed co
signals for the timestamp_cond and timecheck_cond fields can be created by making them a function of the
signals.

Example:

assign TE_cond_D  = (dTE !== 1’b1);
assign TE_cond_TI = (dTE !== 1’b0);
assign DXTI_cond  = (dTI !==   dD);

specify
$setuphold( posedge CP, D, -10,  20, notifier, ,TE_cond_D,  dCP, dD);
$setuphold( posedge CP, TI, 20, -10, notifier, ,TE_cond_TI, dCP, dTI);
$setuphold( posedge CP, TE, -4,   8, notifier, ,DXTI_cond,  dCP, dTE);

endspecify

The assign statements create condition signals which are functions of the delayed signals. Creating delaye
conditions synchronizes the conditions with the delayed versions of the reference and data signals used to per
checks.
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The first$setupholdhas a negative setup time, and so the timecheck conditionTE_cond_D is associated with data
signalD. The second$setupholdhas a negative hold time, and so the timecheck conditionTE_cond_TI is associ-
ated with reference signalsCP. The third $setuphold has a negative setup time, and so the timecheck condit
DXTI_cond  is associated with data signal TE .

The violation windows for the example are shown in Figure 15-3.

Figure 15-3—Timing check violation windows

These are the delay values calculated for the delayed signals:

dCP     10.01
dD       0.00
dTI     20.02
dTE      2.02

Use of delayed signals in creating the signals for the timestamp_cond and timecheck_cond arguments is not r
but it is usually closer to actual device behavior.

15.5.3 Notifiers in negative timing checks

Because the reference and data signals are delayed internally, the detection of the timing violation is also d
Notifier regs in negative timing checks shall be toggled when the timing check detects a timing violation, w
occurs when the delayed signals as measured by the adjusted timing check values are in violation, not when th
layed signals at the model inputs as measured by the original timing check values are in violation.

15.5.4 Option behavior

As already mentioned, the ability of Verilog simulators to handle negative values in$setupholdand$recrem timing
checks shall be enabled with an invocation option. It is possible models written to accept negative timing che
ues with delayed reference and/or delayed data signals can be run without this invocation option enabled. In
cumstance the delayed reference and data signals become copies of the original reference and data signals.
occurs if an invocation option turning off all timing checks is used.

15.6 Enabling timing checks with conditioned events

A construct called a conditioned event ties the occurrence of timing checks to the value of a conditioning s
Syntax 15-16 shows the syntax for controlled timing check event.

D
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480
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Syntax 15-16—Syntax for controlled timing check event

The comparisons used in the condition can be deterministic, as in===, !==, ~, or no operation, or nondeterministic
as in== or != . When comparisons are deterministic, anx value on the conditioning signal shall not enable the tim
ing check. For nondeterministic comparisons, anx  on the conditioning signal shall enable the timing check.

The conditioning signal shall be a scalar net; if a vector net or an expression resulting in a multi-bit value is use
the least significant bit of the vector net or the expression value is used.

If more than one conditioning signal is required for conditioning timing checks, appropriate logic shall be com
in a separate signal outside the specify block, which can be used as the conditioning signal.

Examples:

Example 1—To illustrate the difference between conditioned and unconditioned timing check events, consid
following example with unconditioned timing check:

$setup( data, posedge clk, 10 );

Here, a setup timing check shall occur every time there is a positive edge on the signalclk .

To trigger the setup check on the positive edge on the signalclk only when the signalclr is high, rewrite the com-
mand as

$setup( data, posedge clk &&&  clr, 10 ) ;

Example 2—This example shows two ways to trigger the same timing check as in example 1 (on the positiveclk
edge) only whenclr  is low. The second method uses the=== operator, which makes the comparison deterministi

timing_check_event ::=(From Annex A - A.7.5.3)
[timing_check_event_control] specify_terminal_descriptor [&&& timing_check_condition ]

controlled_timing_check_event ::=
timing_check_event_control specify_terminal_descriptor [&&&  timing_check_condition ]

timing_check_event_control ::=
posedge

| negedge
| edge_control_specifier

specify_terminal_descriptor ::=
specify_input_terminal_descriptor

| specify_output_terminal_descriptor
timing_check_condition ::=

scalar_timing_check_condition
| ( scalar_timing_check_condition)

scalar_timing_check_condition ::=
expression

| ~ expression
| expression== scalar_constant
| expression=== scalar_constant
| expression!= scalar_constant
| expression!== scalar_constant

scalar_constant ::=
1'b0 | 1'b1 | 1'B0 | 1'B1 | 'b0 | 'b1 | 'B0 | 'B1 | 1 | 0
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$setup( data, posedge clk &&&  ( ~clr), 10 ) ;
$setup( data, posedge clk &&&  (clr ===0), 10 );

Example 3—To perform the previous sample setup check on the positiveclk edge only whenclr andset are high,
add the following statement outside the specify block:

and new_gate( clr_and_set, clr, set );

Then add the condition to the timing check using the signalclr_and_set  as follows:

$setup( data, posedge clk &&&  clr_and_set, 10 );

15.7 Vector signals in timing checks

Either or both signals in a timing check can be a vector. This shall be interpreted as a single timing check wh
transition of one or more bits of a vector is considered a single transition of that vector.

Example:

module DFF (Q, CLK, DAT);
input  CLK;
input  [7:0] DAT;
output [7:0] Q;
always @( posedge clk)
Q = DAT;
specify
$setup (DAT, posedge CLK, 10);
endspecify
endmodule

If DATtransitions from 'b00101110 to 'b01010011 at time100 , andCLK transitions from0 to 1 at time 105 ,
then the$setup timing check shall still only report a single timing violation.

Simulators can provide an option causing vectors in timing checks to result in the creation of multiple single-b
ing checks. For timing checks with only a single signal, such as$period or $width, a vector of widthN results inN
unique timing checks. For timing checks with two signals, such as$setup, $hold, $setuphold, $skew, $timeskew,
$fullskew, $recovery, $removal, $recrem and$nochange, whereMandN are the widths of the signals, the result i
M*N unique timing checks. If there is a notifier, all the timing checks trigger that notifier.

With such an option enabled, the above example yields six timing violation because six bits ofDAT transitioned.

15.8 Negative timing checks

Both the$setupholdand$recrem timing checks can accept negative values when the negative timing check opti
enabled. The behavior of these two timing checks is identical with respect to negative values. The descriptions
section are for the$setuphold timing check, but apply equally to the$recrem timing check.

The setup and hold timing check values define a timing violation window with respect to the reference signa
during which the data shall remain constant. Any change of the data during the specified window causes a tim
lation. The timing violation is reported and, through the notifier reg, other actions can take place in the model, s
forcing the output of a flip-flop toX when it detects a timing violation.

A positive value for both setup and hold times implies this violation window straddles the reference signal sho
Figure 15-4.
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Figure 15-4—Data constraint interval, positive setup/hold

A negative hold or setup time means the violation window is shifted to either before or after the reference edg
can happen in a real device because of disparate internal device delays between the internal clock and da
paths. These internal device delays are illustrated in Figure 15-5 showing how significant differences in these
can cause negative setup or hold values.
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Figure 15-5—Data constraint interval, negative setup/hold
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Section 16

Backannotation using the Standard Delay Format (SDF)

SDF files contain timing values for specify path delays, specparam values, timing check constraints, and interc
delays. SDF files can also contain other information in addition to simulation timing, but these need not conce
ilog simulation. The timing values in SDF files usually come from ASIC delay calculation tools that take adva
of connectivity, technology, and layout geometry information.

Verilog backannotation is the process by which timing values from the SDF file update specify path delays,
param values, timing constraint values, and interconnect delays.

All this information is covered further inIEEE Std 1497-1999, Standard for Standard Delay Format (SDF) for t
Electronic Design Process[B2].

16.1 The SDF annotator

The term SDF Annotator refers to any tool capable of backannotating SDF data to a Verilog simulator. It shall
a warning for any data it is unable to annotate.

An SDF file can contain many constructs which are not related to specify path delays, specparam values,
check constraint values, or interconnect delays. An example is any construct in theTIMINGENVsection of the SDF
file. All constructs unrelated to Verilog timing shall be ignored without any warnings issued.

Any Verilog timing value for which the SDF file does not provide a value shall not be modified during the backa
tation process, and its pre-backannotation value shall be unchanged.

16.2 Mapping of SDF constructs to Verilog

SDF timing values appear within aCELLdeclaration, which can contain one or more ofDELAY, TIMINGCHECKand
LABEL sections. TheDELAYsection contains propagation delay values for specify paths and interconnect de
The TIMINGCHECKsection contains timing check constraint values. TheLABEL section contains new values for
specparams. Backannotation into Verilog is done by matching SDF constructs to the corresponding Verilog d
tions, then replacing the existing Verilog timing values with those from the SDF file.

16.2.1 Mapping of SDF delay constructs to Verilog declarations

When annotatingDELAYconstructs that are not interconnect delays (covered in 16.2.3), the SDF annotator loo
specify paths where the names and conditions match. When annotatingTIMINGCHECKconstructs, the SDF annota
tor looks for timing checks of the same type where the names and conditions match. Table 16-1 shows which
structures can be annotated by each SDF construct in theDELAY section.
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In this example the source SDF signalsel matches the source Verilog signal, and the destination SDF sig
zout also matches the destination Verilog signal, and so the rise/fall times of1.3 and 1.7 are annotated to the
specify path.

SDF file:

(IOPATH sel zout (1.3) (1.7))

Verilog specify path:

(sel => zout) = 0;

A conditionalIOPATHdelay between two ports shall annotate only to Verilog specify paths between those sam
ports with the same condition. In this example the rise/fall times of1.3 and1.7 are annotated only to the secon
specify path.

SDF file:

(COND mode (IOPATH sel zout (1.3) (1.7)))

Verilog specify paths:

if  (!mode) (sel => zout) = 0;
if  (mode) (sel => zout) = 0;

A non-conditionalIOPATH delay between two ports shall annotate to all Verilog specify paths between those
two ports. In this example the rise/fall times of 1.3  and 1.7  are annotated to both specify paths.

Table 16-1—Mapping of SDF delay constructs to Verilog declarations

SDF Construct Verilog annotated structure

(PATHPULSE... Conditional and non-conditional specify path pulse limits

(PATHPULSEPERCENT... Conditional and non-conditional specify path pulse limits

(IOPATH... Conditional and non-conditional specify path delays/pulse limits

(IOPATH (RETAIN... Conditional and non-conditional specify path delays/pulse limits,
RETAIN ignored without warning

(COND (IOPATH... Conditional specify path delays/pulse limits

(COND (IOPATH (RETAIN... Conditional specify path delays/pulse limits,RETAIN ignored without
warning

(CONDELSE (IOPATH... ifnone

(CONDELSE (IOPATH (RETAIN... ifnone,RETAIN ignored without warning

(DEVICE... All specify paths to module outputs. If no specify paths, all primitives
driving module outputs.

(DEVICE port_instance... If port_instance is a module instance, all specify paths to module
outputs. If no specify paths, all primitives driving module outputs. If
port_instance is a module instance output, all specify paths to that
module output. If no specify path, all primitives driving that module
output.
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(IOPATH sel zout (1.3) (1.7))

Verilog specify paths:

if  (!mode) (sel => zout) = 0;
if  (mode) (sel => zout) = 0;

16.2.2 Mapping of SDF timing check constructs to Verilog

Table 16-2 shows which Verilog timing checks are annotated to by each type of SDF timing check.v1 is the first
value of a timing check, v2 is the second value, while x  indicates no value is annotated.

The reference and data signals of timing checks can have logical condition expressions and edges associa
them. An SDF timing check with no conditions or edges on any of its signals shall match all corresponding V
timing checks regardless of whether conditions are present or not. In this example the SDF timing check sha
tate to all the Verilog timing checks:

SDF file:

(SETUPHOLD data clk (3) (4))

Verilog timing checks:

$setuphold ( posedge clk&&& mode, data, 1, 1, ntfr);
$setuphold ( negedge clk&&&!mode, data, 1, 1, ntfr);

Table 16-2—Mapping of SDF timing check constructs to Verilog

SDF Timing Check Annotated Verilog Timing checks

(SETUP v1... $setup (v1), $setuphold (v1,x)

(HOLD v1... $hold (v1), $setuphold (x,v1)

(SETUPHOLD v1 v2... $setup (v1), $hold (v2), $setuphold (v1,v2)

(RECOVERY v1... $recovery (v1), $recrem (v1,x)

(REMOVAL v1... $removal (v1), $recrem (x,v1)

(RECREM v1 v2... $recovery (v1), $removal (v2), $recrem (v1,v2)

(SKEW v1... $skew (v1)

(TIMESKEW v1...1

1Not part of current SDF standard

$timeskew (v1)

(FULLSKEW v1 v2...1 $fullskew (v1,v2)

(WIDTH v1... $width (v1,x)

(PERIOD v1... $period (v1)

(NOCHANGE v1 v2... $nochange (v1,v2)2

2Not usually implemented in Verilog simulators
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When conditions and/or edges are associated with the signals in an SDF timing check, then they shall match
any corresponding Verilog timing check before annotation shall happen. In this example the SDF timing chec
annotate to the first Verilog timing check, but not the second:

SDF file:

(SETUPHOLD data ( posedge clk) (3) (4))

Verilog timing checks:

$setuphold ( posedge clk&&& mode, data, 1, 1, ntfr); // Annotated
$setuphold ( negedge clk&&&!mode, data, 1, 1, ntfr); // Not annotated

Here, the SDF timing check shall not annotate to any of the Verilog timing checks:

SDF file:

(SETUPHOLD data (COND !mode ( posedge clk)) (3) (4))

Verilog timing checks:

$setuphold ( posedge clk&&& mode, data, 1, 1, ntfr); // Not annotated
$setuphold ( negedge clk&&&!mode, data, 1, 1, ntfr); // Not annotated

16.2.3 SDF annotation of specparams

The SDFLABEL construct annotates to specparams. Any expression containing one or more specparams is r
ated when annotated to from an SDF file.

This example shows SDFLABELconstructs annotating to specparams in a Verilog module. The specparams are
in procedural delays to control when the clock transitions. The SDFLABELconstruct annotates the values ofdhigh
and dlow , thereby setting the period and duty cycle of the clock.

SDF file:

(LABEL
(ABSOLUTE

(dhigh 60)
(dlow 40)))

Verilog file:

module clock(clk);
output clk;
reg clk;
specparam dhigh=0, dlow=0;
initial  clk = 0;
always

begin
#dhigh clk = 1; // Clock remains low for time dlow

// before transitioning to 1
#dlow  clk = 0; // Clock remains high for time dhigh

// before transitioning to 0
end;

endmodule
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This example shows a specparam in an expression of a specify path. The SDFLABELconstruct can be used to chang
the value of the specparam and cause reevaluation of the expression:

specparam cap = 0;
...
specify

(A => Z) = 1.4 * cap + 0.7;
endspecify

16.2.4 SDF annotation of interconnect delays

SDF interconnect delay annotation differs from annotation of other constructs described above in that there e
corresponding Verilog declaration to which to annotate. In Verilog simulation, interconnect delays are an abst
that represents the signal propagation delay from an output or inout module port to an input or inout module po
INTERCONNECTconstruct includes a source, a load, and delay values, while thePORTandNETDELAYconstructs
include only a load and delay values. Interconnect delays can only be annotated between module ports, never
primitive pins. Table 16-3 shows how the SDF interconnect constructs in theDELAY section are annotated:

Interconnect delays can be annotated to both single source and multi-source nets.

When annotating aPORTconstruct, the SDF annotator shall search for the port and if it exists shall annotate an
connect delay to that port which shall represent the delay from all sources on the net to that port.

When annotating aNETDELAYconstruct, the SDF annotator shall check to see if it is annotating to a port or a n
it is a port then the SDF annotator shall annotate an interconnect delay to that port. If it is a net then it shall an
an interconnect delay to all load ports connected to that net. If the port or net has more than one source then t
shall represent the delay from all sources.NETDELAYdelays can only be annotated to input or inout module ports,
to nets.

In the case of multi-source nets, unique delays can be annotated between each source/load pair using theINTER-
CONNECTconstruct. When annotating this construct, the SDF annotator shall find the source port and the loa
and if both exist it shall annotate an interconnect delay between the two. If the source port is not found, or
source port and the load port are not actually on the same net, then a warning message is issued, but the de
load port is annotated anyway. If this happens for a load port that is part of a multi-source net, then the delay is
as if it were the delay from all source ports, which is the same as the annotation behavior for aPORTdelay. Source
ports shall be output or input ports, while load ports shall be input or inout ports.

Interconnect delays share many of the characteristics of specify path delays. The same rules for specify pat
for filling in missing delays and pulse limits also apply for interconnect delays. Interconnect delays have twelve
sition delays, and unique reject and error pulse limits are associated with each of the twelve. An unlimited num
future schedules are permitted.

In a Verilog module, a reference to an annotated port, wherever it occurs, whether in$monitor and$display
statements or in expressions, shall provide the delayed signal value. A reference to the source shall yield th

Table 16-3—SDF annotation of interconnect delays

SDF Construct Verilog annotated structure

(PORT... Interconnect delay

(NETDELAY1

1Only OVI SDF version 1.0, 2.0, and 2.1, and IEEE SDF version 4.0

Interconnect delay

(INTERCONNECT... Interconnect delay
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layed signal value, while a reference to the load shall yield the delayed signal value. In general, references to
nal value hierarchically before the load shall yield the undelayed signal value, while references to the signa
hierarchically after the load shall yield the delayed signal value. An annotation to a hierarchical port shall aff
connected ports at higher or lower hierarchical levels, depending on the direction of annotation. An annotation
source port shall be interpreted as being from all sources hierarchically higher or lower than that source port.

Up-hierarchy annotations shall be properly handled. This situation arises when the load is hierarchically abo
source. The delay to all ports hierarchically above the load or which connect to the net at points hierarchically
the load is the same as the delay to that load.

Down-hierarchy annotation shall also be properly handled. This situation arises when the source is hierarc
above the load. The delay to the load is interpreted as being from all ports at or above the source or which con
the net at points hierarchically above the source.

Hierarchically overlapping annotations are permitted. This occurs when annotations to or from the same po
place at different hierarchical levels, and therefore do not correspond to the same hierarchical subset of ports
example, the firstINTERCONNECTstatement annotates to all ports of the net that are at or hierarchically wi
i53/selmode , while the second annotates to a smaller subset of ports, only those at or hierarchically withini53/
u21/in :

(INTERCONNECT i14/u5/out i53/selmode (1.43) (2.17))
(INTERCONNECT i14/u5/out i53/u21/in  (1.58) (1.92))

Overlapping annotations can occur in many different ways, particularly on multi-source/multi-load nets, and
annotation shall properly resolve all the interactions.

16.3 Multiple annotations

SDF annotation is an ordered process. The constructs from the SDF file are annotated in their order of occu
This means that annotation of an SDF construct can be changed by annotation of a subsequent construct th
modifies(INCREMENT) or overwrites(ABSOLUTE) it. These do not have to be the same construct. This exam
first annotates pulse limits to anIOPATH, then annotates the entireIOPATH, thereby overwriting the pulse limits that
were just annotated:

(DELAY
(ABSOLUTE

(PATHPULSE A Z (2.1) (3.4))
(IOPATH A Z (3.5) (6.1))

Overwriting the pulse limits can be avoided by using empty parentheses to hold the current values of the pulse

(DELAY
(ABSOLUTE

(PATHPULSE A Z (2.1) (3.4))
(IOPATH A Z ((3.5) () ()) ((6.1) () ()) )

The above annotation can be simplified into a single statement like this:

(DELAY
(ABSOLUTE

(IOPATH A Z ((3.5) (2.1) (3.4)) ((6.1) (2.1) (3.4)) )

A PORTannotation followed by anINTERCONNECTannotation to the same load shall cause only the delay from
INTERCONNECTsource to be affected. For this net with three sources and a single load, the delay from all so
280 Copyright 2000 IEEE. All rights reserved. Section 16
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

-

ion’s

ulated

the

.1). All
lays (see
except i13/out remains 6 :

(DELAY
(ABSOLUTE

(PORT i15/in (6))
(INTERCONNECT i13/out i15/in (5))

An INTERCONNECTannotation followed by aPORTannotation shall cause theINTERCONNECTannotation to be
overwritten. Here, the delays from all sources to the load shall become 6 .

(DELAY
(ABSOLUTE

(INTERCONNECT i13/out i15/in (5))
(PORT i15/in (6))

16.4 Multiple SDF files

More than one SDF file can be annotated. Each call to the$sdf_annotatetask annotates the design with timing infor
mation from an SDF file. Annotated values either modify (INCREMENT) or overwrite (ABSOLUTE) values from ear-
lier SDF files. Different regions of a design can be annotated from different SDF files by specifying the reg
hierarchy scope as the second argument to$sdf_annotate.

16.5 Pulse limit annotation

For SDF annotation of delays (not timing constraints), the default values annotated for pulse limits shall be calc
using the percentage settings for the reject and error limits. By default these limits are100%, but they can be modified
through invocation options. For example, assuming invocation options have set the reject limit to40%and the error
limit to 80%, this SDF construct shall annotate a delay of5, a reject limit of2, and an error limit of4:

(DELAY
(ABSOLUTE

(IOPATH A Z (5))

Given that the specify path delay was originally0, this annotation results in a delay of5 and pulse limits of0:

(DELAY
(ABSOLUTE

(IOPATH A Z ((5) () ()) )

Annotations inINCREMENTmode can result in pulse limits less than0, in which case they shall be adjusted to0. For
example, if the specify path pulse limits were both3, this annotation results in a0 value for both pulse limits:

(DELAY
(INCREMENT

(IOPATH A Z (() (-4) (-5)) )

There are two SDF constructs that annotate only to pulse limits,PATHPULSEandPATHPULSEPERCENT. They do
not affect the delay. WhenPATHPULSEsets the pulse limits to values greater than the delay Verilog shall exhibit
same behavior as if the pulse limits had been set equal to the delay.

16.6 SDF to Verilog delay value mapping

Verilog specify paths and interconnects can have unique delays for up to twelve state transitions (see 14.3
other constructs, such as gate primitives and continuous assignments, can have only three state transition de
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For Verilog specify path and interconnect delays, the number of transition delay values provided by SDF mi
less than twelve.

Table 16-4 shows how fewer than twelve SDF delays are extended to be twelve delays. The Verilog transitio
are shown down the left hand side, while the number of SDF delays provided is shown across the top. The SDF
are given the namesv1  throughv12 .

For other delays that can have at most three values, the expansion of less than three SDF delays into three
delays is covered in Table 7-9. More than three SDF delays are reduced to three Verilog delays by simply ignor
extra delays. The delay to the X -state is created from the minimum of the other three delays.

Table 16-4—SDF to Verilog delay value mapping

Verilog transition
Number of SDF delay values provided

1 value 2 values 3 values 6 values 12 values

0 -> 1  v1  v1 v1 v1 v1

1 -> 0  v1 v2 v2  v2  v2

0 -> z v1 v1 v3 v3 v3

z -> 1 v1 v1 v1 v4 v4

1 -> z v1 v2 v3 v5 v5

z -> 0 v1 v2 v2  v6  v6

0 -> x v1 v1 min(v1,v3) min(v1,v3) v7

x -> 1  v1  v1  v1 max(v1,v4) v8

1 -> x v1 v2 min(v2,v3) min(v2,v5) v9

x -> 0 v1 v2 v2 max(v2,v6) v10

x -> z v1 max(v1,v2) v3 max(v3,v5) v11

z -> x v1 min(v1,v2) min(v1,v2) min(v4,v6) v12
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Section 17

System tasks and functions

This section describes system tasks and functions that are considered part of the Verilog HDL. These syste
and functions are divided into ten categories as follows:

These utility tasks and functions provide some broadly useful capabilities. The following clauses describe the
ior of these tasks and functions. Additional tasks for value change dump (VCD) are described in Section 18.

Display tasks [17.1]
$display $strobe
$displayb $strobeb
$displayh $strobeh
$displayo $strobeo
$monitor $write
$monitorb $writeb
$monitorh $writeh
$monitoro $writeo
$monitoroff $monitoron

File I/O tasks [17.2]
$fclose $fopen
$fdisplay $fstrobe
$fdisplayb $fstrobeb
$fdisplayh $fstrobeh
$fdisplayo $fstrobeo
$fgetc $ungetc
$fflush $ferror
$fgets $rewind
$fmonitor $fwrite
$fmonitorb $fwriteb
$fmonitorh $fwriteh
$fmonitoro $fwriteo
$readmemb $readmemh
$swrite $swriteb
$swriteo $swriteh
$sformat $sdf_annotate
$fscanf $sscanf
$fread $ftell
$fseek

Timescale tasks [17.3]
$printtimescale $timeformat

Simulation control tasks  [17.4]
$finish $stop

PLA modeling tasks [17.5]

$async$and$array $async$and$plane
$async$nand$array $async$nand$plane
$async$or$array $async$or$plane
$async$nor$array $async$nor$plane
$sync$and$array $sync$and$plane
$sync$nand$array $sync$nand$plane
$sync$or$array $sync$or$plane
$sync$nor$array $sync$nor$plane

Stochastic analysis tasks [17.6]

$q_initialize $q_add
$q_remove $q_full
$q_exam

Simulation time functions [17.7]

$realtime $stime
$time

Conversion functions [17.8]

$bitstoreal $realtobits
$itor $rtoi
$signed $unsigned

Probabilistic distribution functions [17.9]

$dist_chi_square $dist_erlang
$dist_exponential $dist_normal
$dist_poisson $dist_t
$dist_uniform $random

Command line input  [17.10]

$test$plusargs $value$plusargs
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17.1 Display system tasks

The display group of system tasks are divided into three categories: the display and write tasks, strobed mo
tasks, and continuous monitoring tasks.

17.1.1 The display and write tasks

Syntax 17-1—Syntax for $display and $write system tasks

These are the main system task routines for displaying information. The two sets of tasks are identical exce
$display automatically adds a newline character to the end of its output, whereas the$write task does not.

The $display and$write tasks display their arguments in the same order as they appear in the argument list.
argument can be a quoted string, an expression that returns a value, or a null argument.

The contents of string arguments are output literally except when certain escape sequences are inserted to dis
cial characters or to specify the display format for a subsequent expression.

Escape sequences are inserted into a string in three ways:

— The special character \ indicates that the character to follow is a literal or nonprintable character (see Ta
1).

— The special character%indicates that the next character should be interpreted as a format specification
establishes the display format for a subsequent expression argument (see Table 17-2). For each%character
that appears in a string, a corresponding expression argument shall be supplied after the string.

— The special character string%% indicates the display of the percent sign character% (see Table 17-1).

Any null argument produces a single space character in the display. (A null argument is characterized by two a
commas in the argument list.)

The$display task, when invoked without arguments, simply prints a newline character. A$write task supplied with-
out parameters prints nothing at all.

17.1.1.1 Escape sequences for special characters

The escape sequences given in Table 17-1, when included in a string argument, cause special characte
displayed.

display_tasks ::=(Not in the Annex A BNF)
display_task_name ( list_of_arguments ) ;

display_task_name ::=
$display | $displayb | $displayo | $displayh

| $write | $writeb | $writeo | $writeh
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Example:

17.1.1.2 Format specifications

Table 17-2 shows the escape sequences used for format specifications. Each escape sequence, when inc
string argument, specifies the display format for a subsequent expression. For each%character (except%m) that
appears in a string, a corresponding expression shall follow the string in the argument list. The value of the exp
replaces the format specification when the string is displayed.

Any expression argument that has no corresponding format specification is displayed using the default decim
mat in $display and$write, binary format in$displayb and$writeb, octal format in$displayo and$writeo, and
hexadecimal format in$displayh and$writeh.

Table 17-1—Escape sequences for printing special characters

Argument Description

\n The newline character

\t The tab character

\\ The \ character

\" The " character

\ddd A character specified by 1 to 3 octal digits

%% The % character

Table 17-2—Escape sequences for format specifications

Argument Description

%h or %H Display in hexadecimal format

%d or %D Display in decimal format

%o or %O Display in octal format

%b or %B Display in binary format

%c or %C Display in ASCII character format

%l or %L Display library binding information

%v or %V Display net signal strength

module disp;
initial begin

$display("\\\t\\\n\"\123");
end
endmodule

\ \
"S
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The formatting specification%l (or %L) is defined for displaying the library information of the specific module. Th
information shall be displayed as" library. cell" corresponding to the library name the current module instance w
extracted from and the cell name of the current module instance. See Section 13 for information on libraries a
figuring designs.

The formatting specification%u(or %U) is defined for writing data without formatting (binary values). The applic
tion shall transfer the 2 value binary representation of the specified data to the output stream. This escape s
may be used with any of the existing display system tasks, although$fwrite should be the preferred one to use
Any unknown or high-impedance bits in the source shall be treated as zero. This formatting specifier is intende
used to support transferring data to and from external programs that have no concept ofx andz . Applications that
require preservation ofx  andz  are encouraged to use the%z I/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same endia
as if the PLI was used, and the C language write(2) system call was used). The data will be written in units of
with the word containing the LSB written first.

NOTE—For POSIX applications: It may be necessary to open files for unformatted I/O with thewb, wb+, or w+b specifiers, to
avoid the systems implementation of I/O altering patterns in the unformatted stream that match special characters.

The formatting specification%z (or %Z) is defined for writing data without formatting (binary values). The applic
tion shall transfer the 4 value binary representation of the specified data to the output stream. This escape s
may be used with any of the existing display system tasks, although$fwrite  should be the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external programs tha
nize and support the concept ofx andz . Applications that do not require the preservation ofx andz are encouraged
to use the%u I/O format specification.

The data shall be written to the file in the native endian format of the underlying system (i.e., in the same endia
as if the PLI was used, and the data were in as_vpi_vecval structure (See 27.14, Figure 27-8), and the C la
guagewrite(2) system call was used to write the structure to disk). The data will be written in units of the n
size of an integer on the machine, which is typically 32 bits.

NOTE—For POSIX applications: It may be necessary to open files for unformatted I/O with thewb, wb+ or w+b specifiers, to
avoid the systems implementation of I/O altering patterns in the unformatted stream that match special characters.

The format specifications in Table 17-3 are used with real numbers and have the full formatting capabilities av
in the C language. For example, the format specification%10.3g specifies a minimum field width of 10 with 3 frac-
tional digits.

%m or %M Display hierarchical name

%s or %S Display as a string

%t or %T Display in current time format

%u or %U Unformatted 2 value data

%z or %Z Unformatted 4 value data

Table 17-2—Escape sequences for format specifications  (continued)
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The net signal strength, hierarchical name, and string format specifications are described in 17.1.1.5 through 1

The%t format specification works with the$timeformat system task to specify a uniform time unit, time precisio
and format for reporting timing information from various modules that use different time units and precisions
$timeformat task is described in 17.3.2.

Example:

17.1.1.3 Size of displayed data

For expression arguments, the values written to the output file (or terminal) are sized automatically.

For example, the result of a 12-bit expression would be allocated three characters when displayed in hexadeci
mat and four characters when displayed in decimal format, since the largest possible value for the expression
(hexadecimal) and 4095 (decimal).

When displaying decimal values, leading zeros are suppressed and replaced by spaces. In other radices, lead
are always displayed.

Table 17-3—Format specifications for real numbers

Argument Description

%e or %E Display ‘real’ in an exponential format

%f or %F Display ‘real’ in a decimal format

%g or %G Display ‘real’ in exponential or decimal format, which-
ever format results in the shorter printed output

module disp;
reg [31:0] rval;
pulldown (pd);
initial begin
   rval = 101;

$display("rval = %h hex %d decimal",rval,rval);
$display("rval = %o octal\nrval = %b bin",rval,rval);
$display("rval has %c ascii character value",rval);
$display("pd strength value is %v",pd);
$display("current scope is %m");
$display("%s is ascii value for 101",101);
$display("simulation time is %t", $time);

end
endmodule

rval = 00000065 hex        101 decimal
rval = 00000000145 octal
rval = 00000000000000000000000001100101 bin
rval has e ascii character value
pd strength value is StX
current scope is disp
e is ascii value for 101
simulation time is                    0
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The automatic sizing of displayed data may be overridden by inserting a zero between the%character and the letter
that indicates the radix, as shown in the following example.

$display("d=%0h a=%0h", data, addr);

Example:

In this example, the result of a 12-bit expression is displayed. The first call to$displayuses the standard format spec
ifier syntax and produces results requiring four and three columns for the decimal and hexadecimal radices,
tively. The second$display call uses the%0form of the format specifier syntax and produces results requiring t
columns and one column, respectively.

17.1.1.4 Unknown and high impedance values

When the result of an expression contains an unknown or high impedance value, the following rules apply to d
ing that value.

In decimal (%d) format

— If all bits are at the unknown value, a single lowercasex  character is displayed.

— If all bits are at the high impedance value, a single lowercasez  character is displayed.

— If some, but not all, bits are at the unknown value, the uppercaseX character is displayed.

— If some, but not all, bits are at the high impedance value, the uppercaseZ character is displayed.

— Decimal numerals always appear right-justified in a fixed-width field.

In hexadecimal (%h) and octal (%o) formats

— Each group of 4 bits is represented as a single hexadecimal digit; each group of 3 bits is represented a
gle octal digit.

— If all bits in a group are at the unknown value, a lowercasex  is displayed for that digit.

— If all bits in a group are at a high impedance state, a lowercasez  is printed for that digit.

— If some, but not all, bits in a group are unknown, an uppercaseX is displayed for that digit.

— If some, but not all, bits in a group are at a high impedance state, then an uppercaseZ is displayed for that
digit.

In binary (%b) format, each bit is printed separately using the characters0, 1, x , andz .

module printval;
reg [11:0] r1;
initial begin
   r1 = 10;

$display( "Printing with maximum size - :%d: :%h:", r1,r1 );
$display( "Printing with minimum size - :%0d: :%0h:", r1,r1 );

end
endmodule

Printing with maximum size - :  10: :00a:
Printing with minimum size - :10: :a:
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Example:

17.1.1.5 Strength format

The%vformat specification is used to display the strength of scalar nets. For each%vspecification that appears in a
string, a corresponding scalar reference shall follow the string in the argument list.

The strength of a scalar net is reported in a three-character format. The first two characters indicate the stren
third character indicates the current logic value of the scalar and may be any one of the values given in Table

The first two characters—the strength characters—are either a two-letter mnemonic or a pair of decimal digit
ally, a mnemonic is used to indicate strength information; however, in less typical cases, a pair of decimal digi
be used to indicate a range of strength levels. Table 17-5 shows the mnemonics used to represent the various
levels.

Table 17-4—Logic value component of strength format

Argument Description

0 For a logic 0 value

1 For a logic 1 value

X For an unknown value

Z For a high impedance value

L For a logic 0 or high impedance value

H For a logic 1 or high impedance value

Table 17-5—Mnemonics for strength levels

Mnemonic Strength name Strength level

Su Supply drive 7

St Strong drive 6

Pu Pull drive 5

La Large capacitor 4

We Weak drive 3

Me Medium capacitor 2

STATEMENT                             RESULT
$display("%d", 1’bx);                     x
$display("%h", 14’bx01010);               xxXa
$display("%h %o", 12’b001xxx101x01,

                    12’b001xxx101x01);      XXX 1x5X
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Note that there are four driving strengths and three charge storage strengths. The driving strengths are associ
gate outputs and continuous assignment outputs. The charge storage strengths are associated with thetrireg type net.
(See Section 7 for strength modeling.)

For the logic values0 and1, a mnemonic is used when there is no range of strengths in the signal. Otherwis
logic value is preceded by two decimal digits, which indicate the maximum and minimum strength levels.

For the unknown value, a mnemonic is used when both the0 and1 strength components are at the same stren
level. Otherwise, the unknown valueX is preceded by two decimal digits, which indicate the0 and1 strength levels
respectively.

The high impedance strength cannot have a known logic value; the only logic value allowed for this level isZ.

For the valuesL and H , a mnemonic is always used to indicate the strength level.

Examples:

always
#15 $display( $time,,"group=%b signals=%v %v %v",{s1,s2,s3}, s1, s2, s3);

The example below shows the output that might result from such a call, while Table 17-6 explains the v
strength formats that appear in the output.

Sm Small capacitor 1

Hi High impedance 0

Table 17-6—Explanation of strength formats

Argument Description

St1 Means a strong driving 1 value

Pu0 Means a pull driving 0 value

HiZ Means the high-impedance state

Me0 Means a 0 charge storage of medium capacitor strength

StX Means a strong driving unknown value

Table 17-5—Mnemonics for strength levels  (continued)

Mnemonic Strength name Strength level

 0 group=111 signals=St1 Pu1 St1
15 group=011 signals=Pu0 Pu1 St1
30 group=0xz signals=520 PuH HiZ
45 group=0xx signals=Pu0 65X StX
60 group=000 signals=Me0 St0 St0
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17.1.1.6 Hierarchical name format

The%mformat specifier does not accept an argument. Instead, it causes the display task to print the hierarchic
of the module, task, function, or named block that invokes the system task containing the format specifier. This
ful when there are many instances of the module that calls the system task. One obvious application is timing
messages in a flip-flop or latch module; the%mformat specifier will pinpoint the module instance responsible for ge
erating the timing check message.

17.1.1.7 String format

The%sformat specifier is used to print ASCII codes as characters. For each%sspecification that appears in a string
a corresponding parameter shall follow the string in the argument list. The associated argument is interpret
sequence of 8-bit hexadecimal ASCII codes, with each 8 bits representing a single character. If the argument i
able, its value should be right-justified so that the rightmost bit of the value is the least-significant bit of the las
acter in the string. No termination character or value is required at the end of a string, and leading zeros ar
printed.

17.1.2 Strobed monitoring

Syntax 17-2—Syntax for $strobe system tasks

The system task$strobeprovides the ability to display simulation data at a selected time. That time is the end o
current simulation time, when all the simulation events that have occurred for that simulation time, just before
lation time is advanced. The arguments for this task are specified in exactly the same manner as for the$display sys-
tem task—including the use of escape sequences for special characters and format specifications (see 17.1.

Example:

forever @( negedge clock)
$strobe ("At time %d, data is %h", $time,data);

In this example,$strobewill write the time and data information to the standard output and the log file at each n
tive edge of the clock. The action will occur just before simulation time is advanced and after all other events
time have occurred, so that the data written is sure to be the correct data for that simulation time.

PuH Means a pull driving strength of 1 or high-impedance value

65X Means an unknown value with a strong driving 0 component
and a pull driving 1 component

520 Means an 0 value with a range of possible strength from pull
driving to medium capacitor

strobe_tasks ::=(Not in the Annex A BNF)
strobe_task_name( list_of_arguments) ;

strobe_task_name ::=
$strobe | $strobeb | $strobeo | $strobeh

Table 17-6—Explanation of strength formats  (continued)

Argument Description
Section 17 Copyright 2000 IEEE. All rights reserved. 291
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

ed as

h time

lues.

at

used to
at the
17.1.3 Continuous monitoring

Syntax 17-3—Syntax for $monitor system tasks

The$monitor task provides the ability to monitor and display the values of any variables or expressions specifi
arguments to the task. The arguments for this task are specified in exactly the same manner as for the$displaysystem
task—including the use of escape sequences for special characters and format specifications (see 17.1.1).

When a$monitor task is invoked with one or more arguments, the simulator sets up a mechanism whereby eac
a variable or an expression in the argument list changes value—with the exception of the$time, $stimeor $realtime
system functions—the entire argument list is displayed at the end of the time step as if reported by the$display task.
If two or more arguments change value at the same time, only one display is produced that shows the new va

Only one$monitor display list can be active at any one time; however, a new$monitor task with a new display list
may be issued any number of times during simulation.

The$monitoron and$monitoroff tasks control a monitor flag that enables and disables the monitoring. Use$moni-
toroff to turn off the flag and disable monitoring. The$monitoron system task can be used to turn on the flag so th
monitoring is enabled and the most recent call to$monitor can resume its display. A call to$monitoron shall pro-
duce a display immediately after it is invoked, regardless of whether a value change has taken place; this is
establish the initial values at the beginning of a monitoring session. By default, the monitor flag is turned on
beginning of simulation.

17.2 File input-output system tasks and functions

The system tasks and functions for file-based operations are divided into three categories:

— Functions and tasks that open and close files
— Tasks that output values into files
— Tasks that output values into variables
— Tasks and functions that read values from files and load into variables or memories

17.2.1 Opening and closing files

Syntax 17-4—Syntax for $fopen and $fclose system tasks

monitor_tasks ::=(Not in the Annex A BNF)
monitor_task_name [( list_of_arguments) ] ;

| $monitoron ;
| $monitoroff ;

monitor_task_name ::=
$monitor | $monitorb | $monitoro | $monitorh

file_open_function ::=(Not in the Annex A BNF)
integer  multi_channel_descriptor= $fopen ( " file_name" );

| integer fd = $fopen ( " file_name", type);
file_close_task ::=

$fclose ( multi_channel_descriptor);
| $fclose (fd);
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The function$fopen opens the file specified as thefilename argument and returns either a 32 bit multi chann
descriptor, or a 32 bit file descriptor, determined by the absence or presence of thetype argument.

filename is a character string, or a reg containing a character string that names the file to be opened.

type is a character string, or a reg containing a character string of one of the following forms in the table below,
indicates how the file should be opened. Iftype is omitted, the file is opened for writing, and a multi channel descr
tor mcd is returned. Iftype is supplied, the file is opened as specified by the value of type, and a file descriptorfd is
returned.

The multi channel descriptormcd is a 32 bit reg in which a single bit is set indicating which file is opened. The le
significant bit (bit0) of a mcd always refers to the standard output. Output is directed to two or more files op
with multi channel descriptors by bitwise oring together theirmcds and writing to the resultant value.

The most significant bit (bit 32) of a multi channel descriptor is reserved, and will always be cleared, limitin
implementation to at most 31 files opened for output via multi channel descriptors.

The file descriptorfd is a 32 bit value. The most significant bit (bit 32) of afd is reserved, and shall always be se
this allows implementations of the file input and output functions to determine how the file was opened. The re
ing bits hold a small number indicating what file is opened. Three file descriptors are pre opened; they areSTDIN,
STDOUT andSTDERR, which have the values32'h8000_0000 , 32'h8000_0001 and32'h8000_0002 ,
respectively.STDIN is pre opened for reading, andSTDOUT andSTDERR are pre opened for append.

Unlike multi channel descriptors, file descriptors can not be combined via bitwise or in order to direct output to
tiple files. Instead, files are opened via file descriptor for input, output, input and output, as well as for append
tions, based on the value oftype, according to the following table:

If a file can not be opened (either the file doesn't exist, and thetype specified is "r", "rb", "r+", "r+b", or "rb+", or the
permissions do not allow the file to be opened at that path, a zero is returned for either themcd or thefd . Applica-
tions may call$ferror  to determine the cause of the most recent error (see 17.2.7).

The "b" in the above types exists to distinguish binary files from text files. Many systems (such as Unix) make n
tinction between binary and text files, and on these systems the "b" is ignored. However, some systems (
machines running NT or Windows) will perform data mappings on certain binary values written to and read from
that are opened for text access.

The$fclosesystem tasks closes the file specified byfd or closes the file(s) specified by the multi channel descrip
mcd. No further output to or input from any file descriptor(s) closed by$fcloseis allowed. Active$fmonitor and/or
$fstrobe operations on a file descriptor or multi channel descriptor are implicitly cancelled by an$fcloseoperation.
The$fopen function shall reuse channels that have been closed.

Table 17-7—Types for file descriptors

Argument Description

"r" or "rb" open for reading

"w" or "wb" truncate to zero length or create for writing

"a" or "ab" append; open for writing at end of file, or create for writing

"r+", "r+b", or "rb+" open for update (reading and writing)

"w+", "w+b", or "wb+" truncate or create for update

"a+", "a+b", or "ab+" append; open or create for update at end-of-file
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NOTE—The number of simultaneous input and output channels that may be open at any one time is dependent on the o
system. Some operating systems may not support opening files for update.

17.2.2 File output system tasks

Syntax 17-5—Syntax for file output system tasks

Each of the four formatted display tasks—$display, $write, $monitor, and$strobe—has a counterpart that writes to
specific files as opposed to the standard output. These counterpart tasks—$fdisplay, $fwrite, $fmonitor , and
$fstrobe—accept the same type of arguments as the tasks upon which they are based, with one exception: T
parameter shall be either a multi channel descriptor or a file descriptor, which indicates where to direct the file
Multi channel descriptors are described in detail in 17.2.1. A multichannel descriptor is either a variable or the
of an expression that takes the form of a 32-bit unsigned integer value.

The$fstrobe and$fmonitor system tasks work just like their counterparts,$strobeand$monitor, except that they
write to files using the multi channel descriptor for control. Unlike$monitor, any number of$fmonitor tasks can be
set up to be simultaneously active. However, there is no counterpart to$monitoron and$monitoroff tasks. The task
$fclose is used to cancel an active$fstrobe or $fmonitor  task.

Example:

This example shows how to set up multi channel descriptors. In this example, three different channels are
using the$fopenfunction. The three multi channel descriptors that are returned by the function are then combin
a bit-wise or operation and assigned to the integer variablemessages . Themessages variable can then be
used as the first parameter in a file output task to direct output to all three channels at once. To create a descri
directs output to the standard output as well, themessages variable is abit-wise logicalor with the constant1,
which effectively enables channel0.

file_output_tasks ::=(Not in the Annex A BNF)
file_output_task_name( multi_channel_descriptor, list_of_arguments) ;

| file_output_task_name( fd , list_of_arguments) ;
file_output_task_name ::=

$fdisplay | $fdisplayb | $fdisplayh | $fdisplayo
| $fwrite | $fwriteb | $fwriteh | $fwriteo
| $fstrobe | $fstrobeb | $fstrobeh | $fstrobeo
| $fmonitor | $fmonitorb  | $fmonitorh  | $fmonitoro
294 Copyright 2000 IEEE. All rights reserved. Section 17
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)

the

g.
The following file output tasks show how the channels opened in the preceding example might be used:

17.2.3 Formatting data to a string

Syntax 17-6—Syntax for formatting data tasks

The syntax for the string output system tasks is

The$swrite family of tasks are based on the$fwrite family of tasks, and accept the same type of arguments as
tasks upon which they are based, with one exception: The first parameter to$swrite shall be a reg variable to which
the resulting string shall be written, instead of a variable specifying the file to which to write the resulting strin

string_output_tasks ::=(Not in the Annex A BNF)
string_output_tasks_name( output_reg, list_of_arguments);

string_output_task_name ::=
$swrite | $swriteb | $swriteh | $swriteo

variable_format_string_output_task ::=
$sformat ( output_reg, format, list_of_arguments);

integer
messages, broadcast,
cpu_chann, alu_chann, mem_chann;

initial begin
cpu_chann = $fopen("cpu.dat");
if  (cpu_chann == 0) $finish;
alu_chann = $fopen("alu.dat");
if  (alu_chann == 0) $finish;
mem_chann = $fopen("mem.dat");
if  (mem_chann == 0) $finish;
messages = cpu_chann | alu_chann | mem_chann;
// broadcast includes standard output
broadcast = 1 | messages;

end
endmodule

$fdisplay( broadcast, "system reset at time %d", $time );

$fdisplay( messages, "Error occurred on address bus",
" at time %d, address = %h", $time, address );

forever @( posedge clock)
$fdisplay( alu_chann, "acc= %h f=%h a=%h b=%h", acc, f, a, b );

$swrite( output_reg, list_of_arguments);
$sformat( output_reg, format_string, list_of_arguments);
length = $sformat( output_reg, format_string, list_of_arguments);
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The variableoutput_reg is assigned using the Verilog’s string assignment to variable rules, as specified in 4.2.3

The system task$sformat  is similar to the system task$swrite , with a one major difference.

Unlike the display and write family of output system tasks,$sformat always interprets its second argument, an
only its second argument as a format string. This format argument can be a static string, such as ’"data is %d"’
be a reg variable whose content is interpreted as the format string. No other arguments are interpreted as
strings.$sformat  supports all the format specifiers supported by$display , as documented in 17.1.1.2.

The remaining arguments to$sformat are processed using any format specifiers in theformat_string, until all such
format specifiers are used up. If not enough arguments are supplied for the format specifiers, or too many a
plied, then the application shall issue a warning, and continue execution. The application, if possible, may sta
determine a mismatch in format specifiers and number of arguments, and issue a compile time error messag

NOTE—If theformat_string is a reg, it may not be possible to determine its value at compile time.

The variableoutput_reg is assigned using the Verilog’s string assignment to variable rules, as specified in 4.2.3

17.2.4 Reading data from a file

Files opened using file descriptors may be read from, and only those files opened withtype of either the "r" or "r+"
values. See 17.2.1 for more information about opening files.

17.2.4.1 Reading a character at a time

c = $fgetc ( fd );

Read a byte from the file specified byfd . If an error occurs reading from the file, thenc is set to EOF (-1). Care
should be taken to define the width of the reg which gets the return value of$fgetc to be wider than 8 bits so that the
return of EOF (-1) may be determined from a return of a byte with the value 0xff. Applications may call$ferror to
determine the cause of the most recent error (see 17.2.7).

code = $ungetc ( c, fd );

Insert the character specified byc into the buffer specified by file descriptorfd . The characterc will be returned by
the next$fgetccall on that file descriptor. The file itself is unchanged. Note that the features of the underlying im
mentation of fileio on the host system will limit the number of characters that may be pushed back onto a s
Note also that operations like$fseekmight erase any pushed back characters. If an error occurs pushing a cha
onto a file descriptor, thencode is set to EOF. Otherwisecode is set to zero. Applications may call$ferror to deter-
mine the cause of the most recent error (see 17.2.7).

17.2.4.2  Reading a line at a time

integer code = $fgets ( str, fd );

Read characters from the file specified byfd into the regstr until eitherstr is filled, or a newline character is read
and transferred tostr , or an end-of-file condition is encountered. Ifstr is not an integral number of bytes in length
the most significant partial byte is not used in order to determine the size.

If an error occurs reading from the file, thencode is set to zero. Otherwise the number of characters read is retur
in code . Applications may call$ferror  to determine the cause of the most recent error (see below).

17.2.4.3  Reading formatted data

integer code = $fscanf ( fd, format, args );
integer code = $sscanf ( str, format, args );
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$fscanf reads from the file descriptorfd .

$sscanf reads from the regstr .

Both functions read characters, interprets them according to a format, and stores the results in its argumen
expect as arguments a control string,format , and a set of arguments specifying where to place the results. If th
are insufficient arguments for the format, the behavior is undefined. If the format is exhausted while argu
remain, the excess arguments are ignored.

If an argument is too small to hold the converted input, then in general, the least significant bits are transferred
ments of any length that is supported by Verilog may be used. However if the destination is areal or realtime then the
value +Inf (or -Inf) is transferred. The format may be a string constant or a reg containing a string constant. The
contains conversion specifications, which direct the conversion of input into the arguments. The control strin
contain

a) White-space characters (blanks, tabs, new-lines, or form-feeds) that, except in one case described
cause input to be read up to the next non-white-space character.

b) An ordinary character (not %) that must match the next character of the input stream.

c) Conversion specifications consisting of the character%an optional assignment suppression character* , a
decimal digit string that specifies an optional numerical maximum field width, and a conversion code.

A conversion specification directs the conversion of the next input field; the result is placed in the variable spec
the corresponding argument unless assignment suppression was indicated by the character* ; in this case no argument
shall be supplied.

The suppression of assignment provides a way of describing an input field that is to be skipped. An input fi
defined as a string of non-space characters; it extends to the next inappropriate character or until the maxim
width, if one is specified, is exhausted. For all descriptors except the character c, white space leading an inpu
ignored.

% A single % is expected in the input at this point; no assignment is done.

b Matches a binary number, consisting of a sequence from the set 0,1,X,x,Z,z,? and _.

o Matches a octal number, consisting of a sequence of characters from the set 0,1,2,3,4,5,6,7,X,x,Z,z,

d Matches an optionally signed decimal number, consisting of the optional sign from the set + or -, foll
by a sequence of characters from the set 0,1,2,3,4,5,6,7,8,9 and _, or a single value from the set x,X

h or x Matches a hexadecimal number, consisting of a sequence of characters from the
0,1,2,3,4,5,6,7,8,9,a,A,b,B,c,C,d,D,e,E,f,F,x,X,z,Z,? and _.

f e or g Matches a floating point number. The format of a floating point number is an optional sign (either +
followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal point char
(.), then an optional exponent part including e or E followed by an optional sign, followed by a string of
its from the set 0,1,2,3,4,5,6,7,8,9.

v Matches a net signal strength, consisting of three character sequence as specified in 17.1.1.5. This
sion is not extremely useful, as strength values are really only usefully assigned to nets and$fscanfcan only
assign values to regs (if assigned to regs, the values are converted to the 4 value equivalent).

t Matches a floating point number. The format of a floating point number is an optional sign (either + o
followed by a string of digits from the set 0,1,2,3,4,5,6,7,8,9 optionally containing a decimal point char
(.), then an optional exponent part including e or E followed by an optional sign, followed by a string of
its from the set 0,1,2,3,4,5,6,7,8,9. The value matched is then scaled and rounded according to the
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time scale as set by$timeformat. For example, if the timescale is `timescale 1ns/100ps and the time for
is $timeformat(-3,2," ms",10);, then a value read with$sscanf("10.345", "%t", t) would return 10350000.0.

c Matches a single character, whose 8 bit ASCII value is returned.

s Matches a string, which is a sequence of non white space characters.

u Matches unformatted (binary) data. The application shall transfer sufficient data from the input to fill th
get reg. Typically the data is obtained from a matching$fwrite ("%u" ,data), or from an external applica
tion written in another programming language such as C, Perl or FORTRAN.

The application shall transfer the 2 value binary data from the input stream to the destination reg, exp
the data to the four value format. This escape sequence may be used with any of the existing input
tasks, although$fscanf should be the preferred one to use. As the input data can not representx or z , it is
not possible to obtain anx or z in the result reg. This formatting specifier is intended to be used to sup
transferring data to and from external programs that have no concept ofx  andz .

Applications that require preservation ofx  andz  are encouraged to use the%z i/o  format specification.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the
endian order as if the PLI was used, and the C languageread(2)  system call was used).

For POSIX applications: It may be necessary to open files for unformatted I/O with the "rb", "rb+" or "r
specifiers, to avoid the systems implementation of I/O altering patterns in the unformatted stream that
special characters.

The formatting specification%z(or %Z) is defined for reading data without formatting (binary values). T
application shall transfer the 4 value binary representation of the specified data from the input stream
destination reg. This escape sequence may be used with any of the existing input system tasks, a
$fscanf  should be the preferred one to use.

This formatting specifier is intended to be used to support transferring data to and from external pro
that recognize and support the concept ofx andz . Applications that do not require the preservation ofx and
z  are encouraged to use the%u i/o  format specification.

The data shall be read from the file in the native endian format of the underlying system (i.e., in the
endian order as if the PLI was used, and the data were in as_vpi_vecval structure (See 27.14,
Figure 27-8), and the C language read(2) system call was used to read the data from disk).

For POSIX applications: It may be necessary to open files for unformatted I/O with the "rb", "rb+" or "r
specifiers, to avoid the systems implementation of I/O altering patterns in the unformatted stream that
special characters.

m Returns the current hierarchical path as a string. Does not read data from the input file or str argumen
invalid conversion character follows the%, the results of the operation are implementation dependent.

If the format string, or thestr argument to$sscanfcontains unknown bits (x or z ) then the system task shall return
EOF.

If end-of-file is encountered during input, conversion is terminated. If end-of-file occurs before any characters m
ing the current directive have been read (other than leading white space, where permitted), execution of the
directive terminates with an input failure; otherwise, unless execution of the current directive is terminated
matching failure, execution of the following directive (if any) is terminated with an input failure.

If conversion terminates on a conflicting input character, the offending input character is left unread in the
stream. Trailing white space (including new-line characters) is left unread unless matched by a directive. The
of literal matches and suppressed assignments is not directly determinable.
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The number of successfully matched and assigned input items is returned incode ; this number can be 0 in the even
of an early matching failure between an input character and the control string. If the input ends before the first
ing failure or conversion, EOF is returned. Applications may call$ferror to determine the cause of the most rece
error (see below).

17.2.4.4  Reading binary data

integer code = $fread( myreg, fd);
integer code = $fread( mem, fd);
integer code = $fread( mem, fd, start);
integer code = $fread( mem, fd, start, count);
integer code = $fread( mem, fd, , count);

Read a binary data from the file specified byfd  into the regmyreg  or the memorymem.

Start is an optional argument. If present,start will be used as the starting location in the memory. If not prese
the least significant location in the memory shall be used.

Count is an optional argument. If present,count will be the maximum number of locations inmemthat will be
loaded. If not supplied the memory will be filled with what data is available.

Start  andcount  are be ignored if$fread is loading a reg.

$fread shall store data into a memory starting with the lowest numbered location, continuing up to the higher
tion. For the memory declaredup[10:20], the first location loaded will beup[10], next will beup[11], up toup[20].
For the memory declareddown[20:10], the first location loaded will bedown[10], then down[11], down to
down[20].

start is the word offset from the lowest element in the memory. Forstart = 2 and the memoryup[10:20], the
first data would be loaded atup[12]. For the memorydown[20:10], the first location loaded would bedown[12], then
down[13].

The data in the file shall be read byte by byte to fulfill the request. An 8-bit wide memory is loaded using one by
memory word, while a 9-bit wide memory is loaded using 2 bytes per memory word. The data is read from the
a big endian manner; the first byte read is used to fill the most significant location in the memory element. If the
ory width is not evenly divisible by 8 (8, 16, 24, 32), not all data in the file will be loaded into memory becaus
truncation.

The data loaded from the file is taken as "two value" data. A bit set in the data is interpreted as a1, and bit not set is
interpreted as a0. It is not possible to read a value ofx  or z  using$fread.

If an error occurs reading from the file, thencode is set to zero. Otherwise the number of characters read is retur
in code. Applications may call$ferror  to determine the cause of the most recent error (see 17.2.7).

Note that there is not a "binary" mode and a "ASCII" mode; one may freely intermingle binary and formatted
commands from the same file.

17.2.5 File positioning

integer pos = $ftell ( fd );

Returns inpos the offset from the beginning of the file of the current byte of the filefd which will be read or written
by a subsequent operation on that file descriptor.

This value may be used by subsequent$fseekcalls to reposition the file to this point. Note that any repositioning w
cancel any$ungetcoperations. If an error occurs EOF is returned. Applications may call$ferror to determine the
cause of the most recent error (see 17.2.7).
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code = $fseek ( fd, offset, operation );

code = $rewind ( fd );

Sets the position of the next input or output operation on the file specified byfd . The new position is at the signed
distance offset bytes from the beginning, from the current position, or from the end of the file, according to an
tion value of 0, 1 and 2 as follows:

—  0 set position equal to offset bytes

—  1 set position to current location plus offset

—  2 set position to EOF plus offset

$rewind is equivalent to$fseek(fd,0,0) ;

Repositioning the current file position with$fseek or $rewind shall cancel any$ungetc operations.

$fseek()allows the file position indicator to be set beyond the end of the existing data in the file. If data is later
ten at this point, subsequent reads of data in the gap will return zero until data is actually written into the gap.$fseek,
by itself, does not extend the size of the file.

When a file is opened for append (that is, whentype is "a", or "a+"), it is impossible to overwrite information
already in the file.$fseekmay be used to reposition the file pointer to any position in the file, but when output is w
ten to the file, the current file pointer is disregarded. All output is written at the end of the file and causes t
pointer to be repositioned at the end of the output.

If an error occurs repositioning the file, thencode is set to -1. Otherwisecode is set to 0. Applications may call
$ferror  to determine the cause of the most recent error (see 17.2.7).

17.2.6 Flushing output

$fflush ( mcd );

$fflush ( fd );

$fflush ( );

Writes any buffered output to the file(s) specified bymcd, the file specified byfd or if $fflush is invoked with no
arguments, writes any buffered output to all open files.

17.2.7 I/O error status

Should any error be detected by one of the fileio routines, an error code is returned. Often this is sufficient for
operation; (i.e., if the opening of a optional configuration file fails, the application typically would simply cont
using default values.) However sometimes it is useful to obtain more information about the error for correct ap
tion operation. In this case the$ferror  function may be used:

integer errno = $ferror  ( fd, str );

A string description of type of error encountered by the most recent file I/O operation is written intostr which
should be at least 640 bits wide. The integral value of the error code is returned inerrno . If the most recent opera-
tion did not result in an error, than the value returned will be zero, and the regstr  shall be cleared.
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17.2.8 Loading memory data from a file

Syntax 17-7—Syntax for memory load system tasks

Two system tasks—$readmemb and $readmemh—read and load data from a specified text file into a specifi
memory. Either task may be executed at any time during simulation. The text file to be read shall contain only t
lowing:

— White space (spaces, new lines, tabs, and form-feeds)
— Comments (both types of comment are allowed)
— Binary or hexadecimal numbers

The numbers shall have neither the length nor the base format specified. For$readmemb, each number shall be
binary. For$readmemh, the numbers shall be hexadecimal. The unknown value (x or X), the high impedance value
(z or Z), and the underscore (_) can be used in specifying a number as in a Verilog HDL source description.
space and/or comments shall be used to separate the numbers.

In the following discussion, the term “address” refers to an index into the array that models the memory.

As the file is read, each number encountered is assigned to a successive word element of the memory. Addr
controlled both by specifying start and/or finish addresses in the system task invocation and by specifying ad
in the data file.

When addresses appear in the data file, the format is an “at” character (@) followed by a hexadecimal number as fol
lows:

    @hh...h

Both uppercase and lowercase digits are allowed in the number. No white space is allowed between the@and the
number. As many address specifications as needed within the data file may be used. When the system task en
an address specification, it loads subsequent data starting at that memory address.

If no addressing information is specified within the system task, and no address specifications appear within t
file, then the default start address is the left-hand address given in the declaration of the memory. Consecutiv
are loaded until either the memory is full or the data file is completely read. If the start address is specified in th
without the finish address, then loading starts at the specified start address and continues towards the rig
address given in the declaration of the memory.

If both start and finish addresses are specified as parameters to the task, then loading begins at the start ad
continues toward the finish address, regardless of how the addresses are specified in the memory declaratio

When addressing information is specified both in the system task and in the data file, the addresses in the
shall be within the address range specified by the system task parameters; otherwise, an error message is is
the load operation is terminated.

A warning message is issued if the number of data words in the file differs from the number of words in the
implied by the start through finish addresses.

load_memory_tasks ::=(Not in the Annex A BNF)
$readmemb ( " file_name" ,  memory_name [, start_addr [, finish_addr ] ]) ;

| $readmemh ( " file_name" ,  memory_name [, start_addr [, finish_addr ] ]) ;
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Example:

reg [7:0] mem[1:256];

Given this declaration, each of the following statements will load data intomem in a different manner:

initial $readmemh("mem.data", mem);
initial $readmemh("mem.data", mem, 16);
initial $readmemh("mem.data", mem, 128, 1);

The first statement will load up the memory at simulation time0 starting at the memory address1. The second state-
ment will begin loading at address 16 and continue on towards address 256. For the third and final statement,
will begin at address 128 and continue down towards address1.

In the third case, when loading is complete, a final check is performed to ensure that exactly 128 numbers a
tained in the file. If the check fails, a warning message is issued.

17.2.9 Loading timing data from an SDF file

The syntax for the$sdf_annotate system task is shown in Syntax 17-8.

Syntax 17-8—Syntax for $sdf_annotate system task

The$sdf_annotate system task reads timing data from an SDF file into a specified region of the design.

sdf_file  is a character string, or a reg containing a character string naming the file to be opened.

module_instanceis an optional argument specifying the scope to which to annotate the information in the SDF
The SDF annotator uses the hierarchy level of the specified instance for running the anno
Array indices are permitted. If themodule_instancenot specified, the SDF Annotator uses th
module containing the call to the$sdf_annotate system task as themodule_instancefor
annotation.

config_file is an optional character string argument providing the name of a configuration file. Informatio
this file can be used to provide detailed control over many aspects of annotation.

log_file is an optional character string argument providing the name of the log file used during
annotation. Each individual annotation of timing data from the SDF file results in an entry in
log file.

mtm_spec is an optional character string argument specifying which member of themin /typ /max triples will
be annotated. The legal values for this string are described in Table 17-8. This override
MTM_SPEC keywords in the configuration file.

sdf_annotate_task ::=(Not in the Annex A BNF)
$sdf_annotate ("sdf_file" [ , [ module_instance ] [, [ " config_file" ]

[ , [ " log_file" ] [ , [ " mtm_spec" ]
[ , [ " scale_factors" ] [ , [ "scale_type" ] ] ] ] ] ] ] );
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scale_factors is an optional character string argument specifying the scale factors to be used while anno
timing values. For example,"1.6:1.4:1.2" causes minimum values to be multiplied by1.6,
typical values by1.4 , and maximum values by1.2 . The default values are1.0:1.0:1.0 . The
scale_factors argument overrides anySCALE_FACTORS keywords in the configuration file.

scale_type is an optional character string argument specifying how the scale factors should be applied
min /typ /max triples. The legal values for this string are shown in Table 17-9. This overrides
SCALE_TYPE keywords in the configuration file.

17.3 Timescale system tasks

The following system tasks display and set timescale information:

a) $printtimescale

b) $timeformat

17.3.1 $printtimescale

The$printtimescalesystem task displays the time unit and precision for a particular module. The syntax for the
tem task is shown in Syntax 17-9.

Table 17-8—mtm spec argument

Keyword Description

MAXIMUM Annotate the maximum value

MINIMUM Annotate the minimum value

TOOL_CONTROL (default) Annotate the value as selected by
the simulator

TYPICAL Annotate the typical value

Table 17-9—scale type argument

Keyword Description

FROM_MAXIMUM Apply scale factors to maximum value

FROM_MINIMUM Apply scale factors to minimum value

FROM_MTM (default) Apply scale factors to min/typ/max
values

FROM_TYPICAL Apply scale factors to typical value
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Syntax 17-9—Syntax for $printtimescale

This system task can be specified with or without an argument.

— When no argument is specified,$printtimescaledisplays the time unit and precision of the module that is t
current scope.

— When an argument is specified,$printtimescale displays the time unit and precision of the module passed
it.

The timescale information appears in the following format:

Time scale of (module_name) is unit / precision

Example:

In this example, modulea_dat invokes the$printtimescale system task to display timescale information abo
another modulec_dat , which is instantiated in moduleb_dat .

The information about c_dat  is displayed in the following format:

Time scale of (b_dat.c1) is 1ns / 1ns

17.3.2 $timeformat

The syntax for$timeformat system task is shown in Syntax 17-10.

printtimescale_task ::=(Not in the Annex A BNF)
$printtimescale [ ( hierarchical_identifier) ] ;

`timescale 1 ms / 1 us
module a_dat;
initial

$printtimescale(b_dat.c1);
endmodule

`timescale 10 fs / 1 fs
module b_dat;

c_dat c1 ();
endmodule

`timescale 1 ns / 1 ns
module c_dat;

.

.

.
endmodule
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Syntax 17-10—Syntax for $timeformat

The$timeformat system task performs the following two functions:

— It specifies how the%t format specification reports time information for the$write, $display, $strobe,
$monitor, $fwrite , $fdisplay, $fstrobe, and$fmonitor  group of system tasks.

— It specifies the time unit for delays entered interactively.

The units number argument shall be an integer in the range from0 to -15 . This argument represents the time unit a
shown in Table 17-10.

The$timeformat system task performs the following two operations:

— It sets the time unit for all later-entered delays entered interactively.

— It sets the time unit, precision number, suffix string, and minimum field width for all%t formats specified in
all modules that follow in the source description until another$timeformat system task is invoked.

The default$timeformat system task arguments are given in Table 17-11.

timeformat_task ::=(Not in the Annex A BNF)
$timeformat [ ( units_number, precision_number, suffix_string, minimum_field_width) ] ;

Table 17-10—$timeformat units_number arguments

Unit number Time unit Unit number Time unit

0 1 s -8 10 ns

-1 100 ms -9 1 ns

-2 10 ms -10 100 ps

-3 1 ms -11 10 ps

-4 100 us -12 1 ps

-5 10 us -13 100 fs

-6 1 us -14 10 fs

-7 100 ns -15 1 fs

Table 17-11—$timeformat default value for arguments

Argument Default

units_number The smallest time precision argument of all the`timescalecompiler
directives in the source description

precision_number 0

suffix_string A null character string

minimum_field_width 20
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Example:

The following example shows the use of%t with the$timeformat system task to specify a uniform time unit, time
precision, and format for timing information.

The contents of filea1.dat  are as follows:

a1_dat: 0.00000 ns in1= x o1=x
a1_dat: 10.00000 ns in1= 0 o1=x
a1_dat: 20.00000 ns in1= 1 o1=0
a1_dat: 30.00000 ns in1= 1 o1=1

The contents of file a2.dat are as follows:

a2_dat: 0.00000 ns in2=x o2=x
a2_dat: 10.00000 ns in2=0 o2=x
a2_dat: 20.00000 ns in2=1 o2=0
a2_dat: 30.00000 ns in2=1 o2=1

In this example, the times of events written to the files by the$fmonitor system task in modulesa1_dat and
a2_dat are reported as multiples of1 ns —even though the time units for these modules are1 fs and1 ps

`timescale 1 ms / 1 ns
module cntrl;
initial

$timeformat(-9, 5, " ns", 10);
endmodule

`timescale 1 fs / 1 fs
module a1_dat;
reg in1;
integer file;
buf #10000000 (o1,in1);
initial begin

file = $fopen("a1.dat");
#00000000 $fmonitor (file,"%m: %t in1=%d o1=%h", $realtime,in1,o1);
#10000000 in1 = 0;
#10000000 in1 = 1;

end
endmodule

`timescale 1 ps / 1 ps
module a2_dat;
reg in2;
integer file2;
buf #10000 (o2,in2);
initial begin

file2= $fopen("a2.dat");
#00000 $fmonitor (file2,"%m: %t in2=%d o2=%h", $realtime,in2,o2);
#10000 in2 = 0;
#10000 in2 = 1;

end
endmodule
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respectively—because the first argument of the$timeformat system task is-9 and the%t format specification is
included in the arguments to$fmonitor . This time information is reported after the module names with five fra
tional digits, followed by an ns  character string in a space wide enough for 10 ASCII characters.

17.4 Simulation control system tasks

There are two simulation control system tasks:

a) $finish

b) $stop

17.4.1 $finish

Syntax 17-11 shows the syntax for$finish system task.

Syntax 17-11—Syntax for $finish

The $finish system task simply makes the simulator exit and pass control back to the host operating system
expression is supplied to this task, then its value determines the diagnostic messages that are printed be
prompt is issued. If no argument is supplied, then a value of 1 is taken as the default.

17.4.2 $stop

The syntax for$stop system task is shown in Syntax 17-12.

Syntax 17-12—Syntax for $stop

The$stopsystem task causes simulation to be suspended. This task takes an optional expression argument0, 1, or
2) that determines what type of diagnostic message is printed. The amount of diagnostic messages output in
with the value of the optional argument passed to$stop.

finish_task ::=(Not in the Annex A BNF)
$finish [ ( n ) ] ;

Table 17-12—Diagnostics for $finish

Parameter value Diagnostic message

0 Prints nothing

1 Prints simulation time and location

2 Prints simulation time, location, and statistics about the memory
and CPU time used in simulation

stop_task ::=(Not in the Annex A BNF)
$stop [ ( n ) ] ;
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17.5 PLA modeling system tasks

The modeling of PLA devices is provided in the Verilog HDL by a group of system tasks. This clause describ
syntax and use of these system tasks and the formats of the logic array personality file.The syntax for PLA m
system task is shown in Syntax 17-13.

Syntax 17-13 —Syntax for PLA modeling system task

NOTE—The input terms can be nets or variables whereas the output terms shall only be variables.

The PLA syntax allows for the system tasks as shown in Table 17-13.

17.5.1 Array types

The modeling of both synchronous and asynchronous arrays is provided by the PLA system tasks. The sync
forms control the time at which the logic array will be evaluated and the outputs will be updated. For the asyn
nous forms, the evaluations are automatically performed whenever an input term changes value or any wor
personality memory is changed.

For both the synchronous and asynchronous forms, the output terms are updated without any delay.

Examples:

An example of an asynchronous system call is as follows:

wire       a1, a2, a3, a4, a5, a6, a7;
reg        b1, b2, b3;
wire [1:7] awire;
reg  [1:3] breg;

pla_system_task ::=(Not in the Annex A BNF)
$array_type$logic$format( memory_type, input_terms, output_terms) ;

array_type ::=
sync | async

logic ::=
and | or | nand | nor

format ::=
array | plane

input_terms ::=
expression

output_terms ::=
variable_lvalue

Table 17-13—PLA modeling system tasks

$async$and$array $sync$and$array $async$and$plane $sync$and$plane

$async$nand$array $sync$nand$array $async$nand$plane $sync$nand$plane

$async$or$array $sync$or$array $async$or$plane $sync$or$plane

$async$nor$array $sync$nor$array $async$nor$plane $sync$nor$plane
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$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
or
$async$and$array(mem,awire, breg);

An example of a synchronous system call is as follows:

$sync$or$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

17.5.2 Array logic types

The logic arrays are modeled with and, or, nand, and nor logic planes. This applies to all array types and form

Examples:

An example of a nor plane system call is as follows:

$async$nor$plane(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

An example of a nand plane system call is as follows:

$sync$nand$plane(mem,{a1,a2,a3,a4,a5,a6,a7}, {b1,b2,b3});

17.5.3 Logic array personality declaration and loading

The logic array personality is declared as an array of regs that is as wide as the number of input terms and as
the number of output terms.

The personality of the logic array is normally loaded into the memory from a text data file using the system
$readmembor $readmemh. Alternatively, the personality data may be written directly into the memory using
procedural assignment statements. PLA personalities may be changed dynamically at any time during sim
simply by changing the contents of the memory. The new personality will be reflected on the outputs of the
array at the next evaluation.

Example:

The following example shows a logic array withn input terms andm output terms.

reg [1:n] mem[1:m];

NOTE—Put PLA input terms, output terms, and memory in ascending order, as shown in examples in this clause.

17.5.4 Logic array personality formats

Two separate personality formats are supported by the Verilog HDL and are differentiated by using either an
system call or a plane system call. The array system call allows for a1 or 0 in the memory that has been declared.
1 means take the input value and a0 means do not take the input value.

The plane system call complies with the University of California at Berkeley format for Espresso. Each bit of th
stored in the array has the following meaning:

0 Take the complemented input value

 1  Take the true input value

x  Take the “worst case” of the input value
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z  Don’t-care; the input value is of no significance

 ?  Same asz

Examples:

Example 1—The following example illustrates an array with logic equations:

b1 = a1 & a2
b2 = a3 & a4 & a5
b3 = a5 & a6 & a7

The PLA personality is as follows:

1100000 in mem[1]
0011100 in mem[2]
0000111 in mem[3]

The module for the PLA is as follows:

Where the filearray.dat  contains the binary data for the PLA personality:

    1100000
    0011100
    0000111

A synchronous version of this example has the following description:

module async_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3);
input  a1, a2, a3, a4, a5, a6, a7 ;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration for array personality
reg b1, b2, b3;
initial begin

// setup the personality from the file array.dat
$readmemb("array.dat", mem);
// setup an asynchronous logic array with the input
// and output terms expressed as concatenations
$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});

end
endmodule
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Example 2—An example of the usage of the plane format tasks follows. The logical function of this PLA is sh
first, followed by the PLA personality in the new format, the Verilog HDL description using the$async$and$plane
system task, and finally the result of running the simulation.

The logical function of the PLA is as follows:

b[1] = a[1] & ~a[2];
b[2] = a[3];
b[3] = ~a[1] & ~a[3];
b[4] = 1;

The PLA personality is as follows:

3’b10?
3’b??1
3’b0?0
3’b???

module sync_array(a1,a2,a3,a4,a5,a6,a7,b1,b2,b3,clk);
input  a1, a2, a3, a4, a5, a6, a7, clk;
output b1, b2, b3;
reg [1:7] mem[1:3]; // memory declaration
reg b1, b2, b3;
initial begin

// setup the personality
$readmemb("array.dat", mem);
// setup a synchronous logic array to be evaluated

   // when a positive edge on the clock occurs
forever @(posedge clk)

$async$and$array(mem,{a1,a2,a3,a4,a5,a6,a7},{b1,b2,b3});
end
endmodule
Section 17 Copyright 2000 IEEE. All rights reserved. 311
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

s with spe-

n-
The output is as follows:

111 -> 0101
000 -> 0011
xxx -> xxx1
101 -> 1101

17.6 Stochastic analysis tasks

This clause describes a set of system tasks and functions that manage queues and generate random number
cific distributions. These tasks facilitate implementation of stochastic queueing models.

The set of tasks and functions that create and manage queues follow:

$q_initialize (q_id, q_type, max_length, status) ;

$q_add (q_id, job_id, inform_id, status) ;

$q_remove (q_id, job_id, inform_id, status) ;

$q_full (q_id, status) ;

$q_exam (q_id, q_stat_code, q_stat_value, status) ;

17.6.1 $q_initialize

The$q_initialize system task creates new queues. Theq_id parameter is an integer input that shall uniquely ide
tify the new queue. Theq_type parameter is an integer input. The value of theq_type parameter specifies the type

module pla;
`define rows 4
`define cols 3
reg [1:`cols] a, mem[1:`rows];
reg [1:`rows] b;
initial begin

// PLA system call
$async$and$plane(mem,a[1:3],b[1:4]);
mem[1] = 3’b10?;
mem[2] = 3’b??1;
mem[3] = 3’b0?0;
mem[4] = 3’b???;
// stimulus and display
#10 a = 3’b111;
#10 $displayb(a, " -> ", b);
#10 a = 3’b000;
#10 $displayb(a, " -> ", b);
#10 a = 3’bxxx;
#10 $displayb(a, " -> ", b);
#10 a = 3’b101;
#10 $displayb(a, " -> ", b);

end
endmodule
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of the queue as shown in Table 17-14.

The maximum length parameter is an integer input that specifies the maximum number of entries that will be a
on the queue. The success or failure of the creation of the queue is returned as an integer value in status. T
conditions and corresponding values of status are described in Table 17-14.

17.6.2 $q_add

The$q_addsystem task places an entry on a queue. Theq_id parameter is an integer input that indicates to whic
queue to add the entry. Thejob_id parameter is an integer input that identifies the job.

The inform_id parameter is an integer input that is associated with the queue entry. Its meaning is user-d
For example,inform_id parameter can represent execution time for an entry in a CPU model. The status pa
ter reports on the success of the operation or error conditions as described in Table 17-14.

17.6.3 $q_remove

The$q_removesystem task receives an entry from a queue. Theq_id parameter is an integer input that indicate
from which queue to remove. Thejob_id parameter is an integer output that identifies the entry being remov
The inform_id parameter is an integer output that the queue manager stored during$q_add. Its meaning is user-
defined. The status parameter reports on the success of the operation or error conditions as described in Tab

17.6.4 $q_full

The$q_full system function checks whether there is room for another entry on a queue. It returns0 when the queue
is not full and1 when the queue is full.

17.6.5 $q_exam

The $q_examsystem task provides statistical information about activity at the queueq_id . It returns a value in
q_stat_value depending on the information requested inq_stat_code . The values ofq_stat_code and
the corresponding information returned inq_stat_value  are described in Table 17-15.

Table 17-14—Types of queues of $q_type values

q_type value Type of queue

1 first-in, first-out

2 last-in, first-out

Table 17-15—Parameter values for $q_exam system task

Value requested in
q_stat_code

 Information received back
from q_stat_value

1 Current queue length

2 Mean interarrival time

3 Maximum queue length

4 Shortest wait time ever

5 Longest wait time for jobs still in the queue

6 Average wait time in the queue
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17.6.6 Status codes

All of the queue management tasks and functions return an output status parameter. The status parameter v
corresponding information are described in Table 17-16.

17.7 Simulation time system functions

The following system functions provide access to current simulation time:

$time $stime $realtime

17.7.1 $time

The syntax for$time system function is shown in Syntax 17-14.

Syntax 17-14—Syntax for $time

The $time system function returns an integer that is a 64-bit time, scaled to the timescale unit of the modul
invoked it.

Table 17-16—Status parameter values

Status parameter
values What it means

0 OK

1 Queue full, cannot add

2 Undefined q_id

3 Queue empty, cannot remove

4 Unsupported queue type, cannot create queue

5 Specified length <= 0, cannot create queue

6 Duplicate q_id, cannot create queue

7 Not enough memory, cannot create queue

time_function ::=(Not in the Annex A BNF)
$time
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Example:

In this example, the regset is assigned the value0 at simulation time 16 ns, and the value1 at simulation time 32 ns.
Note that these times do not match the times reported by$time. The time values returned by the$time system func-
tion are determined by the following steps:

a) The simulation times 16ns and 32 ns are scaled to1.6 and 3.2 because the time unit for the module is 10 n
so time values reported by this module are multiples of 10 ns.

b) The value1.6 is rounded to2, and3.2 is rounded to 3 because the$time system function returns an integer
The time precision does not cause rounding of these values.

17.7.2 $stime

The syntax for$stime system function is shown in Syntax 17-15.

Syntax 17-15—Syntax for $stime

The$stimesystem function returns an unsigned integer that is a 32-bit time, scaled to the timescale unit of the
ule that invoked it. If the actual simulation time does not fit in 32 bits, the low order 32 bits of the current simul
time are returned.

17.7.3 $realtime

The syntax for$realtime system function is shown in Syntax 17-16.

Syntax 17-16—Syntax for $realtime

stime_function ::=(Not in the Annex A BNF)
$stime

realtime_function ::=$realtime (Not in the Annex A BNF)

`timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin

$monitor( $time,,"set=",set);
#p set = 0;
#p set = 1;

end
endmodule

// The output from this example is as follows:
// 0 set=x
// 2 set=0
// 3 set=1
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The$realtime system function returns a real number time that, like$time, is scaled to the time unit of the module
that invoked it.

Example:

In this example, the event times in the regset are multiples of 10 ns because 10 ns is the time unit of the modu
They are real numbers because$realtime returns a real number.

17.8 Conversion functions

The following functions handlereal values:

integer $rtoi(real_val) ;
real $itor (int_val) ;
[63:0] $realtobits(real_val) ;
real $bitstoreal(bit_val) ;

$rtoi converts real values to integers by truncating the real value (for example, 123.45 becomes 1

$itor converts integers to real values (for example, 123 becomes 123.0)

$realtobits passes bit patterns across module ports; converts from a real number to the 64-bit represe
(vector) of that real number

$bitstoreal is the reverse of$realtobits; converts from the bit pattern to a real number.

The real numbers accepted or generated by these functions shall conform to theIEEE Std 754-1985[B1] representa-
tion of the real number. The conversion shall round the result to the nearest valid representation.

Example:

The following example shows how the$realtobits and$bitstoreal functions are used in port connections:

`timescale 10 ns / 1 ns
module test;
reg set;
parameter p = 1.55;
initial begin

$monitor( $realtime,,"set=",set);
#p set = 0;
#p set = 1;

end
endmodule

// The output from this example is as follows:
// 0 set=x
// 1.6 set=0
// 3.2 set=1
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See 4.5 for a description of$signed and$unsigned.

17.9 Probabilistic distribution functions

There are a set of random number generators that return integer values distributed according to standard prob
functions.

17.9.1 $random function

The syntax for the system function$random is shown in Syntax 17-17.

Syntax 17-17—Syntax for $random

The system function$random provides a mechanism for generating random numbers. The function returns a
32-bit random number each time it is called. The random number is a signed integer; it can be positive or ne
For further information on probabilistic random number generators, see 17.9.2.

Theseed parameter controls the numbers that$random returns such that different seeds generate different rand
streams. Theseed parameter shall be either a reg, an integer, or a time variable. The seed value should be assi
this variable prior to calling$random.

Examples:

Example 1—Where b is greater than0, the expression( $random % b)  gives a number in the following range:
[(-b+1): (b-1) ]. The following code fragment shows an example of random number generation between
-59 and 59:

reg [23:0] rand;
rand = $random % 60;

Example 2—The following example shows how adding the concatenation operator to the preceding example
rand  a positive value from0 to 59 .

random_function ::=(Not in the Annex A BNF)
$random [ ( seed ) ] ;

module driver (net_r);
output net_r;
real r;
wire [64:1] net_r = $realtobits(r);
endmodule

module receiver (net_r);
input  net_r;
wire [64:1] net_r;
real r;
initial assign r = $bitstoreal(net_r);
endmodule
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reg [23:0] rand;
rand = { $random} % 60;

17.9.2 $dist_ functions

Syntax 17-18—Syntax for the probabilistic distribution functions

All parameters to the system functions are integer values. For theexponential , poisson , chi-square , t , and
erlang  functions, the parameters mean, degree of freedom, andk_stage  shall be greater than0.

Each of these functions returns a pseudo-random number whose characteristics are described by the functio
That is,$dist_uniform returns random numbers uniformly distributed in the interval specified by its parameters

For each system function, the seed parameter is an in-out parameter; that is, a value is passed to the function a
ferent value is returned. The system functions will always return the same value given the sameseed . This facilitates
debugging by making the operation of the system repeatable. The argument for the seed parameter should be
ger variable that is initialized by the user and only updated by the system function. This will ensure that the d
distribution is achieved.

In the $dist_uniform function, the start and end parameters are integer inputs that bound the values returne
start value should be smaller than the end value.

The mean parameter, used by$dist_normal, $dist_exponential, $dist_poisson, and$dist_erlang, is an integer input
that causes the average value returned by the function to approach the value specified.

The standard deviation parameter used with the$dist_normal function is an integer input that helps determine th
shape of the density function. Larger numbers for standard deviation will spread the returned values over a
range.

The degree of freedom parameter used with the$dist_chi_squareand$dist_t functions is an integer input that helps
determine the shape of the density function. Larger numbers will spread the returned values over a wider ran

17.9.3 Algorithm for probabilistic distribution functions

Table 17-17 shows the Verilog probabilistic distribution functions listed with their corresponding C functions.

dist_functions ::=(Not in the Annex A BNF)
$dist_uniform ( seed , start , end ) ;

| $dist_normal ( seed , mean , standard_deviation ) ;
| $dist_exponential ( seed , mean ) ;
| $dist_poisson ( seed , mean ) ;
| $dist_chi_square ( seed , degree_of_freedom ) ;
| $dist_t ( seed , degree_of_freedom ) ;
| $dist_erlang ( seed , k_stage , mean) ;

Table 17-17—Verilog to C function cross-listing

Verilog function  C function

$dist_uniform  rtl_dist_uniform

$dist_normal  rtl_dist_normal

$dist_exponential rtl_dist_exponential
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The algorithm for these functions is defined by the following C code.

/*
*  Algorithm for probabilistic distribution functions.
*
*  IEEE Std 1364-2000 Verilog Hardware Description Language (HDL).
*/

#include <limits.h>

static double uniform( long *seed, long start, long end );
static double normal( long *seed, long mean, long deviation);
static double exponential( long *seed, long mean);
static long poisson( long *seed, long mean);
static double chi_square( long *seed, long deg_of_free);
static double t( long *seed, long deg_of_free);
static double erlangian( long *seed, long k, long mean);

long
rtl_dist_chi_square( seed, df )
        long *seed;
        long df;
{
    double r;
    long i;

if (df>0)
    {
       r=chi_square(seed,df);

if (r>=0)
       {
          i=(long)(r+0.5);
       }
                else
       {
            r = -r;
            i=(long)(r+0.5);
            i = -i;
        }
    }
         else

$dist_poisson rtl_dist_poisson

$dist_chi_square rtl_dist_chi_square

$dist_t rtl_dist_t

$dist_erlang rtl_dist_erlang

$random rtl_dist_uniform( seed,
LONG_MIN, LONG_MAX )

Table 17-17—Verilog to C function cross-listing  (continued)

Verilog function  C function
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    {
        print_error("WARNING: Chi_square distribution must have positive

                    degree of freedom\n");
            i=0;
    }

    return (i);
}

long
rtl_dist_erlang( seed, k, mean )
        long *seed;
        long k, mean;
{
    double r;
    long i;

if (k>0)
    {
        r=erlangian(seed,k,mean);

if (r>=0)
        {
            i=(long)(r+0.5);
        }

else
        {
            r = -r;
            i=(long)(r+0.5);
            i = -i;
        }
    }

else
    {
        print_error("WARNING: k-stage erlangian distribution must have
                     positive k\n");
        i=0;
    }

return (i);
}

long
rtl_dist_exponential( seed, mean )
        long *seed;
        long mean;
{
    double r;
    long i;

if (mean>0)
    {
        r=exponential(seed,mean);

if (r>=0)
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        {
            i=(long)(r+0.5);
        }

else

        {
            r = -r;
            i=(long)(r+0.5);
            i = -i;
        }
     }

else
    {
        print_error("WARNING: Exponential distribution must have a
                    positive mean\n");
        i=0;
    }

    return (i);
}

long
rtl_dist_normal( seed, mean, sd )
        long *seed;
        long mean, sd;
{
    double r;
    long i;

    r=normal(seed,mean,sd);
    if(r>=0)
    {
        i=(long)(r+0.5);
    }

else
    {
        r = -r;
        i=(long)(r+0.5);
        i = -i;
    }

    return (i);
}

long
rtl_dist_poisson( seed, mean )
        long *seed;
        long mean;
{
    long i;

if (mean>0)
    {
        i=poisson(seed,mean);
    }

else
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    {
        print_error("WARNING: Poisson distribution must have a positive
                    mean\n");
        i=0;
    }
    return (i);
}

long
rtl_dist_t( seed, df )
        long *seed;
        long df;
{
    double r;
    long i;

if (df>0)
    {
        r=t(seed,df);

if (r>=0)
        {
            i=(long)(r+0.5);
        }

else
        {
            r = -r;
            i=(long)(r+0.5);
            i = -i;
        }
    }

else
    {
        print_error("WARNING: t distribution must have positive degree
                    of freedom\n");
        i=0;
    }
    return (i);
}

long
rtl_dist_uniform(seed, start, end)
        long *seed;
        long start, end;
{
        double r;
        long i;

if  (start >= end) return(start);

if  ( end != LONG_MAX)
        {

end++;
                r = uniform( seed, start, end );

if  (r >= 0)
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                {
                        i = (long) r;
                }

else
                {
                        i = (long) (r-1);
                }

if  (i<start) i = start;
if  (i>=end) i = end-1;

        }
else if (start!=LONG_MIN)

        {
                start--;
                r = uniform( seed, start, end) + 1.0;

if  (r>=0)
                {
                        i = (long) r;
                }

else
                {
                        i = (long) (r-1);
                }

if  (i<=start) i = start+1;
if  (i> end) i = end;

        }
else

        {
                r =(uniform(seed,start, end)+2147483648.0)/4294967295.0=;
                r = r*4294967296.0-2147483648.0;

if  (r>=0)
                {
                        i = (long) r;
                }

else
                {
                        i = (long) (r-1);
                }
        }

        return (i);
}

static double
uniform( seed, start, end )
        long *seed, start, end;
{
        union u_s
        {
                float s;
                unsigned stemp;
        } u;

        double d = 0.00000011920928955078125;
        double a,b,c;
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if  ((*seed) == 0)
                *seed = 259341593;

if  (start >= end)
        {
                a = 0.0;
                b = 2147483647.0;
        }

else
        {
                a = (double) start;
                b = (double) end;
        }
        *seed = 69069 * (*seed) + 1;
        u.stemp = *seed;

        /*
         * This relies on IEEE floating point format
        */
        u.stemp = (u.stemp >> 9) | 0x3f800000;

        c = (double) u.s;

        c = c+(c*d);
        c = ((b - a) * (c - 1.0)) + a;

        return (c);
}

static double
normal(seed,mean,deviation)
long *seed,mean,deviation;
{
    double v1,v2,s;
    double log(), sqrt();

    s = 1.0;
while((s >= 1.0) || (s == 0.0))

    {
        v1 = uniform(seed,-1,1);
        v2 = uniform(seed,-1,1);
        s = v1 * v1 + v2 * v2;
    }
    s = v1 * sqrt(-2.0 * log(s) / s);
    v1 = (double) deviation;
    v2 = (double) mean;
    return(s * v1 + v2);
}

static double
exponential(seed,mean)
long *seed,mean;
{
    double log(),n;
    n = uniform(seed,0,1);
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if (n != 0)
    {
        n = -log(n) * mean;
    }
    return(n);
}

static long
poisson(seed,mean)
long *seed,mean;
{
    long n;
    double p,q;
    double exp();

    n = 0;
    q = -(double)mean;
    p = exp(q);
    q = uniform(seed,0,1);

while(p < q)
    {
        n++;
        q = uniform(seed,0,1) * q;
    }
    return(n);
}

static double
chi_square(seed,deg_of_free)
long *seed,deg_of_free;
{
    double x;
    long k;

if (deg_of_free % 2)
    {
        x = normal(seed,0,1);
        x = x * x;
    }

else
    {
        x = 0.0;
    }
    double log(),n;

    n = uniform(seed,0,1);
if (n != 0)

    {
        n = -log(n) * mean;
    }
    return(n);
}

static long
poisson(seed,mean)
long *seed,mean;
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{
    long n;
    double p,q;
    double exp();

    n = 0;
    q = -(double)mean;

    p = exp(q);
    q = uniform(seed,0,1);

while(p < q)
    {
        n++;
        q = uniform(seed,0,1) * q;
    }
    return(n);
}

static double
chi_square(seed,deg_of_free)
long *seed,deg_of_free;
{
    double x;
    long k;

if (deg_of_free % 2)
    {
        x = normal(seed,0,1);
        x = x * x;
    }

else
    {
        x = 0.0;
    }
static double
t(seed,deg_of_free)
long *seed,deg_of_free;
{
    double sqrt(),x;
    double chi2 = chi_square(seed,deg_of_free);
    double div = chi2 / (double)deg_of_free;
    double root = sqrt(div);
    x = normal(seed,0,1) / root;
    return(x);
}

static double
erlangian(seed,k,mean)
long *seed,k,mean;
{
    double x,log(),a,b;
    long i;

    x=1.0;
for (i=1;i<=k;i++)
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        x = x * uniform(seed,0,1);
    }
    a=(double)mean;
    b=(double)k;
    x= -a*log(x)/b;
    return(x);
}

17.10 Command line input

An alternative to reading a file to obtain information for use in the simulation is specifying information with the c
mand to invoke the simulator. This information is in the form of a optional argument provided to the simula
These arguments are visually distinguished from other simulator arguments by the starting with the plus (+) character.

These arguments, referred to below asplusargs, are accessible through the following system functions.

17.10.1 $test$plusargs (string)

This system function searches the list of plusargs for the provided string. The plusargs present on the comm
are searched in the order provided. If the prefix of one of the supplied plusargs matches all characters in the p
string, a non-zero integer is returned. If no plusarg from the command line matches the string provided, the
value zero (0) is returned.

Examples:

Run simulator with command:+HELLO

The Verilog code is:

initial begin
if  ( $test$plusargs("HELLO")) $display("Hello argument found.")
if  ( $test$plusargs("HE")) $display("The HE subset string is

detected.");
if  ( $test$plusargs("H")) $display("Argument starting with H found.");
if  ( $test$plusargs("HELLO_HERE")) $display("Long argument.");
if  ( $test$plusargs("HI")) $display("Simple greeting.");
if  ( $test$plusargs("LO")) $display("Does not match.");

end

This would produce the following output:

Hello argument found.
The HE subset string is detected.
Argument starting with H found.

17.10.2 $value$plusargs (user_string, variable)

This system function searches the list of plusargs (like the$test$plusargssystem function) for a user specified plus
arg string. The string is specified in the first argument to the system function as either a string or a register w
interpreted as a string. If the string is found, the remainder of the string is converted to the type specified
user_stringand the resulting value stored in the variable provided. If a string is found, the function returns a non
integer. If no string is found matching, the function returns the integer value zero and the variable provided
modified. No warnings shall be generated when the function returns zero (0).
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Theuser_stringshall be of the form:" plusarg_string format_string" . The format strings are the same as the$display
system tasks. These are the only valid ones (upper and lower case as well as a leading0 forms are valid):

%d decimal conversion
%o octal conversion
%h hexadecimal conversion
%b binary conversion
%e real exponential conversion
%f real decimal conversion
%g real decimal or exponential conversion
%s string (no conversion)

The first string, from the list ofplusargsprovided to the simuator, which matches theplusarg_stringportion of the
user_stringspecified shall be theplusargstring available for conversion. The remainder string of the matchingplus-
arg (the remainder is the part of theplusargstring after the portion which matches the usersplusarg_string) shall be
converted from a string into the format indicated by the format string and stored in the variable provided. If there
remainding string, the value stored into the variable shall either be a zero (0) or an empty string value.

If the size of the variable is larger than the value after conversion, the value stored is zero (0) padded to the width of
the variable. If the variable can not contain the value after conversion, the value shall be truncated. If the value
ative, the value shall be considered larger than the variable provided. If characters exist in the string available f
version, which are illegal for the specified conversion, the variable shall be written with the value’bx .

Examples:

+FINISH=10000 +TESTNAME=this_test +FREQ+5.6666 +FREQUENCY +TEST12

// Get clock to terminate simulation if specified.
real frequency;
reg 8*32:1 testname;
integer stop_clock;
if  ( $value$plusargs("FINISH=%d", stop_clock))

begin
repeat (stop_clock) @( posedge clk);
$finish;
end

// Get testname from plusarg.
if  ( $value$plusargs("TESTNAME=%s", testname))

begin
$display("Running test %0s.", testname);

  startTest();
end

// Get frequency from command line; set default if not specified.
if  (! $value$plusargs("FREQ+%0F", frequency))
  frequency = 8.33333; // 166MHz;

forever
begin
  #frequency clk = 0;
  #frequency clk = 1;
end

reg [64*8:1] pstring;
pstring = "+TEST%d";
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if  ( $value$plusargs(pstring, test[31:0))
begin
$display("Running test number %0d.", test);

  startTest();
end

This code would have the following effects:

— The variabletest  would get the value’d12 .
— The variablestop_clock  obtains the value10000 .
— The variabletestname  obtains the valuethis_test .
— The variablefrequency obtains the value5.6666 ; note the finalplusarg+FREQUENCYdoes not affect

the value of the variablefrequency.

The output is:

Running test this_test.
Running test number 12.
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Section 18

Value change dump (VCD) files

A value change dump (VCD) filecontains information about value changes on selected variables in the design s
by value change dump system tasks. Two types of VCD files exist:

a) Four state: to represent variable changes in0, 1, x , andz  with no strength information.

b) Extended: to represent variable changes in all states and strength information.

This section describes how to generate both types of VCD files and their format.

18.1 Creating the four state value change dump file

The steps involved in creating the four state VCD file are listed below and illustrated in Figure 18-1.

a) Insert the VCD system tasks in the Verilog source file to define the dump file name and to speci
variables to be dumped.

b) Run the simulation.

Figure 18-1—Creating the four state VCD file

A VCD file is an ASCII file which contains header information, variable definitions, and the value changes f
variables specified in the task calls.

Several system tasks can be inserted in the source description to create and control the VCD file.

initial

$dumpfile(“dump1.dump”);
       .
       .
       .
$dumpvars(...)
       .
       .
       .

simulation

Verilog Source File Four State VCD File
dump1.dump

(Header
Information)

(Node
Information)

(Value
Changes)

User
Postprocessing
Section 18 Copyright 2000 IEEE. All rights reserved. 331
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

18-1.

e exe-
18.1.1 Specifying the name of the dump file ($dumpfile)

The$dumpfile task shall be used to specify the name of the VCD file. The syntax for the task is given in Syntax

Syntax 18-1—Syntax for $dumpfile task

Thefilename syntax is given in Syntax 18-2.

Syntax 18-2—Syntax for filename

Thefilename is optional and defaults to the literal stringdump.vcd  if not specified.

Example:

initial $dumpfile ("module1.dump") ;

18.1.2 Specifying the variables to be dumped ($dumpvars)

The$dumpvars task shall be used to list which variables to dump into the file specified by$dumpfile. The$dump-
vars task can be invoked as often as desired throughout the model (for example, within various blocks), but th
cution of all the$dumpvars tasks shall be at the same simulation time.

The $dumpvars task can be used with or without arguments. The syntax for the$dumpvars task is given in
Syntax 18-3.

Syntax 18-3—Syntax for $dumpvars task

When invoked with no arguments,$dumpvars dumps all the variables in the model to the VCD file.

dumpfile_task ::=(Not in the Annex A BNF)
$dumpfile ( filename) ;

filename ::=(Not in the Annex A BNF)
literal_string

| variable
| expression

dumpvars_task ::=(Not in the Annex A BNF)
$dumpvars ;

| $dumpvars ( levels[ , list_of_modules_or_variables ] ) ;
list_of_modules_or_variables ::=(Not in the Annex A BNF)

module_or_variable {, module_or_variable }
module_or_variable ::=

module_identifier
| variable_identifier
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When the$dumpvars task is specified with arguments, the first argument indicates how manylevelsof the hierarchy
below each specified module instance to dump to the VCD file. Subsequent arguments specify which scope
model to dump to the VCD file. These arguments can specify entire modules or individual variables within a mo

Setting the first argument to0 causes a dump of all variables in the specified module and in all module insta
below the specified module. The argument0 applies only to subsequent arguments which specify module instan
and not to individual variables.

Examples:

Example 1

$dumpvars (1, top);

Because the first argument is a1, this invocation dumps all variables within the moduletop ; it does not dump vari-
ables in any of the modules instantiated by moduletop .

Example 2

$dumpvars (0, top);

In this example, the$dumpvars task shall dump all variables in the moduletop and in all module instances below
moduletop  in the hierarchy.

Example 3—This example shows how the$dumpvars task can specify both modules and individual variables:

$dumpvars (0, top.mod1, top.mod2.net1);

This call shall dump all variables in modulemod1 and in all module instances belowmod1, along with variable
net1 in modulemod2. The argument0 applies only to the module instancetop.mod1 and not to the individual
variabletop.mod2.net1 .

18.1.3 Stopping and resuming the dump ($dumpoff/$dumpon)

Executing the$dumpvars task causes the value change dumping to start at the end of the current simulation
unit. To suspend the dump, the$dumpoff task can be invoked. To resume the dump, the$dumpon task can be
invoked. The syntax of these two tasks is given in Syntax 18-4.

Syntax 18-4—Syntax for $dumpoff and $dumpon tasks

When the$dumpoff task is executed, a checkpoint is made in which every selected variable is dumped as anx value.
When the$dumpon task is later executed, each variable is dumped with its value at that time. In the interval bet
$dumpoff and$dumpon, no value changes are dumped.

The$dumpoff and$dumpon tasks provide the mechanism to control the simulation period during which the d
shall take place.

dumpoff_task ::=(Not in the Annex A BNF)
$dumpoff ;

dumpon_task ::=(Not in the Annex A BNF)
$dumpon ;
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Example:

This example starts the value change dump after 10 time units, stops it 200 time units later (at time 210), re
again 800 time units later (at time 1010), and stops it 900 time units later (at time 1910).

18.1.4 Generating a checkpoint ($dumpall)

The$dumpall task creates a checkpoint in the VCD file which shows the current value of all selected variables
syntax is given in Syntax 18-5.

Syntax 18-5—Syntax for $dumpall task

When dumping is enabled, the value change dumper records the values of the variables which change dur
time increment. Values of variables which do not change during a time increment are not dumped.

18.1.5 Limiting the size of the dump file ($dumplimit)

The$dumplimit  task can be used to set the size of the VCD file. The syntax for this task is given in Syntax 18

Syntax 18-6—Syntax fro $dumplimit task

Thefilesizeargument which specifies the maximum size of the VCD file in bytes. When the size of VCD file rea
this number of bytes, the dumping stops and a comment is inserted in the VCD file indicating the dump lim
reached.

18.1.6 Reading the dump file during simulation ($dumpflush)

The$dumpflush task can be used to empty the VCD file buffer of the operating system to ensure all the data i
buffer is stored in the VCD file. After executing a$dumpflush task, dumping is resumed as before so no val
changes are lost. The syntax for the task is given in Syntax 18-7.

dumpall_task ::=(Not in the Annex A BNF)
$dumpall ;

dumplimit_task ::=(Not in the Annex A BNF)
$dumplimit ( filesize) ;

initial begin
#10 $dumpvars( . . . );

#200 $dumpoff;

#800 $dumpon;

#900 $dumpoff;
end
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Syntax 18-7—Syntax for $dumpflush task

A common application is to call$dumpflush to update the dump file so an application program can read the VCD
during a simulation.

Examples:

Example 1—This example shows how the$dumpflush task can be used in a Verilog HDL source file:

Example 2—The following is a simple source description example to produce a VCD file.

In this example, the name of the dump file isverilog.dump . It dumps value changes for all variables in the mode
Dumping begins when an eventdo_dump occurs. The dumping continues for 500 clock cycles, then stops and w
for the eventdo_dump to be triggered again. At every 10000 time steps, the current values of all VCD variable
dumped.

dumpflush_task ::=(Not in the Annex A BNF)
$dumpflush ;

initial begin
$dumpvars ;

.

.

.

$dumpflush ;

$(applications program) ;

end
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e easily
18.2 Format of the four state VCD file

The dump file is structured in a free format. White space is used to separate commands and to make the fil
readable by a text editor.

18.2.1 Syntax of the four state VCD file

The syntax of the four state VCD file is given in Syntax 18-8.

module dump;
event do_dump;

initial $dumpfile ("verilog.dump");
initial @do_dump

$dumpvars; //dump variables in the design

always @do_dump //to begin the dump at event do_dump
begin

$dumpon; //no effect the first time through
repeat (500) @( posedgeclock); //dump for 500 cycles
$dumpoff; //stop the dump

end

initial @ (do_dump)
forever #10000 $dumpall; //checkpoint all variables

endmodule
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Syntax 18-8—Syntax of the output four state VCD file

The VCD file starts with header information giving the date, the version number of the simulator used for the s
tion, and the timescale used. Next, the file contains definitions of the scope and type of variables being dump
lowed by the actual value changes at each simulation time increment. Only the variables which change value d
time increment are listed.

The simulation time recorded in VCD file is the absolute value of the simulation time for the changes in variab
ues which follow.

Value changes for real variables are specified by real numbers.Value changes for all other variables are spe
binary format by0, 1, x , orz  values. Strength information and memories are not dumped.

A real number is dumped using a%.16g printf() format. This preserves the precision of that number by outp
ting all 53 bits in the mantissa of a 64-bitIEEE Std 754-1985[B1] double-precision number. Application program
can read a real number using a%g format toscanf() .

value_change_dump_definitions ::=(Not in the Annex A BNF)
{ declaration_command }{ simulation_command }

declaration_command ::=
declaration_keyword
[ command_text ]
$end

simulation_command ::=
simulation_keyword { value_change }$end

| $comment[ comment_text] $end
| simulation_time
| value_change

declaration_keyword ::=
$comment| $date | $enddefinitions | $scope| $timescale| $upscope

| $var | $version
simulation_keyword ::=

$dumpall | $dumpoff | $dumpon | $dumpvars
simulation_time ::=

# decimal_number
value_change ::=

scalar_value_change
| vector_value_change

scalar_value_change ::=
value identifier_code

value ::=
0 | 1 | x | X | z | Z

vector_value_change ::=
b binary_number identifier_code

| B binary_number identifier_code
| r real_number identifier_code
| R real_number identifier_code

identifier_code ::=
{ ASCII character}
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The value change dumper generates character identifier codes to represent variables. The identifier code i
composed of the printable characters which are in the ASCII character set from ! to ~ (decimal 33 to 126).

NOTES

1—The VCD format does not support a mechanism to dumppart of a vector. For example, bits 8 to 15 (8:15) of a 16-bit vecto
cannot be dumped in VCD file; instead, the entire vector (0:15) has to be dumped. In addition, expressions, such as a + b
be dumped in the VCD file.

2— Data in the VCD file is case sensitive.

18.2.2 Formats of variable values

Variables can be either scalars or vectors. Each type is dumped in its own format. Dumps of value changes t
variables shall not have any white space between the value and the identifier code.

Dumps of value changes to vectors shall not have any white space between the base letter and the value d
they shall have one white space between the value digits and the identifier code.

The output format for each value is right-justified. Vector values appear in the shortest form possible: redund
values which result from left-extending values to fill a particular vector size are eliminated.

The rules for left-extending vector values are given in Table 18-1.

Table 18-2 shows how the VCD can shorten values.

Events are dumped in the same format as scalars; for example,1*%. For events, however, the value (1 in this exam
ple) is irrelevant. Only the identifier code (*% in this example) is significant. It appears in the VCD file as a marker
indicate the event was triggered during the time step.

Table 18-1—Rules for left-extending vector values

When the value is VCD left-extends with

1 0

0 0

Z Z

X X

Table 18-2—How the VCD can shorten values

The binary value Extends to fill a
4-bit reg as

Appears in the
VCD file as

10 0010 b10

X10 XX10 bX10

ZX0 ZZX0 bZX0

0X10 0X10 b0X10
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Examples:

1*@     No space between the value 1 and the identifier code *@

b1100x01z (k No space between the b and 1100x01z,
but a space between b1100x01z and (k

18.2.3 Description of keyword commands

The general information in the VCD file is presented as a series of sections surrounded by keywords. Keywor
mands provide a means of inserting information in the VCD file. Keyword commands can be inserted either
dumper or manually.

This sub clause deals with the keyword commands given in Table 18-3.

18.2.3.1 $comment

The$commentsection provides a means of inserting a comment in the VCD file. The syntax for the section is
in Syntax 18-9.

Syntax 18-9—Syntax for $comment section

Examples:

$comment This is a single-line comment $end
$comment This is a
multiple-line comment
$end

18.2.3.2 $date

The $date section indicates the date on which the VCD file was generated.The syntax for the section is giv
Syntax 18-10.

Table 18-3—Keyword commands

Declaration keywords Simulation keywords

$comment $timescale $dumpall

$date $upscope $dumpoff

$enddefinitions $var $dumpon

$scope $version $dumpvars

vcd_declaration_comment ::=(Not in the Annex A BNF)
$commentcomment_text$end
Section 18 Copyright 2000 IEEE. All rights reserved. 339
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
Std P1364-2000 (Draft 5) IEEE STANDARD HARDWARE DESCRIPTION LANGUAGE BASED ON

ion is

en in
Syntax 18-10—Syntax for $date section

Example:

$date
June 25, 1989 09:24:35

$end

18.2.3.3 $enddefinitions

The $enddefinitionssection marks the end of the header information and definitions.The syntax for the sect
given in Syntax 18-11.

.

Syntax 18-11—Syntax for $enddefinitions section

18.2.3.4 $scope

The $scopesection defines the scope of the variables being dumped.The syntax for the section is giv
Syntax 18-12.

Syntax 18-12—Syntax for $scope section

The scope type indicates one of the following scopes:

module Top-level module and module instances
task Tasks
function Functions
begin Named sequential blocks
fork Named parallel blocks

vcd_declaration_date ::=(Not in the Annex A BNF)
$datedate_text$end

vcd_declaration_enddefinitions ::=(Not in the Annex A BNF)
$enddefinitions $end

vcd_declaration_scope ::=(Not in the Annex A BNF)
$scope scope_typescope_identifier$end

scope_type ::=
begin

| fork
| function
| module
| task
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Example:

$scope
module top

$end

18.2.3.5 $timescale

The$timescalekeyword specifies what timescale was used for the simulation.The syntax for the keyword is giv
Syntax 18-13.

Syntax 18-13—Syntax for $timescale

Example:

$timescale  10  ns $end

18.2.3.6 $upscope

The $upscopesection indicates a change of scope to the next higher level in the design hierarchy. The syntax
section is given in Syntax 18-14.

Syntax 18-14—Syntax for $upscope section

18.2.3.7 $version

The$versionsection indicates which version of the VCD writer was used to produce the VCD file and the$dumpfile
system task used to create the file. If a variable or an expression was used to specify thefilenamewithin $dumpfile,
the unevaluated variable or expression literal shall appear in the$versionstring. The syntax for the$versionsection
is given in Syntax 18-15.

Syntax 18-15—Syntax for $version section

vcd_declaration_timescale ::=(Not in the Annex A BNF)
$timescale time_number time_unit $end

time_number ::=
1 | 10 | 100

time_unit ::=
s | ms | us | ns | ps | fs

vcd_declaration_upscope ::=(Not in the Annex A BNF)
$upscope $end

vcd_declaration_version ::=(Not in the Annex A BNF)
$versionversion_text system_task$end
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Example:

$version
     VERILOG-SIMULATOR 1.0a

$dumpfile(“dump1.dump”)
$end

18.2.3.8 $var

The$var section prints the names and identifier codes of the variables being dumped. The syntax for the se
given in Syntax 18-16.

Syntax 18-16—Syntax for $var section

Size specifies how many bits are in the variable.

The identifier code specifies the name of the variable using printable ASCII characters, as previously describ

a) The msb index indicates the most significant index; the lsb index indicates the least significant index.

b) More than one reference name can be mapped to the same identifier code. For example, net10 and n
be interconnected in the circuit and therefore have the same identifier code.

c) The individual bits of vector nets can be dumped individually.

d) The identifier is the name of the variable being dumped in the model.

Example:

$var
integer 32 (2 index

$end

18.2.3.9 $dumpall

The $dumpall keyword specifies current values of all variables dumped. The syntax for the keyword is giv
Syntax 18-17.

vcd_declaration_vars ::=(Not in the Annex A BNF)
$var var_type size identifier_code reference$end

var_type ::=
event | integer | parameter | real | reg | supply0 | supply1 | time

| tri  | triand  | trior  | trireg  | tri0  | tri1  | wand | wire | wor
size ::=

decimal_number
reference ::=

identifier [ bit_select_index]
| identifier[ msb_index: lsb_index]

index ::=
decimal_number
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Syntax 18-17—Syntax for $dumpall keyword

Example:

$dumpall   1*@  x*#   0*$   bx   (k $end

18.2.3.10 $dumpoff

The $dumpoff keyword indicates all variables dumped with X values. The syntax for the keyword is give
Syntax 18-18.

Syntax 18-18—Syntax for $dumpoff keyword

Example:

$dumpoff  x*@  x*#   x*$   bx   (k $end

18.2.3.11 $dumpon

The $dumpon keyword indicates resumption of dumping and lists current values of all variables dumped. The
tax for the keyword is given in Syntax 18-19.

Syntax 18-19—Syntax for $dumpon keyword

Example:

$dumpon   x*@  0*#   x*$   b1   (k $end

18.2.3.12 $dumpvars

The section beginning with$dumpvars keyword lists initial values of all variables dumped. The syntax for the ke
word is given in Syntax 18-20.

vcd_simulation_dumpall ::=(Not in the Annex A BNF)
$dumpall { value_changes }$end

vcd_simulation_dumpoff ::=(Not in the Annex A BNF)
$dumpoff { value_changes }$end

vcd_simulation_dumpon ::=(Not in the Annex A BNF)
$dumpon { value_changes }$end
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Syntax 18-20—Syntax for $dumpvars keyword

Example:

$dumpvars   x*@   z*$   b0   (k $end

vcd_simulation_dumpvars ::=(Not in the Annex A BNF)
$dumpvars { value_changes }$end
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18.2.4 Four state VCD file format example

The following example illustrates the format of the four state VCD file.

$date June 26, 1989 10:05:41
$end
$version VERILOG-SIMULATOR 1.0a
$end
$timescale  1 ns
$end
$scope module top $end
$scope module m1 $end
$var trireg  1 *@ net1 $end
$var trireg  1 *# net2 $end
$var trireg  1 *$ net3 $end
$upscope $end
$scope task t1 $end
$var reg 32 (k accumulator[31:0] $end
$var integer 32 {2 index $end
$upscope $end
$upscope $end
$enddefinitions $end
$comment
  Note: $dumpvars was executed at time ’#500’.
        All initial values are dumped at this time.
$end

#500
$dumpvars
x*@
x*#
x*$
bx (k
bx {2
$end
#505
0*@
1*#
1*$
b10zx1110x11100 (k
b1111000101z01x {2
#510
0*$
#520
1*$
#530
0*$
bz (k
#535
$dumpall   0*@   1*#   0*$

bz (k
b1111000101z01x {2
$end
#540
1*$
#1000
$dumpoff
x*@
x*#
x*$
bx (k
bx {2
$end
#2000
$dumpon
z*@
1*#
0*$
b0 (k
bx {2
$end
#2010
1*$

( Continued in right column )

(Continued from left column)
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18.3 Creating the extended value change dump file

The steps involved in creating the extended VCD file are listed below and illustrated in Figure 18-2.

Figure 18-2—Creating the extended VCD file

a) Insert the extended VCD system tasks in the Verilog source file to define the dump file name and to s
the variables to be dumped.

b) Run the simulation.

The four state VCD file rules and syntax apply to the extended VCD file unless otherwise stated in this sectio

18.3.1 Specifying the dumpfile name and the ports to be dumped ($dumpports)

The$dumpports task shall be used to specify the name of the VCD file and the ports to be dumped. The synt
the task is given in Syntax 18-21.

Syntax 18-21—Syntax for $dumpports task

Where the arguments are optional and are defined as:

scope_list one or more module identifiers. Only modules are allowed (not variables). If more than
module_identifieris specified, they shall be separated by a comma. Pathnames to module
allowed, using the period hierarchy separator. Literal strings are not allowed for
module_identifier.

If no scope_listvalue is provided, the scope shall be the module from which$dumpports is called.

dumpports_task ::=(Not in the Annex A BNF)
$dumpports ( scope_list, file_pathname) ;

scope_list ::=
module_identifier {, module_identfier }

file_pathname ::=
literal_string

| variable
| expression

initial

$dumpports(“dump2.dump”);
       .
       .
       .

       .
       .
       .

simulation

Verilog Source File Extended VCD File
dump2.dump

(Header
Information)

(Node
Information)

(Value
Changes)

User
Postprocessing
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file_pathname can be a double quoted pathname (literal string), a reg type variable, or an expression
denotes the file which shall contain the port VCD information. If nofile_pathnameis provided, the
file shall be written to the current working directory with the namedumpports.vcd. If that file
already exists, it shall be silently overwritten. All file writing checks shall be made by the simul
(write rights, correct pathname, etc.) and appropriate errors or warnings issued.

The following rules apply to the use of the $dumpports system task:

— All the ports in the model from the point of the$dumpports call are considered primary I/O pins and shall b
included in the VCD file. However, any ports which exist in instantiations belowscope_listare not dumped.

— If no arguments are specified for the task,$dumpports; and $dumpports() are allowed. In both of these cas
the default values for the arguments shall be used.

— If the first argument is null, a comma shall be used before specifying the second argument in the argum
— Each scope specified in thescope_listshall be unique. If multiple calls to$dumpports are specified, the

scope_list values in these calls shall also be unique.
— The$dumpports task can be used in source code which also contains the$dumpvars task.
— When$dumpports executes, the associated value change dumping shall start at the end of the current s

tion time unit.
— The$dumpports task can be invoked multiple times throughout the model, but the execution of all$dump-

ports tasks shall be at the same simulation time. Specifying the samefile_pathnamemultiple times is not
allowed.

18.3.2 Stopping and resuming the dump ($dumpportsoff/$dumpportson)

The$dumpportsoff and$dumpportson system tasks provide a means to control the simulation period for dump
port values. The syntax for these system tasks is given in Syntax 18-22.

Syntax 18-22—Syntax for $dumpportsoff and $dumpportson system tasks

The file_pathnameargument can be a double quoted pathname (literal string), a reg type variable, or an expr
which denotes thefile_pathname specified in the$dumpports system task.

$dumpportsoff. When this task is executed, a checkpoint is made in thefile_pathnamewhere each specified port is
dumped with an X value. Port values are no longer dumped from that simulation time forward. Iffile_pathnameis not
specified, all dumping to files opened by$dumpports calls shall be suspended.

$dumpportson. When this task is executed, all ports specified by the associated$dumpports call shall have their
values dumped. This system task is typically used to resume dumping after the execution of$dumpportsoff. If
file_pathnameis not specified, dumping shall resume for all files specified by$dumpports calls, if dumping to those
files was stopped.

If $dumpportson is executed while ports are already being dumped tofile_pathname, the system task is ignored. If

dumpportsoff_task ::=(Not in the Annex A BNF)
$dumpportsoff ( file_pathname) ;

dumpportson_task ::=
$dumpportson ( file_pathname) ;

file_pathname ::=
literal_string

| variable
| expression
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$dumpportsoff is executed while port dumping is already suspended forfile_pathname, the system task is ignored.

18.3.3 Generating a checkpoint ($dumpportsall)

The$dumpportsall system task creates a checkpoint in the VCD file which shows the value of all selected po
that time in the simulation, regardless of whether the port values have changed since the last timestep. The sy
this system task is given in Syntax 18-23.

Syntax 18-23—Syntax for $dumpportsall system task

The file_pathnameargument can be a double quoted pathname (literal string), a reg type variable, or an expr
which denotes thefile_pathname specified in the$dumpports system task.

If the file_pathname is not specified, checkpointing occurs for all files opened by calls to$dumpports.

18.3.4 Limiting the size of the dump file ($dumpportslimit)

The $dumpportslimit system task allows control of the VCD file size. The syntax for this system task is give
Syntax 18-24.

Syntax 18-24—Syntax for $dumpportslimit system task

Thefilesizeargument is required and it specifies the maximum size in bytes for the associatedfile_pathname. When
this filesizeis reached, the dumping stops and a comment is inserted intofile_pathnameindicating the size limit was
attained.

The file_pathnameargument can be a double quoted pathname (literal string), a reg type variable, or an expr
which denotes thefile_pathname specified in the$dumpports system task.

If the file_pathnameis not specified, thefilesizelimit applies to all files opened for dumping due to calls to$dump-
ports.

dumpportsall_task ::=(Not in the Annex A BNF)
$dumpportsall ( file_pathname) ;

file_pathname ::=
literal_string

| variable
| expression

dumpportslimit_task ::=(Not in the Annex A BNF)
$dumpportslimit ( filesize, file_pathname ) ;

file_size ::=
integer

file_pathname ::=
literal_string

| variable
| expression
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18.3.5 Reading the dump file during simulation ($dumpportsflush)

To facilitate performance, simulators often buffer VCD output and write to the file at intervals, instead of line by
The $dumpportsflush system task writes all port values to the associated file, clearing a simulator’s VCD buffe

The syntax for this system task is given in Syntax 18-25.

Syntax 18-25—Syntax for $dumpportsflush system task

The file_pathnameargument can be a double quoted pathname (literal string), a reg type variable, or an expr
which denotes thefile_pathname specified in the$dumpports system task.

If the file_pathname is not specified, the VCD buffers shall be flushed for all files opened by calls to$dumpports.

18.3.6 Description of keyword commands

The general information in the extended VCD file is presented as a series of sections surrounded by keyword
word commands provide a means of inserting information in the extended VCD file. Keyword commands c
inserted either by the dumper or manually. Extended VCD provides one additional keyword command to that
four state VCD.

18.3.6.1 $vcdclose

The$vcdclosekeyword indicates the final simulation time at the time the extended VCD file is closed. This al
accurate recording of the end simulation time, regardless of the state of signal changes, in order to assist
which require this information. The syntax for the keyword is given in Syntax 18-26.

Syntax 18-26—Syntax for $vcdclose keyword

Example:

$vcdclose #13000 $end

18.3.7 General rules for extended VCD system tasks

For each extended VCD system task, the following rules apply:

dumpportsflush_task ::=(Not in the Annex A BNF)
$dumpportsflush ( file_pathname) ;

file_pathname ::=
literal_string

| variable
| expression

vcdclose_task ::=(Not in the Annex A BNF)
$vcdclosefinal_simulation_time $end
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— If a file_pathnameis specified which does not match afile_pathnamespecified in a$dumpports call, the con-
trol task shall be ignored.

— If no arguments are specified for the tasks which have only optional arguments, the system task name
used with no arguments or the name followed by () can be specified. For example:$dumpportsflush; or
$dumpportsflush(). In both of these cases, the default actions for the arguments shall be executed.

18.4 Format of the extended VCD file

The format of the extended VCD file is similar to that of the four state VCD file, as it is also structured in a free
mat. White space is used to separate commands and to make the file easily readable by a text editor.

18.4.1 Syntax of the extended VCD file

The syntax of the extended VCD file is given in Syntax 18-27. A four state VCD construct name which match
extended VCD construct shall be considered equivalent, except if preceded by an* .
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Syntax 18-27—Syntax of the output extended VCD file

value_change_dump_definitions ::={declaration_command} {simulation_command}
declaration_command ::= declaration_keyword [command_text]$end
simulation_command ::=(Not in the Annex A BNF)

simulation_keyword { value_change }$end
| $comment [comment_text]$end
| simulation_time
| value_change

*  declaration_keyword ::=
$comment | $date | $enddefinitions | $scope | $timescale | $upscope | $var

| $vcdclose | $version
command_text ::=

comment_text | close_text | date_section | scope_section | timescale_section
| var_section | version_section

*  simulation_keyword ::=$dumpports | $dumpportsoff | $dumpportson |
$dumpportsall

simulation_time ::=#decimal_number
value_change ::= value identifier_code
value ::=pport_value0_strength_component1_strength_component
port_value ::= input_value | output_value | unknown_direction_value
input_value ::=D | U | N | Z | d | u
output_value ::=L  | H | X | T | l | h
unknown_direction_value ::=0 | 1 | ? | F | A | a | B | b | C | c | f
strength_component ::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
*  identifier_code ::=<{ integer}
comment_text ::= {ASCII_character}
close_text ::=final_simulation_time
date_section ::= date_text
date_text :: =day month date time year
scope_section ::= scope_type scope_identifier
*  scope_type ::=module
timescale_section ::= number time_unit
number ::=1 | 10 | 100
time_unit ::=fs | ps | ns | us | ms | s
var_section ::= var_type size identifier_code reference
*  var_type ::=port
*  size ::=1 | vector_index
vector_index ::=[ msb_index: lsb_index]
index ::=decimal_number
*  reference ::=port_identifier
identifier ::= {printable_ASCII_character}
version_section ::= version_text
*  version_text ::=version_identifier {dumpports_command}
dumpports_command ::=

$dumpports (scope_identifier, string_literal
| variable
| expression)
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The extended VCD file starts with header information giving the date, the version number of the simulator us
the simulation, and the timescale used. Next, the file contains definitions of the scope of the ports being dump
lowed by the actual value changes at each simulation time increment. Only the ports which change value d
time increment are listed.

The simulation time recorded in the extended VCD file is the absolute value of the simulation time for the chan
port values which follow.

Value changes for all ports are specified in binary format by0, 1, x , orz  values and include strength information.

A real number is dumped using a%.16g printf() format. This preserves the precision of that number by outp
ting all 53 bits in the mantissa of a 64-bitIEEE Std 754-1985[B1] double-precision number. Application program
can read a real number using a%g format toscanf() .

NOTES

1—The extended VCD format does not support a mechanism to dumppart of a vector. For example, bits 8 to 15 (8:15) of a 16-b
vector cannot be dumped in VCD file; instead, the entire vector (0:15) has to be dumped. In addition, expressions, such
cannot be dumped in the VCD file.

2— Data in the extended VCD file is case sensitive.

18.4.2 Extended VCD node information

The node information section (also referred to as the variable definitions section) is affected by the$dumpports task
as Syntax 18-28 shows.

Syntax 18-28—Syntax of extended VCD node information

Where the constructs are defined as:

var_type the keywordport . No other keyword is allowed.

size a decimal number indicating the number of bits in the port. If the port is a single bit, the value
be1. If the port is a bus, the actual index is printed. Themsbindicates the most significant index
lsb the least significant index.

$var var_type size< identifier_code reference$end
var_type ::=(Not in the Annex A BNF)

port
size ::=

1
| vector_index

vector_index ::=
[msb_index: lsb_index]

index ::=
decimal_number

identifier_code ::=
integer

reference ::=
port_identifier
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identifier_code an integer preceded by< which starts at zero and ascends in one unit increments for each po
the order found in the module declaration.

reference identifier indicating the port name.

Example:

module test_device(count_out, carry, data, reset)
output count_out, carry ;
input  [0:3] data;
input  reset;
. . .
initial

begin
$dumpports(testbench.DUT, "testoutput.vcd");

. . .
end

This example produces the following node information in the VCD file:

$scope module testbench.DUT $end
$var port         1 <0           count_out $end
$var port         1 <1               carry $end
$var port     [0:3] <2                data $end
$var port         1 <3               reset $end
$upscope  $end

At least one space shall separate each syntactical element. However, the formatting of the information is the c
the simulator vendor. All four state VCD syntax rules for thevector_index apply.

If the vector_indexappears in the port declaration, this shall be the index dumped. If thevector_indexis not in the
port declaration, thevector_indexin the net or reg declaration matching the port name shall be dumped. I
vector_index is found, the port is considered scalar (1 bit wide).

Concatenated ports shall appear in the extended VCD file as separate entries.

Example:

module addbit ({A, b}, ci, sum, co);
input     A, b, ci;
output   sum, co;

. . .

The VCD file output looks like:

$scope module addbit $end
$var port 1 <0 A $end
$var port 1 <1 b $end
$var port 1 <2 ci $end
$enddefinitions $end
. . .

18.4.3 Value changes

The value change section of the VCD file is also affected by$dumpports, as Syntax 18-29 shows.
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Syntax 18-29—Syntax of value change section

Where the constructs are defined as:

p key character which indicates a port. There is no space between thep and theport_value.
port_value state character (described below).
0_strength_component one of the 8 Verilog strengths which indicates thestrength0  specification for the port.
1_strength_component one of the 8 Verilog strengths which indicates thestrength1  specification for the port.

The Verilog strength values are (append keyword with0 or 1 as appropriate for the strength component):

0 highz
1 small
2 medium
3 weak
4 large
5 pull
6 strong
7 supply

identifier_code the integer preceded by the< character as defined in the$var  construct for the port.

18.4.3.1 State characters

The following state information is listed in terms of input values from a test fixture, the output values of the d
under test (DUT), and the states representing unknown direction:

INPUT (TESTFIXTURE)

D low
U high
N unknown
Z tri-state
d low (two or more drivers active)
u high (two or more drivers active)

OUTPUT (DUT)

L low
H high
X unknown (don't care)
T tri-state
l low (two or more drivers active)
h high (two or more drivers active)

UNKNOWN DIRECTION

0 low (both input and output are active with0 value)
1 high (both input and output are active with1 value)
? unknown

pport_value 0_strength_component1_strength_component  identifier_code
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F tri-state (input and output unconnected)
A unknown (input0 and output1)
a unknown (input0 and outputX)
B unknown (input1 and output0)
b unknown (input1 and outputX)
C unknown (inputX and output0)
c unknown (inputX and output1)
f unknown (input and output tri-stated)

18.4.3.2 Drivers

Where drivers are considered only in terms of primitives, continuous assignments, and procedural continuous
ments. Value0/1 means both input and output are active with value0/1 . 0 and1 are conflict states. The following
rules apply to conflicts:

— If both input and output are driving the same value with the same range of strength, then this is a conflic
resolved value is0/1  and the strength is the stronger of the two.

— If the input is driving a strong strength (range) and the output is driving a weak strength (range), the re
value is d/u and the strength is the strength of the input.

— If the input is driving a weak strength (range) and the output is driving a strong strength (range), the
resolved value is l/h and the strength is the strength of the output.

Where range is:

— Strength supply7 to 5 (large) - strong strength
— Strength4 to 1 - weak strength

18.4.4 Extended VCD file format example

The following example illustrates the format of the extended VCD file.

A module declaration:

module adder(data0, data1, data2, data3, carry, as, rdn, reset, test,
 write);

inout data0, data1, data2, data3;
output carry;
input  as, rdn, reset, test, write;

. . .

And the resulting VCD fragment:

$scope module testbench.adder_instance $end
$var port       1 <0         data0 $end
$var port       1 <1         data1 $end
$var port       1 <2         data2 $end
$var port       1 <3         data3 $end
$var port       1 <4         carry $end
$var port       1 <5            as $end
$var port       1 <6           rdn $end
$var port       1 <7         reset $end
$var port       1 <8          test $end
$var port       1 <9         write $end
$upscope $end
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$enddefinitions $end

#0
$dumpports
pX  6  6    <0
pX  6  6    <1
pX  6  6    <2
pX  6  6    <3
pX  6  6    <4
pN  6  6    <5
pN  6  6    <6
pU  0  6    <7
pD  6  0    <8
pN  6  6    <9
$end
#180
pH  0  6    <4
#200000
pD  6  0    <5
pU  0  6    <6
pD  6  0    <9
#200500
pf  0  0    <0
pf  0  0    <1
pf  0  0    <2
pf  0  0    <3
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Section 19

Compiler directives

All Verilog compiler directives are preceded by the (` ) character. This character is called accent grave. It is differ
from the character (’), which is the single quote character. The scope of compiler directives extends from the
where it is processed, across all files processed, to the point where another compiler directive supersedes it or
cessing completes.

This section describes the following compiler directives:

`celldefine [19.1]
`default_nettype [19.2]
`define [19.3]
`else [19.4]
`elsif [19.4]
`endcelldefine [19.1]
`endif [19.4]
`ifdef [19.4]
`ifndef [19.4]
`include [19.5]
`line [19.7]
`nounconnected_drive [19.9]
`resetall [19.6]
`timescale [19.8]
`unconnected_drive [19.9]
`undef [19.3]

19.1 `celldefine and `endcelldefine

The directives̀celldefineand`endcelldefinetag modules as cell modules. Cells are used by certain PLI routines
applications, such as delay calculations. It is advisable to pair each`celldefinewith an`endcelldefine. More than one
of these pairs may appear in a single source description.

These directives may appear anywhere in the source description, but it is recommended that the directives b
fied outside the module definition.

19.2 `default_nettype

The directivè default_nettypecontrols the net type created for implicit net declarations (see 3.5). It can be used
outside of module definitions. It affects all modules that follow the directive, even across source file boundaries
tiple `default_nettypedirectives are allowed. The latest occurrence of this directive in the source controls the ty
nets that will be implicitly declared. Syntax 19-1 contains the syntax of the directive.

Syntax 19-1—Syntax for default nettype compiler directive

default_nettype_compiler_directive ::=(Not in the Annex A BNF)
`default_nettype net_type

net_type ::=wire | tri  | tri0  | wand | triand  | wor | trior  | trireg  | none
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When no`default_nettypedirective is present or if thèresetall directive is specified, implicit nets are of typewire.
When thè default_nettype is set tonone, all nets must be explicitly declared. If a net is not explicitly declared,
error is generated.

19.3 `define and `undef

A text macro substitution facility has been provided so that meaningful names can be used to represent com
used pieces of text. For example, in the situation where a constant number is repetitively used throughout a
tion, a text macro would be useful in that only one place in the source description would need to be altered if th
of the constant needed to be changed.

19.3.1 `define

The directivè define creates a macro for text substitution. This directive can be used both inside and outside m
definitions. After a text macro is defined, it can be used in the source description by using the (`) character, fo
by the macro name. The compiler shall substitute the text of the macro for the string`macro_name . All compiler
directives shall be considered predefined macro names; it shall be illegal to redefine a compiler directive as a
name.

A text macro can be defined with arguments. This allows the macro to be customized for each use individual

The syntax for text macro definitions is given in Syntax 19-2.

Syntax 19-2—Syntax for text macro definition

The macro text can be any arbitrary text specified on the same line as the text macro name. If more than on
necessary to specify the text, the newline shall be preceded by a backslash (\). The first newline not preced
backslash shall end the macro text. The newline preceded by a backslash shall be replaced in the expande
with a newline (but without the preceding backslash character).

When formal arguments are used to define a text macro, the scope of the formal argument shall extend up to
of the macro text. A formal argument can be used in the macro text in the same manner as an identifier.

If a one-line comment (that is, a comment specified with the characters //) is included in the text, then the co
shall not become part of the substituted text. The macro text can be blank, in which case the text macro is de
be empty, and no text is substituted when the macro is used.

The syntax for using a text macro is given in Syntax 19-3.

text_macro_definition ::=(Not in the Annex A BNF)
`define text_macro_name macro_text

text_macro_name ::=
text_macro_identifier [( list_of_formal_arguments) ]

list_of_formal_arguments ::=
formal_argument_identifier { ,  formal_argument_identifier }

text_macro_identifier ::=(From Annex A - A.9.3)
simple_identifier
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Syntax 19-3—Syntax for text macro usage

For a macro without arguments, the text shall be substituted “as is” for every occurrence of`text_macro_name .
However, a text macro with one or more arguments shall be expanded by substituting each formal argument w
expression used as the actual argument in the macro usage.

Once a text macro name has been defined, it can be used anywhere in a source description; that is, there are
restrictions. Text macros can be defined and used interactively. The text macro name shall be a simple identi

The text specified for macro text shall not be split across the following lexical tokens:

— Comments
— Numbers
— Strings
— Identifiers
— Keywords
— Operators

Examples:

The following is illegal syntax because it is split across a string:

`define first_half "start of string
$display(`first_half end of string");

NOTES

1—Each actual argument is substituted for the corresponding formal argument literally. Therefore, when an expression is
an actual argument, the expression will be substituted in its entirety. This may cause an expression to be evaluated more
if the formal argument was used more than once in the macro text. For example,

`define max(a,b)((a) > (b) ? (a) : (b))
n = `max(p+q, r+s) ;

will expand as

text_macro_usage ::=(Not in the Annex A BNF)
`text_macro_identifier [ ( list_of_actual_arguments) ]

list_of_actual_arguments ::=
actual_argument {, actual_argument }

actual_argument ::=
expression

`define wordsize 8
reg [1:`wordsize] data;

//define a nand with variable delay
`define var_nand(dly) nand #dly

`var_nand(2) g121 (q21, n10, n11);
`var_nand(5) g122 (q22, n10, n11);
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n = ((p+q) > (r+s)) ? (p+q) : (r+s) ;
Here, the larger of the two expressions p + q and r + s will be evaluated

twice.

2—The word define is known as a compiler directive keyword, and it is not part of the normal set of keywords. Thus, norma
tifiers in a Verilog HDL source description can be the same as compiler directive keywords (although this is not recomme
The following problems should be considered:

a) Text macro names may not be the same as compiler directive keywords.

b) Text macro names can re-use names being used as ordinary identifiers. For example,signal_name and
`signal_name  are different.

c) Redefinition of text macros is allowed; the latest definition of a particular text macro read by the compiler prevails
the macro name is encountered in the source text.

19.3.2 `undef

The directivè undef shall undefine a previously defined text macro. An attempt to undefine a text macro that wa
previously defined using àdefine compiler directive can result in a warning. The syntax for`undef compiler direc-
tive is given in Syntax 19-4.

Syntax 19-4—Syntax for undef compiler directive

An undefined text macro has no value.

19.4 `ifdef, `else, `elsif, `endif , `ifndef

These conditional compilation compiler directives are used to include optionally lines of a Verilog HDL so
description during compilation. Thèifdef compiler directive checks for the definition of atext_macro_name . If
the text_macro_name is defined, then the lines following thèifdef directive are included. If the
text_macro_name is not defined and aǹelsedirective exists, then this source is compiled. The`ifndef compiler
directive checks for the definition of atext_macro_name . If the text_macro_name is not defined, then the
lines following thè ifndef directive are included. If thetext_macro_name is defined and aǹelsedirective exists,
then this source is compiled.

If the `elsif directive exists (instead of thèelse) the compiler checks for the definition of thetext_macro_name .
If the name exists the lines following the`elsif directive are included. Thèelsif directive is equivalent to the compiler
directive sequencèelse `ifdef... `endif. This directive does not need a corresponding`endif directive. This directive
must be preceded by an`ifdef or `ifndef directive.

These directives may appear anywhere in the source description.

Situations where thèifdef, `else, `elsif, `endif, and`ifndef compiler directives may be useful include:

— Selecting different representations of a module such as behavioral, structural, or switch level
— Choosing different timing or structural information
— Selecting different stimulus for a given run

The`ifdef, `else, `elsif, `endif, and`ifndef compiler directives have the syntax shown in Syntax 19-5.

undefine_compiler_directive ::=(Not in the Annex A BNF)
`undef  text_macro_identifier
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Syntax 19-5—Syntax for conditional compilation directives

The text_macro_identifier is a Verilog HDL simple_identifier. The ifdef_group_of_lines ,
ifndef_group_of_lines , elsif_group_of_lines and theelse_group_of_lines are parts of a
Verilog HDL source description. The `else and`elsif compiler directives and all of the groups of lines are optional

The`ifdef, `else, `elsif, and`endif compiler directives work together in the following manner:

— When aǹ ifdef is encountered, theifdef text macro identifier is tested to see if it is defined as a text ma
name using̀define within the Verilog HDL source description.

— If the theifdef text macro identifier is defined, theifdef group of lines is compiled as part of the descrip
tion and if there arèelseor `elsif compiler directives, these compiler directives and corresponding group
lines are ignored.

— If the ifdef  text macro identifier has not been defined, theifdef  group of lines is ignored.
— If there is aǹ elsif compiler directive, theelsif text macro identifier is tested to see if it is defined as a te

macro name using̀define within the Verilog HDL source description.
— If the elsif text macro identifier is defined, theelsif group of lines is compiled as part of the descriptio

and if there are other̀elsif or `elsecompiler directives, the other`elsif or `elsedirectives and corresponding
groups of lines are ignored.

— If the firstelsif  text macro identifier has not been defined, the firstelsif  group of lines is ignored.
— If there are multiplèelsif compiler directives, they are evaluated like the first`elsif compiler directive in the

order they are written in the Verilog HDL source description.
— If there is aǹelse compiler directive, theelse  group of lines is compiled as part of the description.
— Although the names of compiler directives are contained in the same name space as text macro nam

names of compiler directives are considered not to be defined by`ifdef, `ifndef, and`elsif.

The`ifndef, `else, `elsif, and`endif compiler directives work together in the following manner:

— When an`ifndef is encountered, theifndef text macro identifier is tested to see if it is defined as a te
macro name using̀define within the Verilog HDL source description.

— If the ifndef text macro identifier is not defined, theifndef group of lines is compiled as part of the
description and if there arèelseor `elsif compiler directives, these compiler directives and correspond
groups of lines are ignored.

— If the ifndef  text macro identifier is defined, theifndef  group of lines is ignored.
— If there is aǹ elsif compiler directive, theelsif text macro identifier is tested to see if it is defined as a te

macro name using̀define within the Verilog HDL source description.

conditional_compilation_directive ::= (Not in the Annex A BNF)
ifdef_directive

| ifndef_directive
ifdef_directive ::=

`ifdef text_macro_identifier
ifdef_group_of_lines
{ `elsif text_macro_identifier elsif_group_of_lines }
[ `elseelse_group_of_lines ]
`endif

ifndef_directive ::=
`ifndef text_macro_identifier
ifndef_group_of_lines
{ `elsif text_macro_identifier elsif_group_of_lines }
[ `elseelse_group_of_lines ]
`endif
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— If the elsif text macro identifier is defined, theelsif group of lines is compiled as part of the descriptio
and if there are other̀elsif or `elsecompiler directives, the other`elsif or `elsedirectives and corresponding
groups of lines are ignored.

— If the firstelsif  text macro identifier has not been defined, the firstelsif  group of lines is ignored.
— If there are multiplèelsif compiler directives, they are evaluated like the first`elsif compiler directive in the

order they are written in the Verilog HDL source description.
— If there is aǹelse compiler directive, theelse  group of lines is compiled as part of the description.
— Although the names of compiler directives are contained in the same name space as text macro nam

names of compiler directives are considered not to be defined by`ifdef, `ifndef, and`elseif.

Nesting of `ifdef, `ifndef, `else, `elsif, and`endif compiler directives shall be permitted.

NOTE—Any group of lines that the compiler ignores still has to follow the Verilog HDL lexical conventions for white space, c
ments, numbers, strings, identifiers, keywords, and operators.

Examples:

Example 1—The example below shows a simple usage of an`ifdef directive for conditional compilation. If the identi-
fier behavioral is defined, a continuous net assignment will be compiled in; otherwise, anand gate will be instan-
tiated.

Example 2—The following example shows usage of nested conditional compilation directives.

module and_op (a, b, c);
output a;
input  b, c;

`ifdef behavioral
wire a = b & c;

`else
and a1 (a,b,c);

`endif

endmodule
362 Copyright 2000 IEEE. All rights reserved. Section 19
This is an unapproved IEEE Standards Draft, subject to change.



IEEE
THE VERILOG® HARDWARE DESCRIPTION LANGUAGE Std P1364-2000 (Draft 5)
Example 3—The following example shows usage of chained nested conditional compilation directives.

module test(out);
output out;
`define wow
`define nest_one
`define second_nest
`define nest_two

`ifdef wow
initial $display (“wow is defined”);
`ifdef nest_one
initial $display (“nest_one is defined”);

`ifdef nest_two
initial $display (“nest_two is defined”);

`else
initial $display (“nest_two is not defined”);

`endif
`else

initial $display (“nest_one is not defined”);
`endif

`else
initial $display (“wow is not defined”);
`ifdef second_nest

initial $display (“nest_two is defined”);
`else

initial $display (“nest_two is not defined”);
`endif

`endif
endmodule

module test;
`ifdef first_block

`ifndef second_nest
initial $display (“first_block is defined”);

`else
initial $display (“first_block and second_nest defined”);

`endif
`elsif second_block

initial $display (“second_block defined, first_block is not”);
`else

`ifndef last_result
initial $display (“first_block, second_block, last_result

not defined.”);
`elsif real_last

initial $display (“first_block, second_block not defined,
last_result and real_last defined.”);

`else
initial $display (“Only last_result defined!”);

`endif
`endif

endmodule
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19.5 `include

The file inclusion (̀include) compiler directive is used to insert the entire contents of a source file in another file
ing compilation. The result is as though the contents of the included source file appear in place of the`include com-
piler directive. Thè include compiler directive can be used to include global or commonly used definitions and t
without encapsulating repeated code within module boundaries.

Advantages of using thèinclude compiler directive include the following:

— Providing an integral part of configuration management
— Improving the organization of Verilog HDL source descriptions
— Facilitating the maintenance of Verilog HDL source descriptions

The syntax for thèinclude compiler directive is given in Syntax 19-6.

Syntax 19-6—Syntax for include compiler directive

The compiler directivèinclude can be specified anywhere within the Verilog HDL description. Thefilenameis the
name of the file to be included in the source file. Thefilename can be a full or relative path name.

Only white space or a comment may appear on the same line as the`include compiler directive.

A file included in the source using the`include compiler directive may contain other`include compiler directives.
The number of nesting levels for included files shall be finite.

Examples:

Examples of legal comments for the`include compiler directive are as follows:

`include "parts/count.v"
`include "fileB"
`include "fileB" // including fileB

NOTE—Implementations may limit the maximum number of levels to which include files can be nested, but the limit shal
least 15.

19.6 `resetall

When`resetallcompiler directive is encountered during compilation, all compiler directives are set to the defaul
ues. This is useful for ensuring that only those directives that are desired in compiling a particular source fi
active.

The recommended usage is to place`resetall at the beginning of each source text file, followed immediately by t
directives desired in the file.

19.7 `line

The compiler is expected to maintain the current line and the filename of the file being compiled. The line n

include_compiler_directive ::=(Not in the Annex A BNF)
`include " filename"
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(`line) compiler directive is used to reset the current line number and filename of the current file to the line nu
and filename presented. This can be used to reflect the location in an original file; if the actual source file ha
modified by addition or reduction of lines. After specifying the new line number or file name, the compiler can
rectly refer to the original source file location. For example error messages, source code debugging, etc. can d
user to the actual original line.

The syntax for thèline compiler directive is given in Syntax 19-7.

Syntax 19-7—Syntax for line compiler directive

The directive can be specified anywhere within the Verilog HDL source description. The number parameter
new line number of the next line. The filename parameter is the new name of the file. The filename can be a ful
ative path name. The level parameter indicates whether an include file has been entered (value is1), an include file is
exited (value is2), or neither has been done (value is0).

The results of this directive are not affected by the compiler directive`resetall. As the compiler processes the remain
der of the file and new files, the line number shall be incremented as each line is read and the filename s
updated to the new current file being processed. When beginning to read include files, the current line and fi
shall be stored for restoration at the termination of the include file. The updated line number and filename infor
shall be available for PLI access. The mechanism of library searching is not affected by the effects of the `line
piler directive.

19.8 `timescale

This directive specifies the time unit and time precision of the modules that follow it. The time unit is the unit of
surement for time values such as the simulation time and delay values.

To use modules with different time units in the same design, the following timescale constructs are useful:

— The `timescalecompiler directive to specify the unit of measurement for time and precision of time in
modules in the design

— The $printtimescalesystem task to display the time unit and precision of a module
— The$time and$realtime system functions, the$timeformat system task, and the%t format specification to

specify how time information is reported

The`timescalecompiler directive specifies the unit of measurement for time and delay values and the degree o
racy for delays in all modules that follow this directive until another`timescalecompiler directive is read.

The syntax for thètimescale directive is given in Syntax 19-8.

Syntax 19-8—Syntax for timescale compiler directive

The time_unit  argument specifies the unit of measurement for times and delays.

line_compiler_directive ::=(Not in the Annex A BNF)
`line number" filename"  level

timescale_compiler_directive ::=(Not in the Annex A BNF)
`timescale time_unit/ time_precision
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The time_precision argument specifies how delay values are rounded before being used in simulation. Th
ues used are accurate to within the unit of timespecified here, even if there is a smallertime_precision argument
elsewhere in the design. The smallesttime_precision argument of all thètimescalecompiler directives in the
design determines the precision of the time unit of the simulation.

The time_precision argument shall be at least as precise as thetime_unit argument; it cannot specify a
longer unit of time than time_unit .

The integers in these arguments specify an order of magnitude for the size of the value; the valid integers ar
and 100. The character strings represent units of measurement; the valid character strings ares, ms, us, ns, ps, andfs.

The units of measurement specified by these character strings are given in Table 19-1.

Examples:

The following example shows how this directive is used:

`timescale 1 ns / 1 ps

Here, all time values in the modules that follow the directive are multiples of 1 ns because thetime_unit argument
is “1 ns”. Delays are rounded to real numbers with three decimal places—or precise to within one thousand
nanosecond—because thetime_precision  argument is “1 ps,” or one thousandth of a nanosecond.

Consider the following example:

`timescale 10 us / 100 ns

The time values in the modules that follow this directive are multiples of10 us because thetime_unit argument
is “10 us”. Delays are rounded to within one tenth of a microsecond because thetime_precision argument is
“100 ns,” or one tenth of a microsecond.

The following example shows a`timescaledirective in the context of a module:

Table 19-1—Arguments of time_precision

Character
string Unit of measurement

s seconds

ms milliseconds

us microseconds

ns nanoseconds

ps picoseconds

fs femtoseconds
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The`timescale 10 ns / 1 ns compiler directive specifies that the time unit for module test is 10 ns. As a res
the time values in the module are multiples of 10 ns, rounded to the nearest 1 ns and, therefore, the value s
parameterd is scaled to a delay of 16 ns. This means that the value 0 is assigned to regset at simulation time 16 ns
(1.6× 10 ns), and the value 1 at simulation time 32 ns.

Parameterd retains its value no matter what timescale is in effect.

These simulation times are determined as follows:

a) The value of parameterd is rounded from 1.55 to 1.6 according to the time precision.

b) The time unit of the module is 10 ns, and the precision is 1 ns, so the delay of parameterd is scaled from 1.6
to 16.

c) The assignment of 0 to regset is scheduled at simulation time 16 ns and the assignment of 1 at simula
time 32 ns. The time values are not rounded when the assignments are scheduled.

19.9 `unconnected_drive and `nounconnected_drive

All unconnected input ports of a module appearing between the directives`unconnected_drive and
`nounconnected_drive are pulled up or pulled down instead of the normal default.

The directivè unconnected_drivetakes one of two arguments—pull1 or pull0. Whenpull1 is specified, all uncon-
nected input ports are automatically pulled up. Whenpull0 is specified, unconnected ports are pulled down. The
directives shall be specified in pairs, and outside of the module declarations.

`timescale 10 ns / 1 ns
module test;
reg set;
parameter d = 1.55;

initial begin
#d set = 0;
#d set = 1;

end
endmodule
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