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The maximum clique problem is a classical problem in combinatorial opti-
mization which finds important applications in different domains. In this
paper we try to give a survey of results concerning algorithms, complexity,
and applications of this problem, and also provide an updated bibliography.
Of course, we build upon precursory works with similar goals [39, 233, 267].



1.1 Notations and Definitions

Throughout this paper, G = (V, E) is an arbitrary undirected and weighted
graph unless otherwise specified, where V' = {1,2,...,n} is the vertex set
of G (we use the terms vertez and node synonymously throughout), and
E CV xV is the edge set of G. For each vertex ¢ € V, a positive weight w;
is associated with ¢, collected in the weight vector w € IR™. The symmetric
n x n matrix Ag = (aij) (i jjevxyv, where a;; = 1if (i,5) € E is an edge of
G, and a;; = 0 if (4,5) ¢ E, is called the adjacency matriz of G. For any
node v, let

Nw)={j€eV:ay=1}

denote the neighborhood of v in G, i.e. the set of all nodes adjacent to v.

The complement graph of G = (V,E) is the graph G = (V, E), where
E ={(i,j) |i,7 €V, i# jand (i,j) ¢ E}. For a subset S C V, we define
the weight of S to be W (S) = > ;c5w;, and call G(S) = (S, ENS x S) the
subgraph induced by S.

A graph G = (V, E) is complete if all its vertices are pairwise adjacent,
ie. Vi, j € V with 1 # j, we have (i,j) € E. A cligue C is a subset of
V such that G(C) is complete. The clique number of G, denoted by w(G)
is the size of the maximum clique. The maximum clique problem asks for
cliques of maximum cardinality (the cardinality of a set S, i.e., the number
of its elements which will be denoted by |S]):

w(G) = max{|S|: S is a clique in G}.

The maximum weight clique problem asks for cliques of maximum weight.
Given the weight vector w € IR", the weighted clique number is the total
weight of the maximum weight clique, and will be denoted by w(G, w):

w(G,w) = max{W(S) : S is a clique in G} .

An independent set (stable set, vertex packing) is a subset of V', whose
elements are pairwise nonadjacent. The maximum independent set problem
asks for an independent set of maximum cardinality. The size of a maxi-
mum independent set is the stability number of G (denoted by a(G)). The
maximum weight independent set problem asks for an independent set of
maximum weight. A wvertex cover is a subset of V, such that every edge
(i,7) € E has at least one endpoint ¢ or j in the subset. The minimum
vertex cover problem asks for a vertex cover of minimum cardinality. The



minimum weighted vertex cover problem asks for a vertex cover of minimum
weight.

It is easy to see that S is a clique of GG if and only if S is an independent
set of G, and if and only if V'\ S is a vertex cover of G. Any result obtained
for one of the above problems has its equivalent forms for the other problems.
Hence a(G) = w(G), and, more generally, a(G,w) = w(G,w).

We should distinguish a mazimum clique (independent set) from a mawi-
mal clique (independent set). A maximal clique (independent set) is a clique
(independent set) that is not a proper subset of any other clique (indepen-
dent set). A maximum (weight) clique (independent set) is a maximal clique
(independent set) that has the maximum cardinality (weight).

In the sequel, it will prove useful to consider A, the standard simplex in
the n-dimensional Euclidean space IR™:

A:{mGIR" . ;>0 foralli €V, eTmzl}

where e’ denotes the transpose of the vector e consisting of unit entries
(hence e := (1,1,...,1) and Tz = ¥,y 7). For a subset S C V of
vertices, we shall denote the face of A corresponding to S by

Ag={reA:z;=0ifi ¢ S} .

Further, let us introduce the notion of a characteristic vector z° which is the
vector in A defined by =7 = 1/|S| if i € S and z7 = 0 otherwise. Likewise,
given a weight vector w € IR", denote by 2" the weight barycenter of Ag
or, synonymously, the weighted characteristic vector of S, which is a vector
with coordinates xf’w = w;/W(S) if i € S, and :Eis’w = 0 otherwise. Of
course, we have % = z%¢.

2 Problem Formulations

The maximum clique problem has many equivalent formulations as an in-
teger programming problem, or as a continuous nonconvex optimization
problem. As with many problems of combinatorial optimization, using the
appropriate formulation is of crucial importance in solving the problem. In
addition, using different formulations, we gain more insight into the prob-
lem’s complexity and we can prove interesting results.



2.1 Integer Programming Formulations

The simplest formulation of the maximum clique problem is the following
edge formulation:

n
max Zwixi, (1)
=1

stz +z; <1,V (i,j) €EE,
(IIZ'E{O,I}, 1=1,...,n.

A polyhedral result concerning formulation (1) is due to Nemhauser and
Trotter [245, 246]. In 1975 they found that if a variable x; had integer value
1 in an optimal solution to the linear relaxation of (1), then z; = 1 in at
least one optimal solution to (1).

Theorem 2.1 (see [246], also [279]) Let = be an optimum (0, 3,1)-valued
solution to the linear relazation of (1), and let P = {j | x; = 1}. Then there

exists an optimum solution z* to (1) such that x5 =1, Vj € P.

This theorem suggests an implicit enumerative algorithm for (1) via solv-
ing its linear relaxation problem. However, in most cases, few variables have
integer values in an optimal solution to the linear relaxation of (1), and the
gap between the optimal values of (1) and its linear relaxation problem is
too large, which seriously restrict the use of this approach.

Let S denote the set of all maximal independent sets of G. An alternative
formulation is the following independent set formulation.

n
max Z WiTi, (2)
=1

s.b. > 2; <1, VS €S,
i€S
z; € {0,1}, i=1,...,n.

The advantage of formulation (2) over (1) is a smaller gap between the
optimal values of (2) and its linear relaxation. However, since the number
of constraints in (2) is exponential, solving the linear relaxation of (2) is
not an easy problem. In fact, Grotschel et al. [151, 152] have shown that
the linear relaxation problem of (2) is N P-hard on general graphs. They
have also shown that the same problem is polynomially solvable on perfect



graphs. Furthermore, they have shown that a graph is perfect if and only
if the optimal solution to the linear relaxation of (2) always takes integer
values (see also [150] and [153]).

In 1990, Shor [294] considered an interesting formulation of the max-
imum weight independent set problem. Note that the maximum weight
independent set problem can be formulated as

min f(z) = Zwiwi, (3)
i=1

stz +x2; <1,V (,j) € E, z€{0,1}".

The above formulation is equivalent to the following quadratically con-
strained global optimization problem

min f(z) = Y wz;, (4)
i=1

s.t. z;z; =0, V (i,7) € E,

zl—2;=0,i=12,..n.

Applying dual quadratic estimates, Shor reported very good computational
results using (4).

Next, we formulate the maximum clique, the maximum independent set
and the maximum weight independent set problems as quadratic zero-one
problems. We use I to denote the n x n identity matrix. To facilitate our
discussion, define a transformation ¢ from {0, 1}" to 2V,

tx)y={ieV:z =1}, Vo e{0,1}".

Denote the inverse of ¢ by ¢t~ 1. If z = t~1(S) for some S € 2" then z; =
lifieSandz; =0ifi ¢S, i=1,...,n,ie z =|S|z° (cf. Section 1).

We can rewrite the maximum problem (1) as a minimization problem
(when z; = 1)

min f(z) = — Z:L“i, (5)
i=1

st.xi+12; <1,V (i,j) € E, ze€{0,1}".

If z* solves (5), then the set C = ¢(z*) is a maximum clique of G with

0] = —2 = ~(=").



Another way of stating the constraints for (5) is to make use of the
fact that the quadratic expressions z;z; = 0 for all (i,5) € E, since for
zi,z; € {0,1}, we have z; + z; <1 if and only if z;2; = 0. The constraints
in (5) can be removed by adding two times the quadratic terms to the
objective function, which is now

f(x):—zn:xi—i—2 Z zivj =z (Ag—I)z.
i=1

(i,J)€EE, i>]

The quadratic terms represent penalties for violations of z;x; = 0. This
leads to the following theorem.

Theorem 2.2 The mazimum clique problem is equivalent to the following
global quadratic zero-one problem

min f(z) = 27 Az, (6)

s.t. x € {0,1}", where A = Az — I.

If x* solves (6), then the set C defined by C = t(z*) is a mazximum clique
of G with |C| = —z = —f(x%).

The off-diagonal elements of the matrix A are the same as the adjacency
matrix of G. Hence, formulations (5) and (6) are advantageous for dense
graphs because a sparse data structure can be used (for details, see [265]; cf.
also [124]). Following the equivalence of the maximum clique problem with
the maximum independent set problem, we have

Theorem 2.3 The mazimum independent set problem is equivalent to the
following global quadratic zero-one problem

min f(z) = = Az (7)

s.t. z € {0,1}", where A= Ag — I.

If * solves (7), then the set S defined by S = t(z*) is a mazimum indepen-
dent set of G with |S| = —z = —f(x*).

Next, we discuss the maximum weight independent set problem. The
above theorems for the maximum clique problem and the maximum inde-
pendent set problem can be regarded as a special case by taking w = e.



Theorem 2.4 The maximum weight independent set problem 1is equivalent
to the following global quadratic zero-one problem

min f(z) = 27 Az, (8)

s.t. x € {0,1}",

where a;; = —w;, @ = 1,...,n, a;j = %(wZ +wj), Y (i,j) € E, and a;; =
0,V (i,j) € E.

Let ©* solve (8), then the set S defined by S = t(z*) is a mazimum
weight independent set of G with weight W (S) = —z = — f(z*).

In addition, we have the following relationship between the local minima
of the quadratic problem and the maximal independent sets of a graph:

Theorem 2.5 z is a discrete local solution to problem (8) if and only if =
represents o mazximal independent set of G.

2.2 Continuous Formulations

In 1965, Motzkin and Straus [239] established a remarkable connection be-
tween the maximum clique problem and a certain standard quadratic pro-
gramming problem providing an alternative proof of a slightly weaker ver-
sion of the fundamental Turdn theorem [312] (for a discussion see [54]). Let
G = (V, E) be an undirected (unweighted) graph, and let A denote the stan-
dard simplex in the n-dimensional Euclidean space IR", as well as Ag the
face of A corresponding to a subset S C V' (cf. Section 1). Now, consider
the following quadratic function

g(z) = 2" Agz (9)

where Ag = (aij)ijcv is the adjacency matrix of G, and let z* be a global
maximizer of g on A. Motzkin and Straus proved that the clique number of
G is related to g(z*) by the following formula:

S S

T—g(@) = 1- (@)
Additionally, they proved that a subset of vertices S is a maximum clique
of G if and only if its characteristic vector z° (see Section 1) is a global

maximizer of g on A. In [275, 136], the Motzkin-Straus theorem has been
extended by providing a characterization of mazimal cliques in terms of local

w(G)

Vre A. (10)



maximizers of g on A. Moreover, in [136] Gibbons et al. characterize the
first- and second-order optimality conditions of the Motzkin-Straus program
and of a newly introduced parametrized version. A further generalization of
the Motzkin-Straus theorem to hypergraphs can be found in [300].

One drawback associated with the original Motzkin-Straus formulation
relates to the existence of spurious solutions, i.e., maximizers of g which
are not in the form of characteristic vectors. This was observed empirically
by Pardalos and Phillips [262] and more recently formalized by Pelillo and
Jagota [275]. In principle, spurious solutions represent a problem since,
while providing information about the size of the maximum clique, they do
not allow us to easily extract its vertices.

The spurious solution problem has recently been solved by Bomze [56].
Motivated by a different characterization of maximal cliques due to Comtet
[96], he considers the following regularized version of function g:

1
§(z) = 2T Agz + §(L‘T£E (11)

which is obtained from (9) by substituting the adjacency matrix Ag of G
with )
AG =Ag+ 5[ (12)

where I is the identity matrix. The following is the spurious-free counterpart
of the original Motzkin-Straus theorem [56].

Theorem 2.6 Let S be a subset of vertices of a graph G, and let z° be its
characteristic vector. Then the following statements hold:

(a) S is a mazimum cliqgue of G if and only if ° is a global mazimizer of
the function § over the simplex A. In this case, w(G) = 1/2(1—g(z®)).

(b) S is a mazimal clique of G if and only if =° is a local mazimizer of §

n A.

(c) All local (and hence global) mazimizers x of g over A are strict, and of
the form z = z° for some S C V.

Unlike the Motzkin-Straus formulation, the previous result guarantees
that all maximizers of § on A are strict, and are characteristic vectors of
maximal/maximum cliques in the graph. In an exact sense, therefore, a one-
to-one correspondence exists between maximal cliques and local maximizers



of g in A on the one hand, and maximum cliques and global maximizers
on the other hand. This solves the spurious solution problem in a definitive
manner.

In a recent paper, Gibbons et al. [136] generalized the Motzkin-Straus
theorem to the weighted case. They first reformulated the Motzkin-Straus
problem as a minimization problem by considering the function

f(z) =T (I + Ag)z (13)

where Az is the adjacency matrix of the complement graph G. It is straight-
forward to see that if * is a global minimizer of f in A, then we have:

This is simply a different formulation of the Motzkin-Straus theorem. Given
a weighted graph G = (V, E) with weight vector w, they then considered
the following classes of symmetric n x n matrices: let

by + bjj
2

M(G) = {(bz’j)i,jEV : bij > if (Z,]) ¢ E, bij =0, otherwise} ,

and put

1
M(G,w) = {B = (bij)i,jeV S M(G) . bii = — and bij = bji for all Z,]} .

W;

Now the following (generally indefinite) quadratic program is introduced in
[136]:
minimize  f(z) = 27 Bz

subject to z € A (14)

where B € M(G,w).

Using a proof technique suggested by Lovéasz (cf. [220]), the following re-
sult is shown, which establishes a correspondence between maximum weight
cliques and global minimizers of (14).

Theorem 2.7 Let G be an arbitrary weighted graph with positive weight
vector w € IR". Then, for any B € M(G,w) we have: w(G,w) = ﬁ

where * is a global minimizer of program (14).

10



It can be seen that a subset S of vertices of a weighted graph G is a
maximum weight clique if and only if its weighted characteristic vector z*
(cf. Section 1) is a global minimizer of (14). Notice that the matrix I + Ag
belongs to M (G, e). In other words, the Motzkin-Straus theorem turns out
to be a special case of the preceding result.

As in the unweighted case, the existence of spurious solutions entails the
lack of one-to-one correspondence between the solutions of the continuous
problem and those of the original, discrete one. Bomze et al. [62] have re-
cently characterized these spurious solutions and have introduced and stud-
ied a regularized version which avoids this kind of problems, exactly as in
the unweighted case (for proofs see also [58]): instead of the Motzkin-Straus
class M(G, w) here a different class C(G,w) of matrices is considered to be
used as input data for problem (14): let

C(G) = {(Cij)i,jeV . Cz’j Z Cii + ij if (Z,]) ¢ FE y Cij = 0, otherwise } y

and consider, given the weights w,

C(G,w) = {C = (cij)i,jEV € C(G) PGy = and Cij = Cjj for all Z,]} .

2u;

Theorem 2.8 Let G be an arbitrary graph with positive weight vector w €
IR™, and consider a matriz C € C(G,w) in place of B for problem (14).
Then the following assertions hold:

(a) A vector x € A is a local solution to problem (14) if and only if
x = z5%, where S is a mazimal clique.

(b) A wector © € A is a global solution to problem (14) if and only if
x = z5%, where S is a mazimum weight clique.

Moreover, all local (and hence global) solutions to (14) are strict.

The Comtet class C(G,w) is isomorphic to the positive orthant in () —|E|
dimensions. This class is a polyhedral pointed cone with its apex given by
the matrix C'(w) with entries

1

2w; ifi = .7 )
Cij(w) =4 gyt oy ifi#jand (i,5) ¢ E, (15)
0 otherwise.

11



Observe that in the unweighted case, C(e) = ee’ — Ag = AEv the Comtet-
regularized adjacency matrix of the complement graph G. This reflects the
elementary property that an independent set of G is a clique of G. So,
while the local maximizers of 27 Agz over A are exactly the barycenters
z€ of maximal cliques C' of G, the local minimizers of 27 Agz over A are
exactly the barycenters z° of maximal independent sets S of G. Compare
with Theorem 2.5 at the end of the preceding section. Note that within the
Motzkin-Straus class M(G, e), there is no matrix with this straightforward
interpretation.

3 Computational Complexity

The maximum clique problem is one of the first problems shown to be N P-
complete [195], which means that, unless P = NP, a fact which is widely
believed to be false, exact algorithms are guaranteed to return a solution
only in a time which increases exponentially with the number of vertices in
the graph [127]. Of course, the maximum independent set and the minimum
vertex cover problems are N P-complete too. For a recent complexity result
on the class of planar counting problems which includes the minimum vertex
cover problem see [183].

Interest therefore has soon shifted towards characterizing the approxi-
mation properties of this problem (see [256, 70, 16] for an introduction to
approximation complexity in optimization problems). Early works in this
area go back to mid-1970’s when Garey and Johnson [126] proved that if
the maximum clique problem admits a polynomial-time approximation al-
gorithm (i.e., it is approximable within a constant factor), then it has a
polynomial-time approximation scheme (namely, it is approximable within
any arbitrarily small factor). This is concisely expressed by saying that if
the maximum clique problem belongs to the class APX, then it belongs to
PTAS.

Johnson et al. [191] showed in 1988, based on one of their results given
below, the nonexistence of a polynomial-delay algorithm for enumerating
maximal cliques in reverse lexicographic order (if P # N P).

Theorem 3.1 Given a graph G and o mazimal independent set S, it is
colN P-complete to prove whether S is the lexicographically last maximal in-
dependent set of G.

In [258, 259], Papadimitriou and Yannakakis introduced the complex-

12



ity classes MAX NP and MAX SNP. They showed that all problems
in MAX NP admit a polynomial-time approximation algorithm, and that
many natural problems are complete in M AX SN P, under an approxima-
tion preserving reduction called the L-reduction. For example, the vertex
cover problem (for constant degree graphs), max cut problem, dominating
set problem, and the MAX 3-SAT problem are such complete problems [324].
Recently, this result has been extended to the vertex cover problem for cubic
graphs [110].

If the solution to any of these complete problems can be approximated
to arbitrary small constant factors, then the optimum solution to any prob-
lem in the class can be approximated to arbitrarily small constant factors.
The question of whether such approximation schemes can be found for the
complete problems in this class was left unresolved.

By using randomized reductions, Berman and Schnitger [45, 46] have
shown that even an O(nf)-approximation algorithm for maximum clique
(for some small enough ¢) would yield a randomized polynomial-time ap-
proximation scheme for MAX 3-SAT, where n is the number of vertices in
the graph (see also Feige et al. [112], where a connection between approxima-
tion complexity and interactive proof systems is discussed). In [7], Alon et
al. derandomized Berman and Schnitger’s reduction by using the so-called
expander graphs (also used by Arora and Safra in [14]), and obtained the
following result: there exists an € > 0 such that if the maximum clique
problem is approximable within O(n®) then MAX 3-SAT is in PTAS.

Panconesi and Ranjan [254, 255] expanded on the work of Papadim-
itriou and Yannakakis. They introduced the complexity class M AX II;, and
proved that all complete problems in this class do not admit a polynomial-
time approximation algorithm, unless P = N P. They also showed that the
maximum clique problem does not belong to M AX NP but is in the lowest
subclass of M AX 11, see also [314].

In 1991, Crescenzi, Fiorini and Silvestri [98] proved that all problems in
MAX NP are strongly reducible to the maximum clique problem. As a con-
sequence, if the maximum clique is approximable within a constant factor,
then all problems in M AX NP can be approximated within any arbitrarily
small factor. This provided evidence that the maximum clique problem does
not have a polynomial-time approximation algorithm. Stronger evidence of
this fact was given independently in the same year, when Feige et al. [112]
(see also [113]) proved that if there is a polynomial-time algorithm that ap-
proximates the maximum clique problem within a factor of 210?;175”, then

13



any N P problem can be solved in “quasi-polynomial” time (i.e., in 9log®n
time).

A breakthrough in approximation complexity is the result by Arora et
al. [13], [14]. It is shown that the maximum number of satisfiable clauses
in a 3-SAT formula (MAX 3-SAT) cannot be approximated to arbitrary
small constants (unless P = N P), thus resolving the open question in [258,
259]. This immediately shows the difficulty of finding good approximate
solutions to all the above listed problems. In particular, it is shown that
no polynomial-time algorithm can approximate the maximum clique size
within a factor of n® (¢ > 0), unless P = NP (by using the results of Feige
et al. [112]). The work of Arora et al. stimulated much research, and many
investigators have progressively refined the exact approximation ratio for
which approximating maximum clique becomes intractable [40, 42, 114, 41,
161].

The best polynomial-time approximation algorithm for the maximum
clique problem was developed by Boppana and Halld6rsson [66], and achieves
an approximation ratio of n'~°(1). In [162], Hastad shows that this is ac-
tually the best we can achieve, by proving that, unless NP = coR, the
maximum clique problem cannot be approximated within a factor of n'=¢,
for any € > 0.

Although these complexity results characterize worst case instances, they
nevertheless indicate that the maximum clique problem is indeed a very
difficult problem to solve.

Some other results in the literature concerning the approximation of the
maximum clique/independent set problem on arbitrary or special graphs
can be found in [88], [90], [284], [98], [66] [241], [84], [213], [292], [85], [197].

If we restrict ourselves to graphs with special structure, then in many
cases the maximum clique/independent set problem can be solved in poly-
nomial time. For example, Balas et al. [25] introduced several classes of
graphs and showed that the maximum weight clique problem can be solved
in polynomial time on them. Balas and Yu [32] discuss classes of graphs that
have polynomially many maximal cliques. On those graphs, the maximum
weight clique problem can also be solved in polynomial time.

A well known class of graphs where the maximum clique problem is
polynomially solvable, is the class of perfect graphs [43]. A graph G is
called perfect if every induced subgraph of G has the property that the
size of its maximum clique equals the minimum number of independent sets
needed to cover all the vertices (commonly called a coloring in the literature).

14



Since the complement graph of a perfect graph is also perfect, the maximum
clique problem can be solved in polynomial time on perfect graphs and their
complements. The class of perfect graphs contains many well known graphs
in the literature [146], among them bipartite graphs, interval graphs, and
triangulated graphs [128], [120], [288], [289], [307]. Examples of more recently
found perfect graphs are Meyniel graphs [234], [78], quasi parity graphs [235],
weakly triangulated graphs [164], [165], perfectly orderable graphs [95], and
unimodular graphs [166].

A class of graphs that is closely related to the perfect graphs is the
t-perfect graphs. This class of graphs was defined in [92]. Polynomial algo-
rithms for the maximum weight independent set problem on ¢-perfect graphs
exist [152]. The class of t-perfect graphs contains bipartite graphs, series-
parallel graphs [107], [92], [67], and strongly t-perfect graphs [134]. For a
polynomial time algorithm for solving the maximum weight independent set
problem on a bipartite graph G(V1, V2) see the book by Lawler [210].

Other special classes of graphs where the maximum clique/independent
set problem have been studied in the literature can be found in [23], [48],
[49], [79], [83], [88], [89], [91], [90], [108], [115], [129], [130], [147], [148],
[154], [171], [180], [181], [182], [198], [197], [203], [224], [228], [229], [236],
[243], [249], [257], [282], [290], [291], [304], [86], [103], and [325].

We should note here that the weighted or unweighted version of the
maximum clique problem, the maximum independent set problem, and the
minimum vertex cover problem may, with respect to hardness, not be equiv-
alent on graphs with special structures.

4 Bounds and Estimates

We now present bounds for the clique number w(G) and discuss also the
complexity of their calculation; most of them are based on properties of the
matrix Agq.

A graph is said to be connected if each pair of nodes is joined by a path
of edges. Since the undirected graphs we are considering can always be sub-
divided into connected subgraphs, we consider here only connected graphs.
These have adjacency matrices with the property of being irreducible.

Let m be the number of edges of the graph and § = %L—TQ the density of 1’s
in Ag; for connected graphs we have 2”n—}1 <i< ”Tfl The request that a
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graph with a clique number w(G) be connected gives the simple bound [12]

w(G) < 3+\/9—8(n—m)‘

- 2

(16)

Let Ai,..., A, be the eigenvalues of Ag and p(Ag) = max;—i,. |\ its
spectral radius. A frequently cited upper bound, appeared for the first time
in 1967 [317], is

w(G) < p(Ag) +1 (17)

the equality holding if and only if the graph is complete. To prove this
relation we use (10): let z° be the characteristic vector of a maximum

clique, then (z%)TAgz® =1 — ﬁ and also (z°)Tz% = ﬁ Bound (17)

derives from the general property %gﬁ < p(Ag). With (17) one can apply
to w(G) all the bounds valid for p(A¢g) (for a partial list see [75]).

Since Ag is irreducible, symmetric and with non-negative elements, all
its eigenvalues are real and the largest one, the Perron root Ap := p(Ag), is
simple and dominating (see e.g. [177] pp. 507 ff.). Moreover there may be
at most one negative eigenvalue —Ap with the same absolute value, and this
happens if and only if the graph is bipartite (see [101], Theorems 3.11 and
3.4). Finally, all the components of the only Perron eigenvector xp (such
that Agzp = Apxp) are strictly positive, i.e. zp > 0.

Straightforward calculation of Perron root and eigenvector is not the
most efficient method for large n: it is faster to exploit the exponentially
fast convergence of limy, s (ﬁAg)m = (L‘p(L‘g valid if Ag is primitive

(when this does not happen one takes the primitive matrix Ag=Ag+ %I )
Successive squaring of Ag allows to perform this calculation, with arbitrary
precision, essentially in O(n?) [177].

Let N_1 be the number of eigenvalues of Ag that do not exceed —1 and
Ny the number of zero eigenvalues. Amin and Hakimi [12] proved that

w(@ <N +1<n—Ny+1, (18)

with equality holding if the graph is complete multipartite; also the latter
bound can be calculated in O(n?).

A geometrical formulation of the maximum clique problem [76] in com-
plex space produces the bound

(19)



where N is the number of zero eigenvalues of the adjacency matrix of the
complement graph G. Also in this case the calculation of Ny can be done
in O(n?).

While bound (16) can be calculated in O(n), bounds (17), (18) and (19)
require more work but are usually much tighter. Experimentally, most of the
times (18) is the sharpest bound, but nothing can be said in general because
one can devise graphs for which bounds (17) or (19) are respectively the best
bound. Consequently the safest strategy is to calculate all bounds and to
choose the sharpest.

A different bound derives from the ‘Sandwich theorem’ on which Knuth
published a review [205]. This theorem focuses on the Lovdsz number [219]
(cf. also [293]) #(G) and states that this number is sandwiched between the
two N P-hard quantities, the clique number w(G) and the chromatic number
X(G), which is the minimum number of colors needed to color the vertices
of G:

w(G) < 0(G) < x(G). (20)
Since #(G) is computable in polynomial time, e.g. with interior point meth-
ods like semidefinite programming (see, e.g. [141, 204], and for special spar-
sity methods related to the maximum clique problem [124] ) via the (dual)
eigenvalue bound identity [167]

0(G) = min{Amax(ee” +Y):Y € Y(G)}
with
V(G) = {Y(n x n) matrix : Y' =VY,Y;; =0 if (i,5) € B},

the Sandwich theorem shows also how, for perfect graphs (for which w(G) =
X(G) holds) the maximum clique number can be computed in polynomial
time.

Bounding w(G) from below is harder; a simple bound derives from ap-
plication of (10) to e, which gives %AGE = i—’;’ <1- —L- and thus

n (@)
1

Wilf [319] obtained a sharper bound considering Perron eigenvector zp prop-
erly normalized with s := e’z yielding via (10) @Agg = 2—12’ <
1-— ﬁ and so

(@) > AP g APy (22)

w
2 — Ap —n-—Ap



with equality holding if and only if the graph is complete; the rightmost in-

equality is easily derived from 252 p = 1 and the Cauchy/Schwarz inequality

which gives s? = (elzp)? < (ele)(zLap) = n.

If one knows the full set of eigenvalues and eigenvectors of A this bound
can be improved strictly. In fact with the full set of eigenvectors one can
always build 2* € A such that g, := (2*)T Aga* > );—5’ (see [75] for details)

and (10) immediately gives

1
1—g.

w(@) = (23)

Bound (21) is easy to compute while (22), requiring Perron eigenvector
and eigenvalue, is a little harder. To find g, of (23) one needs the full set
of eigenvalues and eigenvectors of Ag and, consequently, this bound is the
hardest to calculate but also, provably, the sharpest one. A final, obvious,
remark, is that, being w(G) integer, any non integer bound can be sharpened
applying the appropriate ceiling [] or floor || operators.

There exist fortunate cases in which these bounds almost solve the max-
imum clique problem, like, for example, the 64-node graph ‘hamming6-2’ of
the DIMACS challenge [190]. Application of (18) and (23) allows to state
that for this graph 32 < w(G) < 33.

Considering just a subset of all possible graphs one can exploit the char-
acteristics of the given subset to obtain sharper bounds. A much studied
case is that of randomly generated graphs. For these graphs there exists
a well established theory [53] and research proceeds in several directions;
for example see [55], [123], [194], [230] and [237] for eigenvalues of random
graphs. In the specific field of maximum cliques a well known result, due to
Matula, accurately predicts the size of the maximum clique when the num-
ber of vertices n is sufficiently large [231]. In particular Matula was able to
prove that the probability that

[M(n,8)] <w(G) < [M(n,d)] (24)
tends to 1 when n — oo and where
M(n,d) = 2log;/5m — 2log; /5 log; /s n + 21log; /5 g +1. (25)

0 being the density of the random graphs under consideration. There is also
another result [55] about the smallest maximal clique and it shows that its
size is almost surely M (n,d)/2 in the limit of large n.

18



Another interesting result for these graphs is known as the Jerrum con-
jecture [188] (see also [10] for recent, related results). It states that in large
random graphs of density 6 = 1/2 there is no polynomial time algorithm
that, with probability greater than 1/2, can find a clique larger than the
smallest maximal clique.

5 Exact Algorithms

5.1 Enumerative Algorithms

The first algorithm for enumerating all cliques of an arbitrary graph in
the literature is probably due to Harary and Ross [159]. In 1957, they
proposed an inductive method that first identified all the cliques of a special
graph with no more than three cliques. Then the problem on general graphs
is reduced to this special case. Their work was stimulated by the matrix
manipulation problem of sociometric data to find a complete identification
of cliques.

Early works following that of Harary and Ross can be found in [223, 269,
65, 227, 38, 109]. What Paull and Unger [269], and Marcus [227] proposed
were algorithms to minimize the number of rows in a flow table for a sequen-
tial switching function. Bonner addresses in [65] the clustering problem in
information systems. Bednarek and Taulbee [38] proposed algorithms for
generating all maximal chains of a set with a binary relation defined on
it. Although these problems come from different fields and apparently deal
with different problems, they are solving the same problem of enumerat-
ing all cliques of a graph. With the technology at that time, these early
algorithms could only be tested on special graphs.

In 1970, Auguston and Minker [15] investigated several graph theoretic
clustering techniques used in information systems. In their work, the al-
gorithm of Bierstone and that of Bonner were tested. The method used
in both algorithms was called the verter sequence method or point removal
method. This method produces cliques of G from the cliques of G \ {v} with
v € V. From their computational results, they found the algorithm of Bier-
stone was more efficient. The original work of Bierstone was not published.
The version of Bierstone’s algorithm contained in Auguston and Minker [15]
had two errors that were corrected by Mulligan and Corneil [240] in 1972.

Then in 1973, two new algorithms using the backtracking method were
proposed by Akkoyunlu [8], and by Bron and Kerbosch [73]. The advan-
tage of the backtracking method is the elimination of the redundancy in
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generating the same clique. What was more important for these two algo-
rithms was their polynomial storage requirements. For example, the Bron
and Kerbosch algorithm requires at most %n(n+3) storage space. Bron and
Kerbosch tested their algorithm on graphs of 10 to 50 vertices and densities
ranging from 10% to 95%. Here the density was defined as the probability
of a pair of vertices being connected. They found their algorithm was much
more efficient than Bierstone’s algorithm. One very interesting phenomenon
from their test was the ratio of CPU time over the number of cliques of the
graph, as they put it, “hardly dependent on the size of the graph”. Bron
and Kerbosch’s algorithm is Algorithm 457 in the ACM collection.

More enumerative algorithms were proposed in the 70’s following that
of Bron and Kerbosch, among them [251, 250, 232, 192, 193, 211, 311, 133].
The algorithm of Osteen and Tou [251] was an improved version of the
point removal method. Osteen’s [250] algorithm was designed for a special
class of graphs. The algorithm of Meeusen and Cuyvers [232] started with
decomposing a graph into subgraphs satisfying the chain of subsets in G
requirement. Such a decomposition had the property that every clique is
contained completely in at least one subgraph. Based on this property, they
proposed an algorithm to find all cliques of a graph. The work of John-
ston [193] contains a family of algorithms that are variations of Bron and
Kerbosch’s algorithm. By comparing several algorithms computationally,
Johnston [193] concluded that the Bron and Kerbosch algorithm was one of
the most efficient algorithms.

Tsukiyama et al. [311] proposed an enumerative algorithm that combined
the approaches used in [15, 73], and by Akkoyunlu [8]. The result was an
algorithm with time complexity of O(nmu) and storage requirement of O(n+
m), where n,m, ;1 are the number of vertices, edges and maximal cliques of
a graph. As pointed out in [311], this bound is stronger than the earlier
bound of O(u?) from [15]. The algorithm of Gerhards and Lindenberg [133]
started with partial cliques related to fixed vertices of G. Then, cliques were
generated from these partial cliques. Their computational results suggested
their proposed algorithm was as efficient as that in [73] for general graphs,
but more efficient on sparse graphs.

In 1980’s, other proposed algorithms include those in [216, 215, 87, 310,
191].

Loukakis and Tsouros [216] proposed a depth-first enumerative algo-
rithm that generated all maximal independent sets lexicographically. They
compared their algorithm with the algorithms of [73] and [311]. Their com-
putational results on graphs of up to 220 vertices suggested the superior
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efficiency of their algorithm: which was two to fifteen times faster than that
in [73], and three times faster than that in [311]. Two years later, Loukakis
[215] claimed an additional improvement of a factor three speed-up com-
pared to [216], tested on graphs of 30 to 220 vertices with densities from
10% (for small graphs) to 90% (for large graphs).

In 1988, Johnson et al. [191] proposed an algorithm that enumerated
all maximal independent sets in lexicographic order. The algorithm has an
O(n?) delay between the generation of two subsequent independent sets; cf.
the complexity result Theorem 3.1. Chiba and Nishizeki’s [87] algorithm lists
all cliques with time complexity of O(a(G)mpu), where a(G) is the arboricity
of graph G. This is an improvement over the time complexity in [311].

Finally, Tomita et al. [310] proposed a modified Bron and Kerbosch [73]
algorithm and claimed its time complexity to be O(3"/3). As they pointed
out, this was the best one could hope for since the Moon and Moser graphs
[238] have 3™/3 maximal cliques.

5.2 Exact Algorithms for the Unweighted Case

If our goal is to find a maximum clique or just the size of a maximum
clique, a lot of work can be saved from the above enumerative algorithms.
Because once we find a clique, we only need to enumerate cliques better
than the current best clique. Modifying the enumerative algorithms based
on this argument results in various implicit enumerative algorithms. This
argument can also be used in designing implicit enumerative algorithms.

The most well known and commonly used implicit enumerative method
for the maximum clique problem is the branch and bound method. Back-
ground information on how branch and bound method works can be found
in, for example, [28] and [247]. The key issues in a branch and bound algo-
rithm for the maximum clique problem are:

1. How to find a good lower bound, i.e. a clique of large size?

2. How to find a good upper bound on the size of maximum clique?

3. How to branch, i.e., break a problem into smaller subproblems?
Implicit enumerative algorithms for the maximum clique/independent set
problem started in the 1970’s by Desler and Hakimi [106], Tarjan [305],
and Houck [178]. These early works were improved in 1977 by [306] and
[179]. Tarjan and Trojanowski proposed in [306] a recursive algorithm for
the maximum independent set problem. They show their algorithm has a
time complexity of O(2"/3). This time bound illustrates that it is possible
to solve a N P-complete problem much faster than the simple, enumerative
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approach. In the same year, Chvatal used a certain type of recursive proofs
in [93] to show the upper bound on the stability number “has length at
least O(c™)”, where ¢ > 1 is a constant. The work of Houck and Vemuganti
[179] exploited the relationship between the maximum independent set and
a special class of bipartite graphs. They used this relationship to find an
initial solution in their algorithm for the maximum independent set problem.

Most algorithms in the literature for the maximum clique/independent
set problem were proposed in the 1980’s. For example, in 1982, Loukakis
and Tsouros [217] proposed a tree search algorithm that finds the size of
a maximum independent set. Then in 1984, Ebenegger et al. [111] pro-
posed another algorithm for finding the stability number of a graph. Their
approach is based on the relationship between the maximization of a pseudo-
Boolean function and the stability number of a graph. Computational tests
on graphs with up to 100 vertices were reported in [111].

One of the most important contributions in the 1980’s on practical al-
gorithms for the maximum clique problem is due to Balas and Yu [31]. In
their algorithm, the implicit enumeration was implemented in a new way.
The idea of their approach is as follows. First, find a maximal induced tri-
angulated subgraph D of G. Once D is found, find a maximum clique of D.
This clique provides a lower bound and a feasible solution to the maximum
clique problem. Then, they used a heuristic coloring procedure to extend D
to a larger (maximal) subgraph that had no clique better than the current
best clique. The importance of this second step is that it helps to reduce the
number of subproblems generated from each node of the search tree, which
in turn, reduces the size of the whole search tree. They solved the maximum
clique problem on graphs of up to 400 vertices and 30,000 edges. Comparing
their algorithm with other such algorithms, they found their algorithm not
only generated a smaller search tree, but also required less CPU time.

In 1986, Kikusts [200] proposed a branch and bound algorithm for the
maximum independent set problem based on a new recursive relation for
the stability number of a graph G. Namely,

a(G) = max{L+a(G\ [{v} UN(0)]), )}, (26)

where o), = max{|I| : I C G\ {v} is independent with [I N N(v)| > 2}.
This relation is different from the recursive relation

a(G) = max{1l + (G \ [{v} UN(v)]), (G \ {v})}, (27)

traditionally used in designing branch and bound algorithms for the max-
imum independent set problem. Intuitively, relation (26) is stronger than
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relation (27). However, the trade off is a more complicated situation in (26).
Some computational results were provided in [200] without comparison to
other algorithms.

Also in 1986, Robson [287] proposed a modified recursive algorithm of
Tarjan and Trojanowski [306]. Robson showed through a detailed case anal-
ysis that his algorithm had a time complexity of O(2°-276"). This is an
improvement over the time complexity O(2"/3) of [306]. Here we want to
mention the complexity proof of a similar recursive algorithm by Wilf [318].
Although Wilf’s complexity of O(1.39™) is not as tight as that of [306], his
proof is much simpler. Also in [318], Wilf proved (under certain probabilistic
assumptions) that the average number of independent sets in a graph with
n vertices is given by:

L=% ( Z ) 2~k(k=1)/2, (28)

k=0

Using (28), it can be shown that the average complexity of a backtrack-
ing algorithm for the maximum independent set problem is subexponential,
because I,, grows at the rate of O(n'°8").

In late 1980’s, new algorithms were proposed in [308, 131, 132] and in
[266] (published in 1992). The algorithm of Tomita et al. [308] uses a greedy
coloring algorithm to get an upper bound on the size of the maximum clique.
Some computational results can be found in [132] and [308]. Gendreau et
al. [131, 132] use an implicit enumerative algorithm. In [132], the branching
rule (the selection of the next vertex to branch) is based on the number of
triangles a vertex belongs to. The algorithm of Pardalos and Rodgers [266]
is based on an unconstrained quadratic zero-one programming formulation
of the maximum clique problem. In their work, the merit of two different
branching rules, greedy and nongreedy, are tested.

In the 1990’s, more algorithms were proposed, for example in [262, 122,
80, 21, 19, 322, 99].

Pardalos and Phillips [262] formulate the maximum clique problem as
an indefinite quadratic global optimization problem with linear constrains.
The algorithm of Friden et al. [122] is a branch and bound algorithm for
the maximum independent set problem, employing tabu search techniques
in finding lower and upper bounds. Carraghan and Pardalos [80] propose an
implicit enumerative algorithm which is very efficient for sparse graphs (see
also [263]). Their branching rule corresponds to the nongreedy rule described
in [266]. Using this algorithm, they are able to solve problems on graphs of
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500 vertices. Some test instances of graphs with 1000 and 2000 vertices are
also examined. Since the algorithm is transparent and the code is publicly
available, it can serve as a benchmark for comparing different algorithms.

Babel and Tinhofer propose in [21] a branch and bound algorithm for
the maximum clique problem. The main ingredient of their algorithm is
the use of a fast and relatively good heuristic for the minimum coloring
problem proposed by Brelaz [71]. The coloring heuristic is called the degree
of saturation largest first (DSATUR). Applying DSATUR to a graph, one
can find an upper bound on the size of the maximum clique as well as
a maximal clique (thus, a lower bound). Babel and Tinhofer exploit this
distinct feature and apply DSATUR at each node of the search tree. They
tested their algorithm on graphs of 100 to 400 vertices with varying densities.
In [19], Babel further refines and improves the algorithm of [21].

Also in 1991, based on the fact that a fractional coloring solution provides
a tighter upper bound than an integer coloring solution for the maximum
clique problem, a heuristic for the fractional coloring problem is proposed
by Xue in [322] and used in a branch and bound algorithm for the max-
imum clique problem. Substantial reduction in the search tree size and
the improvement in efficiency of the branch and bound algorithm are ob-
served because of the use of this new bounding procedure. Details about
the method and how to extended it to the weighted case can also be found
in [30].

Della Croce and Tadei reformulate in [99] the maximum clique problem
into a multivariate binary knapsack problem (cf. also [253]) and combine a
greedy algorithm with branch and bound methods. In [69], Bourjolly et al.
propose a column-generation method embedded in a branch and bound algo-
rithm, to obtain competitive lower bounds for the maximum clique problem,
and also to obtain valid cuts for the linear relaxation of the minimal vertex
cover problem. Bourjolly and coworkers presented in [68] a new approach
for minimizing general quadratic 0-1 functions related to the satisfiability
of a sequence of Boolean expressions. They developed lower bounding pro-
cedures for minimizing such functions and interpreted them in the context
of the maximum independent set problem. These bounding rules were then
incorporated in a standard branch and bound algorithm which was tested
on various DIMACS benchmark graphs (cf. Section 6).

The continuous formulation in Theorem 2.6 allows to convert any finite
exact procedure for solving indefinite quadratic programming problems glob-
ally, e.g. that in [60], into an exact algorithm. More adapted to our problem
are solvers specifically dedicated to global optimization of quadratic forms
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over a simplex, which problems also recently were introduced under the
name standard quadratic problems [57, 58]. The algorithms proposed there
typically find a local solution for this sort of problems, and then either gen-
erate a certificate for global optimality, or produce an improving feasible
point from which a new (monotonic) local search can be started. Both this
escape step and the optimality certificate rely on the copositivity property of
symmetric matrices which generalizes semi-definiteness: a (n x n) matrix @
is said to be copositive, if it generates a quadratic form taking no negative
values on the positive orthant, or, equivalently, if

tTQr>0 VreA.

In [57] it is shown that a maximal clique S (corresponding to a local maxi-
mizer z° of 7 Agx over A) is a maximum clique if and only if the matrix
Qs = (25| —1)ee” —2|S|Ag is copositive (observe that Qg only depends on
|S|). If, however, zTQgx < 0 for some = € A, then 2T Agz > (z%)T Ag(z%)
so that an escape direction is found. Now while checking copositivity is
again N P-hard, the full arsenal of finite procedures for this goal can be
employed, see [57] and the references therein. In [57] also some experiments
are conducted which show that even suboptimal local solutions serve well as
heuristics in hard cases (i.e. large and dense graphs) where the (in principle
finite) algorithm must be stopped prematurely.

A similar, very recent approach called Genetic Engineering via Negative
Fitness (GENF) [64] also focuses on copositivity analysis, which is attacked
by a block pivoting argument. Despite of the similarity in nomenclature,
GENF is not a genetic algorithm (cf. Section 6.3.3), but rather a determin-
istic, finite and exact recursive procedure which produces simultaneously
large cliques and large stable sets for the same graph (large stable sets are
needed to obtain good pivots for efficient dimensional reduction).

5.3 Exact Algorithms for the Weighted Case

Algorithms for finding a maximum weight independent set of an arbitrary
graph started in 1975 by Nemhauser and Trotter [246]. They considered the
polyhedron relationships between the edge formulation (1) of the maximum
weight independent set problem and its linear relaxation problem. Their
main results were given as theorem 2.1 in section 2.1 of the present paper.
Based on this result, they proposed an algorithm for the maximum weight
independent set problem.
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In 1977, Balas and Samuelsson [27] proposed an algorithm that solved the
minimum vertex covering problem (a weighted version was also announced
in [27]). Their algorithm was based on the relationship between the integer
dual feasible solution and an equivalent linear programming for the vertex
covering problem. Labeling procedures were designed to generate and im-
prove vertex covers. When these labeling procedures could not continue,
branch and bound was used. The computational tests in [246] and [27] were
conducted on unweighted graphs of up to 50 vertices.

In 1983, Loukakis and Tsouros [218] proposed an algorithm for the maxi-
mum weight independent set problem. It seems that almost nothing else ap-
peared in the literature until late 1980’s and early 1990’s. Recently published
algorithms we are aware of for the maximum weight clique/independent
set problem are due to Pardalos and Desai [261], Balas and Xue [29], and
Nemhauser and Sigismondi [244].

The algorithm proposed by Pardalos and Desai [261] was based on an un-
constrained quadratic 0-1 formulation of the maximum weight independent
set problem. Their algorithm (for maximum weight independent set) used
the nongreedy search strategy described in [266]. With this algorithm they
were able to solve problems of up to 500 vertices with different densities. In
an unpublished paper [81], Carraghan and Pardalos test a weighted version
of their algorithm from [80], and it turns out that this is more efficient than
that of Pardalos and Desai in [261].

Balas and Xue [29] extend the algorithm of Balas and Yu [31] to the
weighted case. To accomplish this, a minimum weighted coloring of a trian-
gulated graph is needed. Although the minimum weighted coloring problem
on triangulated graphs is known to be in class P (see [146]), there was no
algorithm in the literature that had reasonable time complexity. In [29] a
combinatorial algorithm for this problem with a time complexity of O(n?)
is proposed and used to extended the algorithm of [31] to the weighted case.
Computational results (graphs of size up to 2000 vertices are solved on a
workstation) show that the size of the search tree is greatly reduced and the
CPU time is much smaller than other such algorithms, especially for large,
dense graphs.

In [30], Balas and Xue propose a fast heuristic for the weighted fractional
coloring problem and used this heuristic as an upper bounding procedure in a
branch and bound algorithm for the maximum weight clique problem. Com-
paring with the method in [29], computational results show the reduction in
search tree size and the improved efficiency of the resulting algorithm.

The algorithm of Nemhauser and Sigismondi [244] uses the polyhedron
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approach. They attack the problem by first solving the linear relaxation
of the corresponding integer programming problem. If the optimal solution
to the relaxation problem is integer, we are done. Otherwise, sets of valid
inequalities are generated and added into the relaxed problem to cut off
the current fractional solution. Attention is focused to some classes of facet
defining inequalities for the maximum independent set problem. Since not
all facets for the clique/independent set polytope are known, there is no
guarantee that a fractional solution would always be cut off. When this
happened, Nemhauser and Sigismondi switch in [244] to a branch and bound
method. From their computational test, they found too many iterations in
solving the linear relaxation problems. The largest graphs they tried to solve
had up to 120 vertices. Similar approaches, partly only for the unweighted
case, can be found in [245, 18, 24].

In an algorithm published in 1994, Babel [20] uses a branch and bound
approach as follows: upper and lower bounds for the maximum weight of
cliques are found by coloring the weighted graph, where the number of colors
represents the total sum of all weights. So to process a graph of order 500
with weights out of {1,...,10} we may have to deal with up to 5000 colors.
The branching part of Babel’s algorithm divides the bounded search-tree
into smaller subproblems, the branching decisions depending on a specific
order of all possible remaining nodes.

Similarly to the unweighted case, the continuous formulation of Theo-
rem 2.8 provides exact procedures for the maximum weight clique problem
out of any finite (global) indefinite quadratic program solver. Now, as easily
can be seen, for any clique S of G, and any matrix C € C(G,w), we have
()T C(z%) = 1/[2W(S)]. If S is a maximal clique, then z° is a local mini-
mizer of the quadratic form generated by C over A, and so S is a maximum
weight clique if and only if the matrix Qg = 2W (S)C — eel’ is copositive.
Observe that Qg depends on S and w only via W(S) = ¥ ,cqw;. Spe-
cializing C = C(e) we see that in the unweighted case w = e we again get
Qs = 2|5|(eel — Ag) —eel = Qg, and regarding copositivity detection the
arguments at the end of the preceding section apply as well. This approach is
followed in [62], with some empirical evidence that (local) solutions obtained
even in case of premature stopping of the algorithm (which in principle is
finite) may again yield satisfying approximations. Also, the GENF approach
[64] is applicable here though the maximizer yielding auxiliary pivots have
not the same nice interpretation as in the unweighted case.
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6 Heuristics

Because of the computational complexity of the maximum clique problem,
which as seen in Section 3 is also hard to approximate, much effort has
recently been directed towards devising efficient heuristics, for which no
formal guarantee of performance may be provided, but which are anyway of
interest in practical applications.

In a branch and bound algorithm for the maximum clique problem, its
lower bounding procedure usually provides a maximal clique which can be
used to approximate the maximum clique of GG. Since different branch and
bound algorithms tend to have different bounding procedures, they provide
different heuristics for the maximum clique problem. On the other hand,
there are many heuristics in the literature explicitly designed to find ap-
proximation solutions to the maximum clique problem. These heuristics
are usually more complicated than the lower bounding procedures from a
branch and bound algorithm. In this section we provide a description of
these procedures.

Lacking (almost by definition) a general theory of how these algorithms
work, their evaluation is essentially based on massive experimentation. In
order to facilitate comparisons among different heuristics, a set of benchmark
graphs arising from different applications and problems has recently been
constructed in conjunction with the 1993 DIMACS challenge on cliques,
coloring and satisfiability [190]. These include graphs arising from coding
theory [160], artificially generated graphs with known clique size, graphs in
which the expected clique number is much smaller than the actual one [72],
etc. These data are available at the following WWW address:

http://dimacs.rutgers.edu/Challenges/index.html

along with additional useful material.

6.1 Sequential Greedy Heuristics

Many approximation algorithms in the literature for the maximum clique
problem are called sequential greedy heuristics. These heuristics generate
a maximal clique through the repeated addition of a vertex into a partial
clique, or the repeated deletion of a vertex from a set that is not a clique.
Kopf and Ruhe [206] named these two classes of heuristics the Best in and
the Worst out heuristics. Decisions on which vertex to be added in or moved
out next are based on certain indicators associated with candidate vertices.
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For example, a possible Best in heuristic constructs a maximal clique by
repeatedly adding in a vertex that has the largest degree among candidate
vertices. In this case, the indicator is the degree of a vertex. On the other
hand, a possible Worst out heuristic can start with the whole vertex set V.
It will repeatedly remove a vertex out of V until V' becomes a clique.

Kopf and Ruhe [206] further divided the above two classes of heuristics
into New and Old (Best in or Worst out) heuristics. Namely, if the indicators
are updated every time a vertex is added in or moved out, then the heuristic
is called a New heuristic. Otherwise it is called an Old heuristic. We can find
in the literature that many heuristics for the maximum clique problem fall
in one or the other classes. See for example, the approximation algorithm
of Johnson [189], and the approximation algorithm of Tomita et al. [309].
The differences among these heuristics are their choice of indicators and how
indicators are updated. A heuristic of this type can run very fast.

6.2 Local Search Heuristics

A common feature of the sequential heuristics just described is that they all
find only one maximal clique. Once a maximal clique is found, the search
stops. We can view this type of heuristics from a different point of view.
Let us define S to be the system consisting of all the maximal cliques of G.
What a sequential greedy heuristic does is to find one set in Sg, hoping it
is (close to) the optimal set. This suggests us a possible way to improve our
approximation solutions, namely, expand the search in Sg. For example,
once we find a set S € S, we can search its neighbors to improve S. This
leads to the class of the local search heuristics [2].

In a local search heuristic, if we search more neighbors of S € S¢g, we
increase the chance of finding a better solution. Depending on the neighbor-
hood definition of a set S € S, and how the search is performed, different
local search heuristics result. A well known class of local search heuristics
in the literature is the k-interchange heuristics. They are based on the k-
neighbor of a feasible solution. In the case of the maximum clique problem, a
k-neighbor of S € S is defined as follows. A set C' € Sg is a k-neighbor of S
if CAS| <k, where k < |S|. A k-interchange heuristic first finds a maximal
clique S € Sg. Then it searches all the k-neighbors of S and outputs the
best clique found. As one will expect, the main factors for the complexity
of this class of heuristics are the size of the neighborhood and the searches
involved. For example, in the k-interchange heuristic, the complexity grows
roughly with O(n*).
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The solution quality of a local search heuristic directly depends on the
starting set S € Sg and the neighborhood of S. To improve the quality of
its solution, we need to increase the neighborhood of S (the starting set) to
include a “better” set. If we want to look at various sets spread over S¢, we
need to have a very large neighborhood. The problem is when the size of
the neighborhood increases, the search effort increases so rapidly that one
could not afford it.

A class of heuristics designed to search various sets of Sg is called the
randomized heuristics. The main ingredient of this class of heuristics is the
part that finds a random set in S¢. A possible way to do that is to include
some random factors in the generation of a set of S;. A randomized heuristic
runs a heuristic (with random factors included) a number of times to find
different sets over Sg. For example, we can randomize a sequential greedy
heuristic and let it run N times. The complexity of a randomized heuristic
depends on the complexity of the heuristic and the number N.

An elaborated implementation of the randomized heuristic for the max-
imum independent set problem can be found in Feo et al. [116] where local
search is combined with randomized heuristic. Their computational results
indicated that their approach was effective in finding large cliques of ran-
domly generated graphs. For example, for randomly generated graphs with
1000 vertices and 50% density, their approach found cliques of size 15 or
larger in most cases. Here, 15 is a bound derived from the probabilistic
analysis of this class of graphs [53, 55, 123]. A different implementation of
a randomized algorithm for the maximum independent set problem can be
found in [9].

6.3 Advanced Search Heuristics

Local search algorithms are only capable of finding local solutions of an op-
timization problem. In the past few years, many powerful variations of the
basic local search procedure have been developed which try to avoid this
problem, many of which are inspired from various phenomena occurring in
nature. Examples of such algorithms are simulated annealing, neural net-
works, genetic algorithms and DNA computing. Because of its importance
it is not surprising that these techniques have been applied to the maximum
clique problem.
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6.3.1 Simulated annealing

In condensed-matter physics, the term “annealing” refers to a physical pro-
cess to obtain a pure lattice structure, where a solid is first heated up in
a heat bath until it melts, and next cooled down slowly until it solidifies
into a low-energy state. During the process, the free energy of the system is
minimized. Simulated annealing, introduced in 1983 by Kirkpatrick, Gelatt
and Vecchi [202], is a randomized neighborhood search algorithm based on
the physical annealing process. Here, the solutions of a combinatorial opti-
mization problem correspond to the states of the physical system, and the
cost of a solution is equivalent to the energy of the state.

In its original formulation, simulated annealing works essentially as fol-
lows. Initially, a tentative solution in the state space is somehow generated.
A new neighboring state is then produced from the previous one and, if the
value of the cost function f improves, the new state is accepted, otherwise
it is accepted with probability exp{Af/7}, where Af is the difference of the
cost function between the new and the current state, and 7 is a parameter
usually called the temperature in analogy with physical annealing, which is
varied carefully during the optimization process. The algorithm proceeds
iteratively this way until a stopping condition is met. One of the critical as-
pects of the algorithm relates to the choice of the proper “cooling schedule,”
i.e., how to decrease the temperature as the process evolves. While a loga-
rithmically slow cooling schedule (yielding an exponential time algorithm)
provably guarantees the exact solution, faster cooling schedules, producing
acceptably good results, are in widespread use. Introductory textbooks de-
scribing both theoretical and practical issues of the algorithm are [209] and
[1].

Aarts and Korst [1], without presenting any experimental result, sug-
gested the use of simulated annealing for solving the independent set prob-
lem, using a penalty function approach. Here, the solution space is the set of
all possible subsets of vertices of the graph GG, and the problem is formulated
as one of maximizing the cost function f(V') = |V'| — A\|E’|, where |E'| is
the number of edges in G(V'), and A is a weighting factor exceeding 1.

Jerrum [188] conducted a theoretical analysis of the performance of a
clique-finding Metropolis process, i.e., simulated annealing at fixed tempera-
ture, on random graphs. He proved that the expected time for the algorithm
to find a clique that is only slightly bigger than that produced by a naive
greedy heuristic, grows faster than any polynomial in the number of vertices.
This suggests that “true” simulated annealing would be ineffective for the
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maximum clique problem.

Jerrum’s conclusion seems to be contradicted by practical experience.
In [174], Homer and Peinado compare the performance of three heuristics,
namely the greedy heuristic developed by Johnson [189], a randomized ver-
sion of Boppana and Halldérsson’s subgraph-exclusion algorithm [66], and
simulated annealing, over very large graphs. The simulated annealing al-
gorithm was essentially that proposed by Aarts and Korst, with a simple
cooling schedule. This penalty function approach was found to work bet-
ter than the method in which only cliques are considered, as proposed by
Jerrum [188]. The algorithms were tested on various random graphs as well
as on DIMACS benchmark graphs. The authors ran the algorithms over an
SGI workstation for graphs with up to 10,000 vertices, and on a Connection
Machine for graphs with up to 70,000 vertices. The overall conclusion was
that simulated annealing outperforms the other competing algorithms; it
also ranked among the best heuristics for maximum clique presented at the
1993 DIMACS challenge.

6.3.2 Neural networks

Artificial neural networks (often simply referred to as “neural networks”)
are massively parallel, distributed systems inspired by the anatomy and
physiology of the cerebral cortex, which exhibit a number of useful proper-
ties such as learning and adaptation, universal approximation, and pattern
recognition (see [168], [163] for an introduction).

In the mid-1980’s Hopfield and Tank [175] showed that certain feedback
continuous neural models are capable of finding approximate solutions to dif-
ficult optimization problems such as the traveling salesman problem [175].
This application was motivated by the property that the temporal evolu-
tion of these models is governed by a quadratic Lyapunov function (typi-
cally called “energy function” because of its analogy with physical systems)
which is iteratively minimized as the process evolves. Since then, a variety
of combinatorial optimization problems have been tackled within this frame-
work. The customary approach is to formulate the original problem as one
of energy minimization, and then to use a proper relaxation network to find
minimizers of this function. Almost invariably, the algorithms developed so
far incorporate techniques borrowed from statistical mechanics, in particu-
lar mean field theory, which allow one to escape from poor local solutions.
We mention the articles [214, 278] and the textbook of Takefuji [303] for
surveys of this field, and a journal special issue [185] for recent advances.
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In [1], an excellent introduction to a particular class of neural networks (the
Boltzmann machine) for combinatorial optimization is provided.

Early attempts at encoding the maximum clique and related problems in
terms of a neural network were already done in the late 1980’s by Ballard et
al. [34], Godbeer et al. [140], Ramanujam and Sadayappan [285], Aarts and
Korst [1], and Shrivastava et al. [295] (see also [296]). However, little or no
experimental results were presented, thereby making it difficult to evaluate
the merits of these algorithms. In [212], Lin and Lee used the quadratic zero-
one formulation from [265] as the basis for their neural network heuristic.
On random graphs with up to 300 vertices, they found their algorithm to
be faster than the implicit enumerative algorithm in [80], while obtaining
slightly worse results in terms of clique size.

Grossman [149] proposed a discrete, deterministic version of the Hopfield
model for maximum clique, originally designed for an all-optical implemen-
tation. The model has a threshold parameter which determines the character
of the stable states of the network. The author suggests an annealing strat-
egy on this parameter, and an adaptive procedure to choose the network’s
initial state and threshold. On DIMACS graphs the algorithm performs sat-
isfactorily but it does not compare well with more powerful heuristics such
as simulated annealing.

Jagota [184] developed several variations of the Hopfield model, both
discrete and continuous, to approximate maximum clique. He evaluated the
performance of his algorithms over randomly generated graphs as well as on
harder graphs obtained by generating cliques of varying size at random and
taking their union. Experiments on graphs coming from the Solomonoff-
Levin, or “universal” distribution are also presented in [186]. The best
results were obtained using a stochastic steepest descent dynamics and a
mean-field annealing algorithm, an efficient deterministic approximation of
simulated annealing. These algorithms, however, were also the slowest, and
this motivated Jagota et al. [187] to improve their running time. The mean-
field annealing heuristic was implemented on a 32-processor Connection
Machine, and a two-temperature annealing strategy was used. Addition-
ally, a “reinforcement learning” strategy was developed for the stochastic
steepest descent heuristic, to automatically adjust its internal parameters
as the process evolves. On various benchmark graphs, all their algorithms
obtained significantly larger cliques than other simpler heuristics but ran
slightly slower. Compared to more sophisticated heuristics, they obtained
significantly smaller cliques on average but were considerably faster.

Other attempts at solving the maximum clique problem using Hopfield-
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style neural networks can be found in [304], [125], [321], [47]. Pelillo [272]
takes a completely different approach to the problem, by exploiting the
Motzkin-Straus continuous formulation and the dynamical properties of the
so-called relaxation labeling networks. His algorithm is the prototype of the
replicator-equation based procedures described in Section 6.4.

6.3.3 Genetic algorithms

Genetic algorithms are parallel search procedures inspired from the mecha-
nisms of evolution in natural systems [173, 142]. In contrast to more tradi-
tional optimization techniques, they work on a population of points, which
in the genetic algorithm terminology, are called chromosomes or individuals.
In the simplest and most popular implementation, chromosomes are simply
long strings of bits. Each individual has an associated “fitness” value which
determines its probability of survival in the next “generation:” the higher
the fitness, the higher the probability of survival. The genetic algorithm
starts out with an initial population of members generally chosen at random
and, in its simplest version, makes use of three basic operators: reproduc-
tion, crossover and mutation. Reproduction usually consists of choosing the
chromosomes to be copied in the next generation according to a probability
proportional to their fitness. After reproduction, the crossover operator is
applied between pairs of selected individuals to produce new offsprings. The
operator consists of swapping two or more sub-segments of the the strings
corresponding to the two chosen individuals. Finally, the mutation operator
is applied, which randomly reverses the value of every bit within a chromo-
some with a fixed probability. The procedure just described is sometimes
referred to as the “simple” genetic algorithm [142].

One of the earliest attempts to solve the maximum clique problem using
genetic algorithms was done in 1993 by Carter and Park [82]. After showing
the weakness of the simple genetic algorithm in finding large cliques, even on
small random graphs, they introduced several modifications in an attempt
to improve performance. However, despite their efforts they did not get sat-
isfactory results, and their general conclusion was that genetic algorithms
need to be heavily customized in order to be competitive with traditional
approaches, and that they are computationally very expensive. In a later
study [268], genetic algorithms were proven to be less effective than sim-
ulated annealing. At almost the same time Bick and Khuri [22], working
on the maximum independent set problem, arrived at the opposite conclu-
sion. By using a straightforward, general-purpose genetic algorithm called
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GENEsYs and a suitable fitness function which included a graded penalty
term to penalize infeasible solutions, they got interesting results over ran-
dom and regular graphs with up to 200 vertices. These results indicate that
the choice of the fitness function is crucial for genetic algorithms to provide
satisfactory results.

Murthy et al. [242] also experimented with a genetic algorithm using a
novel “partial copy crossover,” and a modified mutation operator. However,
they presented results over very small (i.e., up to 50 vertices) graphs, thereby
making it difficult to properly evaluate the algorithm.

Bui and Eppley [77] obtained encouraging results by using a hybrid strat-
egy which incorporates a local optimization step at each generation of the
genetic algorithm, and a vertex-ordering preprocessing phase. They tested
the algorithm over some DIMACS graphs getting results comparable to that
in [135] (cf. Section 6.4).

Instead of using the standard binary representation for chromosomes,
Foster and Soule [119] employed an integer-based encoding scheme. More-
over, they used a time weighting fitness function similar in spirit to those
of Carter and Park [82]. The results obtained are interesting, but still not
comparable to those obtained using more traditional search heuristics.

Fleurent and Ferland [118] developed a general-purpose system for solv-
ing graph coloring, maximum clique, and satisfiability problems. As far as
the maximum clique problem is concerned, they conducted several experi-
ments using a hybrid genetic search scheme which incorporates tabu search
(described in Section 6.3.4) and other local search techniques as alternative
mutation operators. The results presented are encouraging, but running
time is quite high.

In [170], Hifi modifies the basic genetic algorithm in several aspects:
(a) a particular crossover operator creates two new different children; (b)
the mutation operator is replaced by a specific heuristic feasibility transition
adapted to the weighted maximum stable set problem. This approach is also
easily parallelizable. Experimental results on randomly generated graphs
and also some (unweighted) instances from the DIMACS testbed [190] are
reported to validate this approach.

Finally, Marchiori [226] has recently developed a simple heuristic-based
genetic algorithm which consists of a combination of the simple genetic algo-
rithm and a naive greedy heuristic procedure. Unlike previous approaches,
here there is a neat division of labour, the search for a large subgraph
and the search for a clique being incorporated into the fitness function and
the heuristic procedure, respectively. The algorithm outperforms previous
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genetic-based clique finding procedures over various DIMACS graphs, both
in terms of quality of solutions and speed.

We note that the GENF procedure proposed in [64] does not fall into
the category of genetic algorithms, despite similarity in nomenclature. Both
approaches share the modeling idea that the objective is interpreted as fit-
ness and the decision variables could be interpreted as characteristics of a
population subject to selection. The most important difference is that the
(random) mutation prevailing in genetic algorithms has no counterpart in
the GENF algorithm, where escaping from inefficient local solutions is done
deliberately and deterministically (similar to real-world genetic engineering).

6.3.4 Tabu search

Tabu search, introduced independently by Glover [137], [138] and Hansen
and Jaumard [157], is a modified local search algorithm, in which a prohibition-
based strategy is employed to avoid cycles in the search trajectories and to
explore new regions in the search space. At each step of the algorithm, the
next solution visited is always chosen to be the best legal neighbor of the
current state, even if its cost is worse than the current solution. The set
of legal neighbors is restricted by one or more tabu lists which prevent the
algorithm to go back to recently visited solutions. These lists are used to
store historical information on the path followed by the search procedure.
Sometimes the tabu restriction is relaxed, and tabu solutions are accepted
if they satisfy some aspiration level condition. The standard example of a
tabu list is one which contains the last k solutions examined, where k£ may
be fixed or variable. Additional lists containing the last modifications per-
formed, i.e., changes occurred when moving from one solution to the next,
are also common. These types of lists are referred to as short-term mem-
ories; other forms of memories are also used to intensify the search in a
promising region or to diversify the search to unexplored areas. Details on
the algorithm and its variants can be found in [139] and [169].

In 1989, Friden et al. [121] proposed a heuristic for the maximum in-
dependent set problem based on tabu search. The size of the independent
set to search for is fixed, and the algorithm tries to minimize the number
of edges in the current subset of vertices. They used three tabu lists: one
for storing the last visited solutions and the other two to contain the last
introduced/deleted vertices. They showed that by using hashing for im-
plementing the first list and choosing a small value for the dimensions of
the other two lists, a best neighbor may be found in almost constant time.
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The tabu-search-based branch and bound algorithm presented by the same
authors in [122] has already been mentioned in Section 5.

In [132, 299], three variants of tabu search for maximum clique are pre-
sented. Here the search space consists of complete subgraphs whose size
has to be maximized. The first two versions are deterministic algorithms in
which no sampling of the neighborhood is performed. The main difference
between the two algorithms is that the first one uses just one tabu list (of
the last solutions visited), while the second one uses an additional list (with
an associated aspiration mechanism) containing the last vertices deleted.
Also, two diversification strategies were implemented. The third algorithm
is probabilistic in nature, and uses the same two tabu lists and aspiration
mechanism as the second one. The differences lie in a random sampling of
the neighborhood, and also in the possibility of multiple vertex deletion in
the current solution. Here no diversification strategy was used. In [132, 299]
results on randomly generated graphs were presented and the algorithms
were shown to be very effective. More recently, Soriano and Gendreau [298]
tested their algorithms over the DIMACS benchmark graphs and the results
confirmed the early conclusions.

Recently, Battiti and Protasi [37] extended the tabu search framework
by introducing a reactive local search method. They modified a previously
introduced reactive scheme by exploiting the particular neighborhood struc-
ture of the maximum clique problem. In general, reactive schemes aim at
avoiding the manual selection of control parameters by means of an internal
feedback loop. Battiti and Protasi’s algorithm adopts such a strategy to
automatically determine the so-called prohibition parameter k, i.e., the size
of the tabu list. Also an explicit memory-influenced restart procedure is ac-
tivated periodically to introduce diversification. The search space consists
of all possible cliques, as in Friden et al.’s approach, and the function to
be maximized is the clique size. The worst case computational complexity
of this algorithm is O(max{n,m}) where n and m are the number of nodes
and edges of the graph respectively. They noticed, however, that in practice,
the number of operations tends to be proportional to the average degree of
the nodes of the complement graph. They tested their algorithm over many
DIMACS benchmark graphs obtaining better results than those presented
at the DIMACS workshop in competitive time.
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6.4 Continuous-based Heuristics

Recently, there has been much interest around the Motzkin-Straus and re-
lated continuous formulations of the maximum clique problem (see Sec-
tion 2). They suggest in fact a fundamentally new way of solving the
maximum clique problem, by allowing us to shift from the discrete to the
continuous domain in an elegant manner. As recently pointed out [260],
continuous formulations of discrete optimization problems turn out to be
particularly attractive. They not only allow us to exploit the full arsenal of
continuous optimization techniques, thereby leading to the development of
new algorithms, but may also reveal unexpected theoretical properties.

In [262], Pardalos and Phillips developed a global optimization approach
based on the Motzkin-Straus formulation and implemented an iterative
clique retrieval process to find the vertices of the maximum clique. However,
due to its high computational cost they were not able to run the algorithm
over graphs with more than 75 vertices. More recently, Pelillo [272] used
relazation labeling algorithms to approximately determining the size of the
maximum clique using the original Motzkin-Straus formulation. These are
parallel, distributed algorithms developed and studied in computer vision
and pattern recognition, which are also surprisingly related to replicator
equations, a class of dynamical systems widely studied in evolutionary game
theory and related fields [172]. The model operates in the simplex A and
possesses a quadratic Lyapunov function which drives its dynamical be-
havior. It is these properties that naturally suggest using them as a local
optimization algorithm for the Motzkin-Straus program. The model is espe-
cially suited for parallel implementation, and is attractive for its operational
simplicity, since no parameters need to be determined. Extensive simula-
tions over random graphs with up to 2000 vertices have demonstrated the
effectiveness of the approach and showed that the algorithm outperforms
previous neural network heuristics.

In order to avoid time-consuming iterative procedures to extract the
vertices of the clique, Gibbons, Hearn and Pardalos [135] have proposed
a heuristics which is based on a parametrized formulation of the Motzkin-
Straus program. They consider the problem of minimizing the function

n 2
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on the domain:
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where k is a fixed parameter. Let z* be a global minimizer of A on S(k),
and let V' (k) = h(z*). In [135] it is proved that V (k) = 0 if and only if there
exists an independent set S of G with size |S| > k. Moreover, the vertices
of G associated with the indices of the positive components of z* form an
independent set of size greater than or equal k.

These properties motivated the following procedure to find a maximum
independent set of G or, equivalently, a maximum clique of G. Minimize
the function h over S(k), for different values of k between predetermined
upper and lower bounds. If V(k) = 0 and V(k + 1) # 0 for some k, then
the maximum clique of G has size k, and its vertices are determined by the
positive components of the solution. Since minimizing h on S(k) is a dif-
ficult problem, Gibbons and coworkers developed a heuristic based on the
observation that by removing the nonnegativity constraints, the problem
is that of minimizing a quadratic form over a sphere, a problem which is
solvable in polynomial-time. However, in so doing a heuristic procedure is
needed to round the approximate solutions of this new problem to approx-
imate solutions of the original one. Moreover, since the problem is solved
approximately, we have to find the value of the spherical constraint 1/k
which yields the largest independent set. A careful choice of k is therefore
needed. The resulting algorithm was tested over various DIMACS bench-
mark graphs [190] and the results obtained confirmed the effectiveness of
the approach.

In [61], replicator equations are used in conjunction to the spurious-free
formulation given in Theorem 2.6 to find maximal cliques of G. Note that
here the nodes comprising the clique are directly given by the positive com-
ponents of the converged vectors, and no iterative procedure is needed to
determine them, as in [262]. The results obtained over a set of DIMACS
benchmark graphs [190] were encouraging, especially considering that repli-
cator equations do not incorporate any mechanism to escape from local
optimal solutions. This suggests that the basins of attraction of the global
solution w.r.t. the quadratic functions g and ¢ occurring in (9) and Theo-
rem 2.6 are quite large; for a thorough empirical analysis see also [64]. One
may wonder whether a subtle choice of initial conditions and/or a variant of
the dynamics may significantly improve the results, but experiments in [63]
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indicate this is not the case. In [59] the properties of the following function
are studied

dol(z) =27 Agz + az’x

and a heuristic is proposed which is based on the modification of the pa-
rameter « in the course of the optimization process.

Finally, Bomze et al. [62] have recently used replicator equations to find
maximal weight cliques in weighted graphs, using Theorem 2.8.

6.5 Miscellaneous

Another type of heuristics that finds a maximal clique of G is called the
subgraph approach (see [31]). It is based on the fact that a maximum clique
C of a subgraph G’ C G is also a clique of G. The subgraph approach first
finds a subgraph G’ C G such that the maximum clique of G’ can be found
in polynomial time. Then it finds a maximum clique of G’ and use it as the
approximation solution. The advantage of this approach is that in finding
the maximum clique C' C G’, one has (implicitly) searched many other
cliques of G’ (S C S¢). Because of the special structure of G', this implicit
search can be done efficiently. In Balas and Yu [31], G’ is a maximal induced
triangulated subgraph of G. Since many classes of graphs have polynomial
algorithms for the maximum clique problem, the same idea also applies
there. For example, the class of edge-maximal triangulated subgraphs was
chosen in [23], [322], and [323]. Some of the greedy heuristics, randomized
heuristics and subgraph approach heuristics are compared in [322] and [323]
on randomly generated weighted and unweighted graphs.

Various new heuristics were presented at the 1993 DIMACS challenge
devoted to clique, coloring and satisfiability [190]. In particular, Balas and
Niehaus [26] proposed an algorithm which is based on the observation that
finding the maximum clique in the union of two cliques can be done us-
ing bipartite matching techniques. Goldberg and Rivenbrugh [143] used
restricted backtracking to provide a tradeoff between the size of the clique
and the completeness of the search. Mannino and Sassano [225] proposed
an edge projection technique to obtain a new upper bound heuristic for the
maximum independent set problem. This procedure was used, in conjunc-
tion with Balas and Yu’s branching rule [31], to develop an exact branch
and bound algorithm which works well especially on sparse graphs.

Abbattista et al. [3] developed a new population-based optimization
heuristic inspired by the natural behavior of human or animal scouts in
exploring unknown regions, and applied it to maximum clique. The results
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obtained over a few DIMACS graphs are comparable with those obtained us-
ing continuous-based heuristics but are inferior to those obtained by reactive
local search.

Recently, DNA computing [5] has also emerged as a potential technique
for the maximum clique problem [252], [326]. The major advantage of DNA
computing is its high parallelism, but at present the size of graphs this
algorithm can handle is limited to a few tens.

Additional heuristics for the maximum clique/independent set and re-
lated problems on arbitrary or special class of graphs can be found in [89],
[91], [94], [117]. Among others, further (partly randomized) parallel algo-
rithms for the (weighted) maximum clique problem are proposed in [196],
[221], [102], [144], [145], [81], [264], [6], and [100].

7 Selected Applications

In many applications, the underlying problem can be formulated as a maxi-
mum clique problem while in others a subproblem of the solution procedure
consists of finding a maximum clique. This necessitates the development of
fast exact and approximate algorithms for the problem.

The proliferation of massive data sets brings with it a series of special
computational challenges. Many of these data sets can be modeled as very
large multidigraphs with a special set of edge attributes that represent spe-
cial characteristics of the application at hand. Understanding the structure
of the underlying digraph is essential for storage organization and informa-
tion retrieval. In [4] experiments with data from telecommunications traffic,
the corresponding multigraph has 53,767,087 vertices and over 170 million
of edges. A giant connected component with 44,989,297 vertices was com-
puted. The maximum clique problem is considered in this giant component.
Similar computational challenges with very large graphs appear in several
other practical applications.

The application areas considered below are diverse. For example, we
will present a class of graphs from which we can prove or disprove Keller’s
conjecture; a famous problem in geometry, a part of which is still open.
Another example arises from coding theory where one wishes to find binary
codes as large as possible that can correct a prespecified number of errors.
The problem can be solved by solving the maximum clique problem in a
corresponding graph. We also indicate how the maximum clique problem
occurs in fault diagnosis models. A further important application area of
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the maximum clique problem discussed here is computer vision and pattern
recognition.

Other applications can be found, e.g., in [17], [270], [105], [271], [104],
[313], [320], [315], [35], [267], [316], [224].

7.1 Coding Theory: Hamming and Johnson Graphs

In this section we will describe how coding theory problems can be inter-
preted as maximum clique problems on certain graphs. In Coding Theory,
one wishes to find a binary code as large as possible that can correct a
certain number of errors for a given size of the binary words (vectors), see
[74, 297]. In order to correct errors, the code must consist of binary words
among which any two differ in a certain number of positions so that a mis-
spelled word can be detected and corrected. A misspelled word is corrected
by replacing it with the word from the code that differs the least from the
misspelled one.

The Hamming distance between the binary vectors u = (uy,usg, ..., uy)
and v = (v1,v2,...,vy) is the number of indices 7 such that 1 <4 < n and
u; # v;. We denote the Hamming distance by dist(u,v).

It is well known that a binary code consisting of a set of binary vectors
any two of which have Hamming distance greater or equal to d can correct
{%J errors [222]. Thus, what a coding theorist would like to find is the
maximum number of binary vectors of size n with Hamming distance d. We
denote this number by A(n,d).

Another problem arising from Coding Theory, closely related to the one
mentioned above, is to find a weighted binary code, that is, to find the
maximum number of binary vectors of size n that have precisely w 1’s and
the Hamming distance of any two of these vectors is d. This number is
denoted by A(n,w,d). A binary code consisting of vectors of size n, weight
w and distance d, can correct w — ¢ errors [222].

Now the Hamming graph H(n,d), of size n and distance d, is defined as
the graph with vertex set the binary vectors of size n, in which two vertices
are adjacent if their Hamming distance is at least d. Then, A(n,d) is the
size of a maximum clique in H(n,d).

The graph H(n,d) has 2" vertices, 2"~' 37, () edges and the degree
of each vertex is Y1 ; (7).

Next we define the Johnson graph, J(n,w,d), with parameters n, w
and d, as the graph with vertex set the binary vectors of size n and weight
w, where two vertices are adjacent if their Hamming distance is at least d.
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Then, similar to Hamming graph, the size of the weighted code, A(n,w, d),
equals the size of the maximum clique in J(n,w, d).
The graph J(n,w,d) has () vertices, 3 (") Elk”_(i] () (".") edges and
2

")

the d f each vertex is 33 1 (}
e degree of each vertex is Zk:(%] () ("%

7.2 Geometry of Tiling: Keller’s Conjecture

A family of hypercubes with disjoint interiors whose union is the Euclidean
space IR" is a tiling. A lattice tiling is a tiling for which the centers of the
cubes form a lattice [301].

In the beginning of the century, Minkowski conjectured that in a lattice
tiling of IR™ by translates of a unit hypercube, there exist two cubes that
share a (n — 1)-dimensional face. About fifty years later, Hajés [155] proved
Minkowski’s conjecture.

At 1930, Keller [199] suggested that Minkowski’s conjecture holds even
in the absence of the lattice assumption. Ten years later Perron [277] proved
the correctness of Keller’s conjecture for n < 6. Since then, many papers
have been devoted to prove or disprove this conjecture [302] and recently,
Lagarias and Shor [208] proved that Keller’s conjecture fails for n > 10.
Thus, it is left to prove whether the conjecture holds for n = 7,8, 9.

We define the Keller Graph I'), as a graph with vertex set

Vo, ={(d1,da,...,d,) : d; €{0,1,2,3}, i=1,2,...,n}

where two vertices u = (dy,ds,...,d,) and v = (d},d5,...,d]) in V,, are
adjacent if and only if

Ji, 1<i<n:d;—d, =2mod 4 (29)

and
Hj;éi,lgjgn:dj;éd}. (30)

In [97], Corrddi and Szabd presented a graph theoretic equivalent of
Keller’s conjecture. It is shown that, there is a counterexample to Keller’s
conjecture if and only if there exist a n € N* such that I',, has a clique of
size 2™.

I, has 4" vertices, 24"(4" — 3" — n) edges and the degree of each node
is 4" — 3" —n. I',, is very dense and has at least 8"n! different maximum
cliques. It can be shown [208] that the maximum clique size of I';, is less
than or equal to 2™.
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7.3 Problems Arising From Fault Diagnosis

A crucial problem in studying the reliability of large multiprocessor systems,
is the problem known as system-level fault diagnosis. The task is to identify
all faulty processors (units) in the system. The classical approach to fault
diagnosis was originated over thirty years ago by Preparata, Metze and
Chien [281], leading to a fault diagnosis model known as the PMC model.

In the PMC model each unit can test some other units and it is assumed
that fault-free units always give the correct results while faulty ones are un-
predictable and can output any results. Furthermore, it is assumed that the
number of faulty units never exceed some upper bound ¢. Upon completion
of all tests, the results are gathered by a monitoring unit which computes
the status of all units based on the gathered results.

The assumption that a fault-free unit always detects faulty units may
seem a little optimistic. Also, the upper bound assumption may restrict the
model to unrealistic situations. Further, the PMC model is accurate only if
the upper bound ¢ does not exceed the number of neighbors of any unit. For
large systems however, the connectivity might be fairly low, making it quite
probable that the number of faulty units exceed the number of neighbors
for some units.

Yet another assumption in the PMC model, the existence of a central
monitoring unit, makes it less reliable. In order to overcome this problem,
distributed fault-tolerance was introduced. The goal of this approach is to
find a way to let every fault-free unit to be able to determine the status of
every other unit.

The above observations have led to several different models one of which
was introduced by Blough [50]. In his model, processors test each other and
fault-free units always detect other fault-free processors correctly, while they
detect faulty processors with a fixed probability less than 1. No assumption
is made about how faulty units behave as testers.

In [44], Berman and Pelc study a realistic approach to fault diagnosis
by simultaneously relaxing all the three assumptions from the PMC model
described above. Their model is based on a probabilistic model presented
by Blough performed in a distributed fashion. Consequently, a processor
can never be sure that the information it receives is correct. Berman and
Pelc define a system design represented by a class of graphs, G,,. They show
that the probability of correct diagnosis of fault processors for such systems,
happens with probability at least 1 — n~!. The algorithm they propose is
based on a model where a test by a fault-free unit on a faulty one does not
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detect a fault with probability g, while they assume that fault-free units
never detect faults in each other.

For a given parameter ¢, a c-fat ring is the graph G = (V, E) defined as
follows. Let v
LA

clog |V
and let Wy, ..., Wgr_1 be a partition of V' such that

clog |V < |W;| <1+ [elog|V]|] fori=0,1,...,k—1. (31)

For w € W; and v € W; we have (u,v) € E if and only if u # v and
li—7]€{0,1,k —1}.

A major step in the algorithm proposed in [44] is to find the maximum
clique of a c-fat ring. Therefore Hasselberg et al. [160] construct a c-fat ring
generator and perform some computations to see how the maximum clique
algorithms perform on such graphs.

7.4 Computer Vision and Pattern Recognition

Many fundamental problems in computer vision and pattern recognition can
be formulated as the problem of matching relational structures [33]. In the
computer vision terminology, a relational structure is a triple S = (U, P, R),
where U is a set of units, P = {Py,..., P} is a set of properties, and
R ={Ry,..., Ry} is a set of (binary) relations over the units. Generaliza-
tions involving higher-order relations are also common, but for the sake of
simplicity we shall only consider the binary case here. Note that the notion
of a relational structure is essentially equivalent to that of a pseudograph
employed in graph theory [158]. A relational structure becomes a graph, in
the traditional sense, when the relation set R contains a single relation, and
the property set P is empty. The relation may be symmetric, in which case
we obtain an undirected graph.

Consider two relational structures S’ = (U, P',R') and 8" = (U",P", R").
A pair of units (u’,u"), one from S’ and the other from S”, is said to be
good if all properties that hold for «’ hold for u” as well, and vice versa, that
is if

_Pi,(ul) PR _Pi”(ull)

for all i = 1,...,l, where P/ € P' and P/ € P". Similarly, two good pairs
(v, u") and (v',v"), with «' # o' and u” # 0", are said to be compatible if

R;' (') & R;’(u", v") and R;-(U', u') & R;'(v", u")
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for all j = 1,...,k, where R; € R' and R} € R". A match between S’ and
S" is any relation u C U’ x U” such that all its assignments are good and
mutually compatible. A match is mazimal if it is not included in any other
match, and is mazimum if it has largest cardinality. The relational structure
matching problem is just the problem of finding a maximum match between
two relational structures. When the relational structures being matched
are graphs the problem becomes the maximum common subgraph problem,
which is known to be N P-complete [127]. Obviously, for this reason, the
relational structure matching problem too is N P-complete.

Ambler et al. [11] (see also [36] and [207]) introduced the notion of associ-
ation graph as an auxiliary structure for matching relational structures. The
association graph of two relational structures S’ and S” is the undirected
graph G = (V, E) defined as

V={(\u")eU xU" : (u,u") is good}
and
E={((\d"),(v",v") e VxV : (u«,u") and (v',v") are compatible} .

It is clear that, given the way we have constructed the association graph, the
notions of match, maximal match, and maximum match turn out to coincide
with those of clique, maximal clique, and maximum clique of the association
graph, respectively. The problem of matching two relational structures is
therefore equivalent to the maximum clique problem.

In many practical applications, properties as well as relations may be
assigned one or more numerical attributes. For example, if units represents
segmented regions in an image, the property “circular” can be associated
with the diameter of the circle; or, the relation which establishes that two
regions are adjacent can be assigned a numerical value specifying the (rel-
ative) amount of common boundary. It is straightforward to generalize the
association graph idea described above to the case of attributed relational
structures. To this end, we simply need to specify some similarity measure
between attribute vectors; the topology of the association graph is then de-
fined according to the degree of similarity between corresponding property’s
and relation’s attributes. An alternative approach is to construct a weighted
association graph (see, e.g., [176]). In this case, a pair is declared good using
the same criterion as in the unattributed case, and the corresponding ver-
tex in the association graph is assigned a positive weight which represents
the (overall) similarity between the attribute vectors. In this case, one is
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interested in determining a clique having largest total weight and this is the
maximum weight clique problem.

In [274] and [273], Pelillo uses the association graph framework and the
Motzkin-Straus formulation (see Section 2.2) to develop a new quadratic pro-
gramming formulation for graph isomorphism and related relational struc-
ture matching problems. Replicator equations, mentioned in Section 6.4,
are used to solve the program and the experimental results obtained show
how on the graph isomorphism problem the replicator dynamical system
outperforms more sophisticated heuristics based on mean-field theory.

Computer vision and pattern recognition problems for which the max-
imum clique formulation has proven to be effective include, for example,
stereo correspondence [176], object recognition [51], [52], [156], point pat-
tern matching [248], and motion analysis [283], [280]. The framework has
recently been extended to handle the problem of matching hierarchical rela-
tional structures, such as trees, and applied to the problem of shape match-
ing [276].

8 Conclusions

Over the past four decades, research on the maximum clique and related
problems has yielded many interesting and profound results. However, a
great deal remains to be learned about the maximum clique problem.

This paper provides an expository survey on complexity, algorithms and
applications of the maximum clique problem. Furthermore, an extensive
up-to-date bibliography is included. However, the present activity in work
related to the maximum clique problem is so extensive that a survey of this
nature is outdated before it is written.
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