http://lwww.cs.rpi.edu/~goldberg/publications/papers-reversed.html

A NEW ALGORITHM FOR MIS 1

A NEW PARALLEL ALGORITHM FOR THE
MAXIMAL INDEPENDENT SET PROBLEM*

MARK GOLDBERGT} anp THOMAS SPENCERT§

Abstract. A new parallel algorithm for the maximal independent set problem is constructed.
It runs in O(log* n) time when implemented on a linear number of EREW-processors. This is the
first deterministic algorithm for the maximal independent set problem (MIS) whose running time is
polylogarithmic and whose processor-time product is optimal up to a polylogarithmic factor.

Key words. parallel computation, NC, efficient, deterministic, maximal independent set,
matching

AMS (MOS) subject classification. 68R10

1. Introduction. When researchers investigate the parallel complexity of a
problem, one of the main questions they ask is whether a polylogarithmic running time
is achievable on a PRAM containing a polynomial number of processors. If the answer
is positive, then the problem and the corresponding algorithm are said to belong to
class N'C introduced in [22] (see also [8], [25]). Having constructed an N C-algorithm
for a given problem, it is natural to try to improve its computational complexity. The
complexity of a parallel algorithm is characterized by the pair (T, P), where T = T(N)
is the worst-case running time, P = P(N) is the number of processors used, and N is
the size of the input. It has been traditional to consider the product W = T'(N)P(N)
as a unified measure for different parallel algorithms solving the same problem. W
represents the total amount of work that the parallel algorithm does; it is also the
running time of the sequential algorithm into which the algorithm can be converted.

Let a sequential algorithm A, with running time T, and a parallel algorithm A,
solve the same problem. The relative efficiency E(Ap, As) of A, with respect to A,
measures the amount of extra work that A, does, and it is given by E = T5/W,. The
value of E(A,) = E(Ap, A;), where A, is the fastest known sequential algorithm for
the problem, characterizes the efficiency of A,. Thus, in general, this characteristic of
a parallel algorithm depends on the progress in designing a sequential algorithm, but
for the problems with a linear sequential algorithm, E(A,) is absolute. Clearly, the
optimal algorithms introduced by Galil in [9] have the maximum relative efficiency
of O(1). We should expect that for many problems, achieving the speedup from a
polynomial to a polylogarithmic running time is only possible if the efficiency E(A4,)
is a function that tends to 0 when N — oo. Consequently, the algorithms whose
relative efficiency is large enough may be called efficient. In particular, we call an

* Received by the editors February 9, 1987; accepted for publication (in revised form) April 26,
1988.

T Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180-3590.

Z[Z The work of this author was supported in part by the National Science Foundation under grant
DCR-8520872.

§ The work of this author was supported in part by the National Science Foundation under grant
CCR-8810609.

VAK
http://www.cs.rpi.edu/~goldberg/publications/papers-reversed.html

2 M. GOLDBERG anD T. SPENCER

NC-algorithm efficient if it has relative (to the fastest sequential algorithm) efficiency
at least Q(1/log' N), where [is a constant.

In this paper, we present an efficient deterministic parallel algorithm for the
Mazimal Independent Set problem (MIS). Recall that a subset I of the vertices of
a graph G is independent if there are no edges between any two vertices in I. An
independent set I is mazimal if it is not a proper subset of any other independent set.
MIS is the problem of constructing a maximal independent set of a given graph.

Karp and Widgerson were the first to prove that MIS is in NC. On graphs
with n vertices and m edges, their algorithm [17] runs in O(log*n) time and uses
O(n?/log® n) processors. In [19] Luby constructed a probabilistic algorithm that runs
in O(log n) time when implemented on a linear number of processors under the CRCW
PRAM model of computation. In the EREW PRAM model, it runs in O(log® n) time.
The deterministic version of the algorithm uses O(n?m) processors. A still different
probabilistic algorithm for MIS was described by Alon, Babai, and Itai in [4].

Since there is a trivial sequential algorithm that runs in linear time, every efficient
algorithm for MIS must use at most a linear number of processors (up to a polyloga-
rithmic factor). A deterministic algorithm that uses a linear number of processors was
proposed by Goldberg in [12]; its running time is O(n®), where a > 1 is arbitrary.
Using the deterministic coin-flipping technique introduced by Cole and Vishkin in [6],
Goldberg, Plotkin, and Shannon [11] developed algorithms for MIS as well as for the
vertex-coloring problem, VC, which run in O(log* n) time! on graphs with bounded
maximum degree. Unfortunately, when the degree is allowed to grow, the algorithms
become inefficient.

The algorithm we present in this paper runs in O(log4 n) time on an EREW PRAM
consisting of O(m +n) synchronous processors that share a common memory [8], [22],
[25], [26]. Each processor is a standard random access machine [2] capable of doing
elementary operations on words of length O(log(n + m)).

We follow the usual graph-theoretic terminology [7]. Our graphs are without loops
or parallel edges. The vertices of a graph on n vertices are represented by integers
0,1,---,n — 1; the edges are given by a list of pairs {(i,5)}, where 0 <i<j<n-—1.
Given a set T of vertices of a graph G = (V, E), the neighborhood N(T") is defined
as the set of all vertices in V' that are adjacent to at least one vertex in 7. Thus, a
set I is independent if I N N(I) = (). A subgraph of a graph G induced on a set A of
vertices is denoted by G[A]. A matching is a collection of disjoint edges.

A partial coloring ¢ of a graph G is given by a collection of disjoint independent
subsets (C1, - - -, Cp) of G. We say that the vertices in C; have color ¢ (1 < ¢ < p); thus,
the colors are always positive integers. If V(G) = UY_, C;, then ¢ is called complete.
A trivial partial coloring is that for which p = |V (G)|; hence, for a trivial partial
coloring, every vertex is its own color class. Given a partial coloring ¢ = (C1,---,Cp),
we define matrix D(¢) = (d;;) and function Q(¢) by

Q(¢) = max (|Ci| + [N (Cy)])-

1<i<p
For h > 0, we define a graph B(¢, h), on p vertices, by setting vertices 7 and j adjacent
if and only if both d;; > h and dj; > h (0<i,j <p—1).

L We write log n for log, n and log™® n for the minimum 4 such that the ith iteration of log function
applied to n is < 2.

A NEW ALGORITHM FOR MIS 3

If L is a list of items sorted according to a key function f, then a maximal sublist
of L with identical values of the key is called an interval of L. Every sorted list L can
be viewed as the concatenation of its intervals.

A pair (r,s) is lexicographically smaller than another pair (r',s’) if and only if
either r < 7', orr =7r' and s < s'.

2. The algorithm. All parallel algorithms for MIS mentioned above as well as
our algorithm have the same top-level description as the very first algorithm developed
by Karp and Widgerson in [17].

begin
I:={; A=V (GQ);
(x I is an independent set x)
while A # (0 do

begin

C :=FINDSET(A);

I:=TUC;

A:=A—-(CUN(C))
end;

end;

It is not hard to prove that an algorithm with such a structure will have a polylog-
arithmic running time if every application of FINDSET runs in polylogarithmic time
and produces independent set C such that |[CUN(C)| = (| A|/log® | A|) for some fixed
s > 0. Later, we will see that for our version of FINDSET, s = 1.

Informally, FINDSET works as follows. Starting with a trivial partial coloring ¢
of graph H = G[A], it constructs a sequence of partial colorings ¢; (j > 0). For each
j >0, the procedure checks whether

Cok
log k

where k = |A|. If (x) holds, FINDSET outputs the color class C" for which |C’| +
|IN(C")| > ecok/logk; otherwise, it constructs a new partial coloring by decoloring some
of the vertices and uniting some of the color classes. The construction is done by the
procedure REDUCE. The input to REDUCE is a partial coloring ¢ and a matching M
in the complement B of graph B(¢, h) (the selection of h > 0 is specified later). The
matching M supplies a collection of pairs of color classes of ¢. For each pair (C,C"),
either the set C N N(C") or the set N(C) N C' (whichever is smaller) is decolored and
the remaining vertices in C' U C' are declared to be a new color class. The new color
classes obtained in this way, and the old color classes that were not changed, comprise
the set of color classes of the new partial coloring.

A procedure MATCH finds a matching in B(¢, h). It will be seen that the running
time of the whole algorithm depends on the size of the matching delivered by this
procedure as well as on its running time. In the context of our algorithm, each graph
B to which MATCH is applied is such that its complement B contains a quadratic
number O(|V(B)|?) of edges even if the original graph G is sparse. This is our reason
for not using any of the known algorithms for constructing a maximal matching (see
[1], [10], [14], [15], [16], [18], [19], [20]). The subroutine MATCH runs in O(logn) time
on an EREW PRAM with O(n +m) processors. For graphs with a dense compliment,
MATCH constructs a matching of size Q(|V (B)|), which is maximum up to a constant.
On the other hand, it is not necessarily maximal.

(%) Q(e5) >

4 M. GOLDBERG anD T. SPENCER

Our algorithm uses O(n + m) processors; every vertex and every edge of a graph
has a processor associated with it; abusing the language, we identify a vertex or an
edge with the corresponding processor. Each edge has, for each of its endpoints, a
pointer to a record that stores the color of that vertex. If A(v) is the degree of a
vertex v, then there are A(v) records containing the information related to v. Thus,
each edge can access its endpoints independently. An uncolored vertex has its color
set to 0; a vertex that has been deleted by an earlier iteration of the top-level loop
has its color set to —1.

A Pascal-like description of FINDSET is as follows:

function FINDSET (A);
begin
k:=A|; H = G[4];
¢ := trivial coloring of H;
while Q(¢) < cok/logk do
begin
p:= the number of colors of ¢;;
h:=c1k/(plogk);
B := BUILD(¢, h);
M := MATCH(B);
¢ := REDUCE(¢, h, M)

end;
C := a color class with Q(C) > cok/logk;
FINDSET :=C

end;

In the description of FINDSET and MATCH we use two constants, ¢ and c¢i;
their values, which guarantee the necessary performance behavior, are defined in §3.

The function BUILD accepts a partial coloring ¢ and a number h > 0 and con-
structs the auxiliary graph B(¢, h). It does this by computing the values of the d;;
that are nonzero, and then finding out which d;; and dj; are both greater than h.

To calculate the d;;, BUILD first creates a list of records containing, for each
edge, its endpoints and their colors written in increasing order. Next, BUILD sorts
this list lexicographically by color. Each interval of the resulting list consists of the
edges with the endpoints colored by the same pair of colors. Let L;; be the interval
containing the edges whose endpoints are colored ¢ and j. To calculate d;;, BUILD
sorts L;; by the vertex colored j; the number of intervals of this list is the value of d;;.
Similarly, dj; is the number of intervals that result when L;; is sorted by the vertex
colored 1.

To find the intervals of a sorted list, every member of the list compares itself
with the element on its right and the element on its left. This indicates the elements
that are the ends of the intervals. Then, every other member assigns itself to the
corresponding interval. This can be done in O(logn) time using the path-doubling
technique of Wyllie [27].

function BUILD(¢, h);
begin
L := alist of the edges with the colors of their endpoints
listed in increasing order;
sort L lexicographically by the colors of the endpoints;
determine the set of intervals of L;

A NEW ALGORITHM FOR MIS 5

for each interval L;; in parallel do

(* the subscripts 7, j are the corresponding colors *)

begin
sort L;; in increasing order of the endpoint colored by j;
set d;; to be the number of intervals of L;;;
sort L;; in order of the endpoint colored by 4;
set dj; to be the number of intervals of L;;;
if di; > h and dj; > h then

include (i, j) in E(B(®,h));
end;
end;

All sorts are done using Cole’s algorithm [5]; thus, BUILD runs in O(logn) time
on an EREW PRAM with a linear number of processors.

The idea of the procedure MATCH is as follows. Let the vertices of B be numbered
by 0,1,---,p — 1, where p = |V (B)|, let K, be the complete graph on V(B), and let
x = pif pis odd, and x = p—1if pis even. It is well known that there is a partition of
the edges of K, into x matchings Py, Py, - - -, Py_1, each of size exactly |p/2|. We give
an explicit construction of such a partition in terms of the function “index” defined
below, where the edge (4, j) is assigned to the matching Pipgexi,j)- If the total number
of edges of B is quadratic, the set M; of the maximum size contains Q(p) edges. For
the same ¢, the size of M; is a minimum. When such a ¢ is found, we can check every
of |p/2] pairs of P, to compute M.

function index(4, ,p);
begin
if p is odd then
index := (i + j) mod p
else
if j =p—1 then
index := 2i mod (p — 1)
else
index := index(i, j,p — 1)
end;

function MATCH(B);
begin
M :=0; p:= [V(B);
if p is even then y :=p — 1 else x := p;
for each edge (i,7) of B in parallel
compute index(i, J, p);
for [:= 0 to x — 1 in parallel compute g(I)
the number of edges (7,) with index(i, j, p) = I;
find ¢ such that g(t) is minimized;
compute M := P, N B;
remove all but [p(e; — ¢p)/(2¢1)] edges from M;
end;

Computing the number of the edges with a given index is done by sorting the
edges of B according to their indices and then determining the lengths of all intervals.
Finding a t for which the corresponding color class P; contains the fewest number

6 M. GOLDBERG anD T. SPENCER

of edges can be done using Valiant’s algorithm [24]. To determine P; N B, MATCH
appends a list of edges in P, N B to the list of the edges in P;. Then, the list is sorted
lexicographically to bring the duplicates next to each other. If a pair (a,b) occurs in
the list twice, then both occurrences are removed. The remaining pairs are a list of
the edges in BN P,.

It turns out that the analysis is simpler if the matching returned by MATCH has
a known size. We will show in §3 that, for our choice of ¢y and ¢, the size of BN P,
is at least p(c; — co)/(2¢1). Thus, after removing a few edges from B N P;, MATCH
returns a matching with exactly [p(c; — co)/(2¢1)] edges. It is easy to see that every
application of MATCH is executed on a linear number of processors in O(logn) time.

The matching M calculated by MATCH is used by REDUCE to construct a new
partial coloring with a smaller number of color classes. In particular, REDUCE does
the following three things:

(1) Decides which vertices are to be decolored;
(2) Merges the appropriate color classes; and
(3) Renumbers the color classes.

It is easy to implement REDUCE so that it runs in O(logn) time on a CRCW
PRAM with a linear number of processors, which also yields an implementation on
an EREW PRAM running in O(log? n) time. A more elaborate technique is needed
to implement REDUCE so that it runs in O(logn) time on an EREW PRAM.

Intuitively, each vertex of color I needs to know which color, if any, is matched to [
by M. We use a routine called BROADCAST to deliver this information. Specifically,
BROADCAST is given a list L of ordered pairs of the form (I;,m;), where [; is a
color, m; is a “message,” and each color appears on the list at most once. The task
of BROADCAST is to label each vertex of color I; with the message m;. For this
purpose, BROADCAST first creates a new list L' with one record for each colored
vertex. Each record is of the form (I,,v), where [, is the color of vertex v. Then, it
sorts the concatenation of L' and L by color, that is by first coordinate; if two pairs
from L and L', respectively, have the color, the pair from L is declared to be smaller.
Next, BROADCAST uses the standard path-doubling technique to give m; to each
element of the list with color ;. Finally, each element from L’ that received a message
labels its vertex with the message. Clearly, BROADCAST runs in O(logn) time and
uses O(n + m) processors.

In the context of REDUCE, the procedure BROADCAST is used to decide, for
each edge (i,j) € M, whether to decolor vertices with color ¢ or with color j. Recall
that the vertices of color j are decolored if and only if d;; < dj;. Both values d;
and dj; can either be obtained from BUILD, or REDUCE can calculate them itself.
Having obtained these values, REDUCE orients each edge (¢,) of M so that d;; < djs;
hence the color of the vertices to be decolored is listed second. Then, REDUCE calls
BROADCAST(M) to tell which vertices need to change color. If a vertex v receives
a color / as a message, it checks to see if it has a neighbor of color [. If it does, it
decolors itself; otherwise it changes its color to .

Finally, REDUCE renumbers the surviving color classes by consecutive integers,
starting with zero. This is necessary for the next application of MATCH to be done
correctly. To do this, it sorts all the vertices by color and removes duplicates. The
result is a list of all the colors in use. This list is then numbered, and the position of
each color in the list is broadcast. Each colored vertex then changes its color to the
color it receives.

A Pascal-like description of REDUCE is as follows:

A NEW ALGORITHM FOR MIS 7

function REDUCE(¢, h, M);
begin

orient each edge (¢,7) of M so that d;; < dj;;

BROADCAST(M);

for each vertex v that received a color, [(v), in parallel do

if v is adjacent to a vertex of color I(v)
then decolor v
else change the color of v to I(v);

sort the vertices by their (new) colors;

number the colors in use;

make L, a list (I,n(l)), where n(l) is the number of /;

BROADCAST(L);

each colored vertex changes its color to the message it received;
end;

3. Analysis. Our goal is to show that using O(n+m) processors and in O(log® n)
time FINDSET constructs an independent set C such that |C U N(C)| > cok/logk,
where |A| = k and ¢g is a constant. Once this is established, it is easy to see that
FINDSET is called O(log”n) times and that the running time of the algorithm is
O(log" n).

First, let us estimate the size of the set that MATCH returns. Recall that
FINDSET calls MATCH on the graph B(¢,h). Let ¢; be the value of ¢ at the
beginning of the ith iteration of the body of the while loop in FINDSET, and let p;
be the number of color classes in ¢;. If the body of the loop is executed then

Cok

Q) < log k'

Let A; be the maximum degree of a vertex in B(¢;, h;), where h; = c1k/(p;logk). If
the degree, in B, of a vertex corresponding to a color class C is A;, then N(C) must
contain at least A;h; vertices. On the other hand, |[N(C)| < ¢ok/log k. Therefore,

) Clk Cok
‘pilogk " logk’

C
and A; < —Op,-.
C1

This implies that the degree of every vertex of B(¢;, h;), is at least p;(c1 — co)/cu,
yielding

BB, h))| 2“5 pl.
C1

Recall that MATCH divides the edges of B(¢;, h;) into at most p classes and finds
P, N B, the class with the most edges. Thus,

1 —C

P,NB|> ;
|t |_ 201 Di,

and MATCH can discard edges from this set to return a matching M; with

C1 — Cg

M;| = i
| z| 2, Di

8 M. GOLDBERG anD T. SPENCER

When REDUCE creates ¢;41, it decolors at most

|M,| 'Clk _ (Cl - Co)k
pilogk 2logk

vertices and reduces the number of color classes to ap;, where a = (¢1 + ¢g)/(2¢1).
The initial partial coloring ¢¢ has k color classes with a total of k vertices. Thus the
while loop in FINDSET will be executed at most —logk/loga times. If none of the
partial colorings ¢; with more than one color class satisfies

Cok
Q) > Togk’

then FINDSET decolors at most

logk (c1 —co)k
—loga 2logk

vertices while reducing the number of color classes to one. Thus, the size of the only
color class of the last coloring is at least

_Cl—CO k logk _ _Cl—CO k
2 logk (—loga) 2 (=loga)’

Qo=k

If we choose ¢g and ¢; such that

C1 —Co
261(1 — C()) ’

2
—loga = log (Cl jlc()) >(1+e¢)

for some fixed € > 0, then
€ Cok

0> 1+e€ > logk’

for sufficiently large k. The criterion will be satisfied, for example, if ¢4 = 1 and
Co = 1/3

Since every application of the while loop is executed in O(logn) time and the
number of times the loop is iterated is O(logn), we have that the running time of
FIND48ET is O(log®n). Tt implies that the running time of the whole algorithm is
O(log® n).

Q

4. Open problems. This work addresses several interesting unresolved ques-
tions, including the following:

(1) The processor-time product for our algorithm is O((n +m)log* n). We would
like to reduce the total amount of work that our algorithm does by reducing the
number of processors it requires while not increasing its running time. We note that
the technique developed by Miller and Reif in [20] does not seem to apply to this
algorithm.

(2) There is a trivial sequential algorithm that colors a given graph G in at most
A + 1 colors, where A is the maximal degree of a vertex in G. Using the standard
reduction of VC to MIS, we get an A/C-algorithm for A + 1-coloring which is run on
O(nA? + mA) processors. However, no efficient A'C-algorithm for A + 1-coloring is
known.

A NEW ALGORITHM FOR MIS 9

(3) In [23] Tdran proved that every graph with n vertices and m edges contains
an independent set of size > n?/(2m + n). Such a set can be constructed by a linear
sequential algorithm [13]. Can it be constructed by an N C-algorithm using a linear
number of processors? So far, the best approximation is achieved by an algorithm
COLOR from [12]. It produces a coloring such that the size of at least one color class
is n/2 if m < n/4, and n?/(32m) otherwise. The algorithm uses a linear number of
processors and runs in O(log® n) time.

Acknowledgment. We are grateful to both referees for their helpful comments
on the first version of this paper.

REFERENCES

[1] A. AGGARWAL AND R. ANDERSON, A random NC-algorithm for depth first search, in Proc. 19th
Annual ACM Symposium on Theory of Computing, 1987, pp. 325-334.
(2] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algo-
rithms, Addison—Wesley, 1974.
[3] M. AjTal, J. KoMLOs, E. SZEMEREDI, An O(nlogn) sorting network, Combinatorica, 3 (1983),
pp. 1-19.
[4] N. ALoN, L. BaBAI, AND A. ITAl, A fast and simple randomized parallel algorithm for the
mazimal independent set problem, J. Algorithms, 7 (1986), pp. 567-583.
[5] R. COLE, Parallel merge sort, in Proc. 27th Annual IEEE Symposium on Foundations of Com-
puter Science, 1986, pp. 511-516.
6] R. CoLE AND U. VISHKIN, Deterministic coin tossing and accelerating cascades: micro and
macro techniques for designing parallel algorithms, in Proc. 18th Annual ACM Symposium
on Theory of Computing, 1986, pp. 206-219.
[7] G. CHARTRAND AND L. LESNIAK, Graphs & Digraphs, Wadsworth, 1986.
[8] S. A. Cook, Tazonomy of problems with fast parallel algorithms, Inform. and Control, 64 (1985),
pp. 2-22.
[9] Z. GALIL, Optimal parallel algorithms for string matching, in Proc. 16th Annual ACM Sympo-
sium on Theory of Computing, 1984, pp. 240-248.
[10] Z. GALIL AND V. PAN, Improved processor bound for algebraic and combinatorial problems in
RNC, in Proc. 26th Annual IEEE Symposium on Foundations of Computer Science, 1985,
pp. 490-495.
[11] A. GOLDBERG, S. PLOTKIN, AND G. SHANNON, Parallel Symmetry—Breaking in Sparse Graphs,
in Proc. 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 315-324.
[12] M. GOLDBERG, Parallel algorithms for three graph problems, Congr. Numer., 54 (1986), pp.
111-121.
[13] M. GOLDBERG, S. LATH, AND J. ROBERTS, Heuristics for the graph bisection problem, Tech.
Report TR 86-8, Department of Computer Science, Rensselaer Polytechnic Institute, Troy,
NY.
[14] A. ISRAELI AND A. ITAL A fast and simple randomized parallel algorithm for mazimal matching,
Computer Science Department, Technion, Haifa, Israel, 1984.
[15] A. ISRAELI AND Y. SHILOACH, An improved parallel algorithm for mazimal matching, Inform.
Process. Lett., 22 (1986), pp. 57-60.
[16] R. M. KArp, E. UPFAL, AND A. WIDGERSON, Constructing a perfect matching is in random
NC, in Proc. 17th Annual ACM Symposium on Theory of Computing, 1985, pp. 22-32.
[17] R. M. KARP AND A. WIDGERSON, A fast parallel algorithm for the mazimal independent set
problem, Proc. 16th Annual ACM Symposium on Theory of Computing, 1984, pp. 266-272.
[18] G. LEv, N. PIPPENGER, AND L. VALIANT, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. on Comp., 30 (1981), pp. 93-100.
[19] M. LuBy, A simple parallel algorithm for the mazimal independent set problem, SIAM J.
Comput., 15 (1986), pp. 1036-1053.
[20] G. L. MiLLER AND J. H. REIF, Parallel tree contraction and its applications, in Proc. 26th
Annual IEEE Symposium on Foundations of Computer Science, 1985, pp. 478-489.
[21] K. MULMULEY, U. V. VAZIRANI, V. V. VAZIRANI, Matching is as easy as matric inversion, in
Proc. 19th Annual ACM Symposium on Theory of Computing, 1987, pp. 345-354.
[22] N. PIPPENGER, On Simultaneous Resource Bounds, in Proc. 20th Annual IEEE Symposium on
Foundations of Computer Science, 1979, pp. 307-311.

10 M. GOLDBERG anD T. SPENCER

[23] P. TORAN, On the theory of graphs, Colloq. Math., 3 (1954), pp. 19-30.

[24] L. G. VALIANT, Parallelism in comparison problems, SIAM J. Comput., 4 (1975), pp. 348-355.

5] , Parallel computation, in Proc. 7th IBM Symposium on Mathematical Foundations of

Computer Science, 1982.

[26] U. VISHKIN, Synchronous parallel computation—a survey, Preprint, Courant Institute, New York
University, NY, 1983.

[27] J. C. WYLLIE, The complezity of parallel computations, Ph. D. thesis, Department of Computer
Science, Cornell University, Ithaca, NY, 1979.

IS

