Общие сведения о микроконтроллерах

 

Калиниченко С.Н., ДонНТУ,каф. ЭВМ

Руководитель: Святный В.А., проф. каф. ЭВМ

snkalinichenko@hotbox.ru

 

Abstract

Kalinichenko S. N. The general data about microcontrollers.

            During miniaturization functional blocks which in usual computer systems were placed in separate integrated circuits (the processor, memory, ports of input/output, timers, controllers of interrupts and so forth) began to unite on one crystal. So microcontrollers have appeared. Such approach allowed to reduce considerably not only the sizes of the built - in systems, but also complexity and terms of their development, and consequently also cost. Reduction of number of components caused increase of reliability of ready devices. In some cases for construction of the high-grade built - in system enough one microcircuit - the microcontroller.

 

Введение

            В процессе миниатюризации функциональные блоки, которые в обычных компьютерных  системах размещались в отдельных интегральных схемах (процессор, память, порты ввода \ вывода, таймеры, контроллеры прерываний и пр.) стали объединять на одном кристалле. Так появились микроконтроллеры или, как их принято называть в отечественной литературе,  однокристальные ЭВМ. Такой подход позволил значительно сократить не только размеры встроенных систем, но также сложность и сроки их разработки, а следовательно и стоимость. Сокращение числа компонентов повлекло за собой повышение надежности готовых устройств. В некоторых случаях для построения полноценной встроенной системы достаточно одной микросхемы – микроконтроллера.

  Основные требования, которые потребители предъявляют к управляющим блокам приборов (микроконтроллерам) можно сформулировать следующим образом:

В отличие от универсальных компьютеров к управляющим контроллерам, как правило, не предъявляются высокие требования к производительности и программной совместимости.

Выполнение всех этих довольно противоречивых условий одновременно затруднительно, поэтому развитие и совершенствование техники пошло по пути специализации и в настоящее время количество различных моделей управляющих микроконтроллеров чрезвычайно велико.

 

Классификация и структура микроконтроллеров

В настоящее время выпускается целый ряд типов МК. Все эти приборы можно условно разделить на три основных класса:

Наиболее распространенным представителем семейства МК являются 8-разрядные приборы, широко используемые в промышленности, бытовой и компьютерной технике. Они прошли в своем развитии путь от простейших приборов с относительно слаборазвитой периферией до современных многофункциональных контроллеров, обеспечивающих реализацию сложных алгоритмов управления в реальном масштабе времени. Причиной жизнеспособности 8-разрядных МК является использование их для управления реальными объектами, где применяются, в основном, алгоритмы с преобладанием логических операций, скорость обработки которых практически не зависит от разрядности процессора.

Росту популярности 8-разрядных МК способствует постоянное расширение номенклатуры изделий, выпускаемых такими известными фирмами, как Motorola, Microchip, Intel, Zilog, Atmel и многими другими. Современные 8-разрядные МК обладают, как правило, рядом отличительных признаков. Перечислим основные из них:

При модульном принципе построения все МК одного семейства содержат процессорное ядро, одинаковое для всех МК данного семейства, и изменяемый функциональный блок, который отличает МК разных моделей. Структура модульного МК приведена на рис.1.

Модульная организация МК.

Рис.1. Модульная организация микроконтроллера.

 

Процессорное ядро включает в себя:

Изменяемый функциональный блок включает в себя модули памяти различного типа и объема, порты ввода/вывода, модули тактовых генераторов (Г), таймеры. В относительно простых МК модуль обработки прерываний входит в состав процессорного ядра. В более сложных МК он представляет собой отдельный модуль с развитыми возможностями. В состав изменяемого функционального блока могут входить и такие дополнительные модули как компараторы напряжения, аналого-цифровые преобразователи (АЦП) и другие. Каждый модуль проектируется для работы в составе МК с учетом протокола ВКМ. Данный подход позволяет создавать разнообразные по структуре МК в пределах одного семейства.

Процессорное ядро микроконтроллера

Структура процессорного ядра МК

Основными характеристиками, определяющими производительность процессорного ядра   МК, являются:

С точки зрения системы команд и способов адресации операндов процессорное ядро современных 8-разрядных МК реализует один из двух принципов построения процессоров:

CISC-процессоры выполняют большой набор команд с развитыми возможностями адресации, давая разработчику возможность выбрать наиболее подходящую команду для выполнения необходимой операции. В применении к 8-разрядным МК процессор с CISC-архитектурой может иметь однобайтовый, двухбайтовый и трехбайтовый (редко четырехбайтовый) формат команд. Время выполнения команды может составлять от 1 до 12 циклов. К МК с CISC-архитектурой относятся МК фирмы Intel с ядром MCS-51, которые поддерживаются в настоящее время целым рядом производителей, МК семейств НС05, НС08 и НС11 фирмы Motorola и ряд других.

В процессорах с RISC-архитектурой набор исполняемых команд сокращен до минимума. Для реализации более сложных операций приходится комбинировать команды. При этом все команды имеют формат фиксированной длины (например, 12, 14 или 16 бит), выборка команды из памяти и ее исполнение осуществляется за один цикл (такт) синхронизации. Система команд RISC-процессора предполагает возможность равноправного использования всех регистров процессора. Это обеспечивает дополнительную гибкость при выполнении ряда операций. К МК с RISC-процессором относятся МК AVR фирмы Atmel, МК PIC16 и PIC17 фирмы Microchip и другие.

На первый взгляд, МК с RISC-процессором должны иметь более высокую производительность по сравнению с CISC МК при одной и той же тактовой частоте внутренней магистрали. Однако на практике вопрос о производительности более сложен и неоднозначен.

С точки зрения организации процессов выборки и исполнения команды в современных 8-разрядных МК применяется одна из двух уже упоминавшихся архитектур МПС: фон-неймановская (принстонская) или гарвардская.

Основной особенностью фон-неймановской архитектуры является использование общей памяти для хранения программ и данных, как показано на рис.2.

Структура МПС с фон-неймановской архитектурой.
Рис. 2.  Структура МПС с фон-неймановской архитектурой.

 

Основное преимущество архитектуры Фон-Неймана – упрощение устройства МПС, так как реализуется обращение только к одной общей памяти. Кроме того, использование единой области памяти позволяло оперативно перераспределять ресурсы между областями программ и данных, что существенно повышало гибкость МПС с точки зрения разработчика программного обеспечения. Размещение стека в общей памяти облегчало доступ к его содержимому. Неслучайно поэтому фон-неймановская архитектура стала основной архитектурой универсальных компьютеров, включая персональные компьютеры.

Основной особенностью гарвардской архитектуры является использование раздельных адресных пространств для хранения команд и данных, как показано на рис.3.

Структура МПС с гарвардской архитектурой.
Рис.3. Структура МПС с гарвардской архитектурой.

 

Гарвардская архитектура почти не использовалась до конца 70-х годов, пока производители МК не поняли, что она дает определенные преимущества разработчикам автономных систем управления.

Дело в том, что, судя по опыту использования МПС для управления различными объектами, для реализации большинства алгоритмов управления такие преимущества фон-неймановской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных   МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации операндов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды. Этот метод реализации операций позволяет обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

Большинство производителей современных 8-разрядных МК используют гарвардскую архитектуру. Однако гарвардская архитектура является недостаточно гибкой для реализации некоторых программных процедур. Поэтому сравнение МК, выполненных по разным архитектурам, следует проводить применительно к конретному приложению.

 

В настоящее время наиболее яркими представителями микроконтроллеров SISC и RISC, имеющих соответственно фон-неймановскую и гарвардскую архитектуры являются микроконтроллеры i8051 и AVR – микроконтроллеры фирмы Atmel, которые по ряду характеристик превзошли очень известные PIC – микроконтроллеры. Поэтому рассмотрим организацию и устройство вышеперечисленных представителей.

 

Структурная организация микроконтроллера i8051

Общие характеристики

Микроконтроллер семейства 8051 имеют следующие аппаратные особенности:

·        внутреннее ОЗУ объемом 128 байт;

·        четыре двунаправленных побитно настраиваемых восьмиразрядных порта ввода-вывода;

·        два 16-разрядных таймера-счетчика;

·        встроенный тактовый генератор;

·        адресация 64 КБайт памяти программ и 64 Кбайт памяти данных;

·        две линии запросов на прерывание от внешних устройств;

·        интерфейс для последовательного обмена информацией с другими микроконтроллерами или персональными компьютерами.

Микроконтроллер 8751 снабжен УФ ПЗУ объемом 4 Кбайт.

Функциональная схема микроконтроллера семейства 8051.

Микроконтроллер выполнен на основе высокоуровневой n-МОП технологии. Через четыре программируемых параллельных порта ввода/вывода и один последовательный порт микроконтроллер взаимодействует с внешними устройствами. Основу структурной схемы образует внутренняя двунаправленная 8-битная шина, которая связывает между собой основные узлы и устройства микроконтроллера: резидентную память программ (RPM), резидентную память данных (RDM), арифметико-логическое устройство (ALU), блок регистров специальных функций, устройство управления (CU) и порты ввода/вывода (P0-P3).

Арифметико-логическое устройство

8-битное арифметико-логическое устройство (ALU) может выполнять арифметические операции сложения, вычитания, умножения и деления; логические операции И, ИЛИ, исключающее ИЛИ, а также операции циклического сдвига, сброса, инвертирования и т.п. К входам подключены программно-недоступные регистры T1 и T2, предназначенные для временного хранения операндов, схема десятичной коррекции (DCU) и схема формирования признаков результата операции (PSW).

Простейшая операция сложения используется в ALU для инкрементирования содержимого регистров, продвижения регистра-указателя данных (RAR) и автоматического вычисления следующего адреса резидентной памяти программ. Простейшая операция вычитания используется в ALU для декрементирования регистров и сравнения переменных.

Простейшие операции автоматически образуют “тандемы” для выполнения таких операций, как, например, инкрементирование 16-битных регистровых пар. В ALU реализуется механизм каскадного выполнения простейших операций для реализации сложных команд. Так, например, при выполнении одной из команд условной передачи управления по результату сравнения в ALU трижды инкрементируется счётчик команд (PC), дважды производится чтение из RDM, выполняется арифметическое сравнение двух переменных, формируется 16-битный адрес перехода и принимается решение о том, делать или не делать переход по программе. Все перечисленные операции выполняются всего лишь за 2 мкс.

Важной особенностью ALU является его способность оперировать не только байтами, но и битами. Отдельные программно-доступные биты могут быть установлены, сброшены, инвертированы, переданы, проверены и использованы в логических операциях. Эта способность достаточно важна, поскольку для управления объектами часто применяются алгоритмы, содержащие операции над входными и выходными булевыми переменными, реализация которых средствами обычных микропроцессоров сопряжена с определенными трудностями.

Таким образом, ALU может оперировать четырьмя типами информационных объектов: булевыми (1 бит), цифровыми (4 бита), байтными (8 бит) и адресными (16 бит). В ALU выполняется 51 различная операция пересылки или преобразования этих данных. Так как используется 11 режимов адресации (7 для данных и 4 для адресов), то путем комбинирования операции и режима адресации базовое число команд 111 расширяется до 255 из 256 возможных при однобайтном коде операции.

 

 

Структурная организацияAVR -  микроконтроллера

 

AVR функционируют в широком диапазоне питающих напряжений от 1,8 до 6,0 Вольт. Энергопотребление в активном режиме зависит от величины напряжения питания, от частоты, на которой работает AVR и от конкретного типа микроконтроллера. Подробные спецификации обычно приводятся в оригинальной технической документации Atmel Corp. Температурные диапазоны работы микроконтроллеров AVR - коммерческий (0С...70С) и индустриальный (-40С...+85С). К сожалению, корпорация Atmel не выпускает и не планирует выпускать AVR для работы в автомобильном (-40С...+125С) и военном (-55С...+125С) температурных диапазонах.

С точки зрения программиста AVR представляет собой 8-разрядный RISC микроконтроллер, имеющий быстрый Гарвардский процессор, память программ, память данных, порты ввода/вывода и различные интерфейсные схемы. Гарвардская архитектура AVR реализует полное логическое и физическое разделение не только адресных пространств, но и информационных шин для обращения к памяти программ и к памяти данных, причем способы адресации и доступа к этим массивам памяти также различны. Подобное построение уже ближе к структуре цифровых сигнальных процессоров и обеспечивает существенное повышение производительности. Центральный процессор работает одновременно как с памятью программ, так и с памятью данных; разрядность шины памяти программ расширена до 16 бит.

Следующим шагом на пути увеличения быстродействия AVR является использование технологии конвейеризации, вследствие чего цикл "выборка - исполнение" команды заметно сокращен. Например, у микроконтроллеров семейства MCS51 короткая команда выполняется за 12 тактов генератора (1 машинный цикл), в течение которого процессор последовательно считывает код операции и исполняет ее. В PIC-контроллерах фирмы Microchip, где уже реализован конвейер, короткая команда выполняется в течение 8 периодов тактовой частоты (2 машинных цикла). За это время последовательно дешифрируется и считывается код операции, исполняется команда, фиксируется результат и одновременно считывается код следующей операции (одноуровневый конвейер). Поэтому в общем потоке команд одна короткая команда реализуется за 4 периода тактовой частоты или за один машинный цикл. В микроконтроллерах AVR тоже используется одноуровневый конвейер при обращении к памяти программ и короткая команда в общем потоке выполняется, как и в PIC-контроллерах, за один машинный цикл. Главное же отличие состоит в том, что этот цикл у AVR составляет всего один период тактовой частоты. Для сравнения, на рис. 3 приведены временные диаграммы при выполнении типовой команды для различных микроконтроллерных платформ.

Следующая отличительная черта архитектуры микроконтроллеров AVR - регистровый файл быстрого доступа, структурная схема которого показана на рис. 4. Каждый из 32-х регистров общего назначения длиной 1 байт непосредственно связан с арифметико-логическим устройством (ALU) процессора. Другими словами, в AVR существует 32 регистра - аккумулятора. Это обстоятельство позволяет в сочетании с конвейерной обработкой выполнять одну операцию в ALU за один машинный цикл. Так, два операнда извлекаются из регистрового файла, выполняется команда и результат записывается обратно в регистровый файл в течение только одного машинного цикла.

Рис.6. Регистровый файл AVR.

Рис.7. Временные диаграммы микропроцессорных платформ.

Шесть из 32-х регистров файла могут использоваться как три 16-разрядных указателя адреса при косвенной адресации данных. Один из этих указателей (Z Pointer) применяется также для доступа к данным, записанным в памяти программ микроконтроллера. Использование трех 16-битных указателей (X, Y и Z Pointers) существенно повышает скорость пересылки данных при работе прикладной программы.

Регистровый файл занимает младшие 32 байта в общем адресном пространстве SRAM AVR. Такое архитектурное решение позволяет получать доступ к быстрой "регистровой" оперативной памяти микроконтроллера двумя путями - непосредственной адресацией в коде команды к любой ячейке и другими способами адресации ячеек SRAM. В технической документации фирмы Atmel это полезное свойство носит название "быстрое контекстное переключение" и является еще одной отличительной особенностью архитектуры AVR, повышающей эффективность работы микроконтроллера и его производительность. Особенно заметно данное преимущество при реализации процедур целочисленной 16-битной арифметики, когда исключаются многократные пересылки между различными ячейками памяти данных при обработке арифметических операндов в ALU.

Система команд AVR весьма развита и насчитывает до 133 различных инструкций. Конкретное количество команд для каждого микроконтроллера того или иного семейства AVR приведено в таблицах 1 - 2. Почти все команды имеют фиксированную длину в одно слово (16 бит), что позволяет в большинстве случаев объединять в одной команде и код операции, и операнд(ы). Лишь немногие команды имеют размер в 2 слова (32 бит) и относятся к группе команд вызова процедуры CALL, длинных переходов в пределах всего адресного пространства JMP, возврата из подпрограмм RET и команд работы с памятью программ LPM. Различают пять групп команд AVR: условного ветвления, безусловного ветвления, арифметические и логические операции, команды пересылки данных, команды работы с битами. В последних версиях кристаллов AVR семейства "mega" реализована функция аппаратного умножения, что придает новым микроконтроллерам еще больше привлекательности с точки зрения разработчика.

По разнообразию и количеству реализованных инструкций AVR больше похожи на CISC, чем на RISC процессоры. Например, у PIC-контроллеров система команд насчитывает до 75 различных инструкций, а у MCS51 она составляет 111. В целом, прогрессивная RISC архитектура AVR в сочетании с наличием регистрового файла и расширенной системы команд позволяет в короткие сроки создавать работоспособные программы с эффективным кодом как по компактности реализации, так и по скорости выполнения.

Заключение

            В данной работе приведена общая информация о микроконтроллерах, их структуре и организации. Приведено краткое описание архитектуры микроконтроллеров MCS-51 фирмы Intel и AVR – микроконтроллеров фирмы Atmel. Хотя статья носит обзорный характер, но она будет полезна начинающим в познавательном плане.

           

           

Литература

 

1. Андреев Д.В. "Программирование микроконтроллеров MCS-51", учебное пособие - Ульяновск, 2000г.

 

2. Основы микропроцессорной техники. – Статья.

Источник - http://www.intuit.ru.

 

3. Микроконтроллеры семейства MCS-51

Источник - http://microcon.euro.ru/app/books/mcs51.pdf

 

4. AVR - микроконтроллеры: очередной этап на пути развития Статья Кривченко И.В. журнал "Компоненты и технологии" N3, 2002г.