

Web Services Performance:
Comparing Java 2TM Enterprise Edition (J2EETM
platform) and the Microsoft® .NET Framework

A Response to Sun Microsystem’s Benchmark

Microsoft Corporation
July 2004

Introduction
In June 2004, Sun Microsystems published a benchmark showing the relative
performance of Microsoft .NET vs. Sun’s Java Web Service Developer Pack on a series
of simple Web Service tests. The original Sun benchmark report and results can be found
at http://java.sun.com/performance/reference/whitepapers/WS_Test-1_0.pdf . Sun’s report shows Java
outperforming .NET in their WSTest benchmark suite by a wide margin. Sun did not
publish the source code used for the tests when they published the paper (as of July 14th,
2004) for customers to examine the test suite, or to replicate and verify the results at that
time. In their paper, however, they describe the functional specification for the Web
Services tested, the benchmark driver program, the tuning used for both Java and .NET,
and the software/hardware platform used in their testing. This information provided
enough detail for Microsoft to create an implementation of both the Java and .NET
benchmark suites, and to verify the test results using the latest Java platform components
including Sun’s J2SDK 1.4.2.05, Tomcat 5, and JWSDP 1.4. In this paper we describe
the results of testing these re-created implementations.

Microsoft is making all source code available for both our Sun Java JWSDP and .NET
implementations as well as our driver program so that customers and other vendors can
download the code and verify the results on their own hardware platforms (to download
the code, visit http://www.theserverside.net/articles/showarticle.tss?id=SunBenchmarkResponse). In our tests,
we used the recently released Tomcat 5.0 and Sun’s JWSDP version 1.4, slightly newer
releases of these software components than Sun used. We have also created several
additional tests of Web Services on each platform to illustrate the relative performance
when the backend Web Services are required to do more work. These additional tests are
more realistic than Sun’s tests, and show the relative performance when the Web Service
message payload is increased.

Summary of Results
In the four tests that replicate the original Sun tests, we got similar results for the
performance of the Java Web Services as reported by Sun. Our results were slightly
better than Sun’s results for Java, a difference that can be attributed to the fact our
backend server had CPUs that were slightly faster (3 GHz vs. 2.6 GHz) than the CPUs
Sun used. However, we also found that Sun seriously misrepresented .NET performance,
with our results significantly outperforming the .NET results as reported by Sun. In
short, the .NET results are actually more than two to three times better than Sun
reported. In our tests, .NET roughly matched or slightly exceeded J2EE performance for
Sun’s four original tests. Furthermore, in the additional more realistic tests involving
higher Web Service message payloads we found .NET to significantly outperform Java.

Issues with Sun’s Benchmark
Most benchmarks are simplifications of real-world scenarios designed at showing the
performance of one part of an overall system. Sun’s WSTest is such a simplification.
However, the tests performed in Sun’s WSTest suite are so simplistic that we do not

http://java.sun.com/performance/reference/whitepapers/WS_Test-1_0.pdf
http://www.theserverside.net/articles/showarticle.tss?id=SunBenchmarkResponse

believe they represent enough information for customers to make balanced decisions on
the relative performance of .NET and Java for Web Services. For example, Sun’s tests
do not include any database interactions, nor do they include the use of core features of
J2EE such as Enterprise Java Beans. Furthermore, Sun did not use a major commercial
application server platform such as IBM WebSphere or BEA WebLogic in their testing,
choosing instead to use Tomcat, a lightweight application server that does not support
core J2EE features such as EJBs. For these reasons, we encourage customers to also read
the more thorough Doculabs Web Service benchmark report, which can be found at
http://www.theserverside.net/articles/content/DoculabsWebServiceScalability/DoculabsWebServiceScalability.pdf . This
benchmark reports the relative performance of .NET and J2EE Web Services when used
against a variety of backend databases, is inclusive of EJB and Java Servlet testing, and
includes results for J2EE on three different application servers, including JBOSS and two
major commercial J2EE application servers.

Notwithstanding these issues, customers should examine the results for .NET in this
report as they are significantly different than Sun’s findings, and also examine the results
for tests involving Web Services that perform more realistic work on the backend, where
.NET significantly outperforms Sun’s JWSDP. Finally, customers can download,
examine and execute the code for the Java implementation and .NET implementation, as
well as the common Java driver program we used in the benchmark to fully replicate the
results and perform further testing.

Test Description
As described by Sun, WSTest “simulates a multi-threaded server program that makes
multiple Web Service calls in parallel. To avoid the effects of other platform components,
the Web Service methods perform no business logic but simply return the parameters that
were passed in.” Sun’s WSTest benchmark and Microsoft’s implementation of WSTest
include the following four Web Services, as described in Sun’s benchmark paper:

• echoVoid – Sends and receives and empty message.
• echoStruct – Sends and receives an array of size listsize, each element is a

structure composed of one element each of an integer, float and string datatype.
• echoList – Sends and receives a linked list of size listsize – each element is a

Struct as defined in echoStruct.
• echoSynthetic – Sends and receives multiple parameters of different types –

string, struct and byte array of size 1K.

Microsoft also extended WSTest to additionally test the following new Web Services that
perform more work on the backend and are hence more realistic:

• echoList with list size 100 – Sends and receives a linked list of 100 elements,
each element is a Struct as defined in echoStruct.

• echoList with list size 200 -- Sends and receives a linked list of 200 elements,
each element is a Struct as defined in echoStruct.

http://www.theserverside.net/articles/content/DoculabsWebServiceScalability/DoculabsWebServiceScalability.pdf

• echoStruct with list size 100 -- Sends and receives an array of size 100, each
element is a structure composed of one element each of an integer, float and string
datatype.

• echoStruct with list size 200 -- Sends and receives an array of size 200, each
element is a structure composed of one element each of an integer, float and string
datatype.

• getOrder – accepts two integers as parameters and creates a customer order
object and returns it to the client. The customer order object simulates a real
order with XML/SOAP data types including structures representing customer
information such as bill to and ship to addresses, an order header, and a randomly
generated number of line items from 1 to 100 per order.

Like the Sun benchmark, the Microsoft implementation of WSTest reports throughput as
the average number of Web Service operations executed per second, as well as response
times as measured at peak throughput. In all cases care was taken to ensure the client
driver was not the bottleneck, and the number of agent threads was enough to saturate
each server so that the numbers reported accurately reflect peak throughput on the
hardware used. We found that a single 2-proc client machine was unable to completely
saturate Web Service host machine for several of the Web Services tested. Without
saturating the server, peak throughput is not achieved, so it is critical to run enough
clients to ensure full saturation of the server. Hence, we used two client machines in our
tests, and properly ensured that the Web Service host machine was just saturated to 100%
CPU load for both the .NET and Java implementations tested. It should be noted that
with two client driver machines in use, we were able to saturate both the Java and .NET
implementations properly to above 97% CPU load.

Test Details
As described by Sun, our implementation of WSTest can be configured with the
following parameters, specified in an initialization file:

Agents – This is the number of client threads and is set to maximize CPU utilization and
system throughput.
RampUp – Time allotted to system warmup.
SteadyState – Time allotted to collecting data.
RampDown – Time allotted for rampdown.
EchoVoidMix - % of operations that are echoVoid
EchoStructMix - % of operations that are echoStruct
EchoListMix - % of operations that are echoList
GetOrderMix - % of operations that are getOrder
EchoSyntheticMix - % of operations that are echoSynthetic
ListSize – size of the list for echoList and echoStruct
NumBytes – size of byte array for echoSynthetic.

To replicate Sun’s testing, no think time is used in the client driver. The throughput is
reported by the clients at the end of the run. When running two clients, throughput is

aggregated across the client machines, and response times if different are averaged across
the clients.

System Configuration
WSTest was run on the following system configuration, with the same hardware and
Windows Server™ 2003 software used for both J2EE and .NET. The common Java
client driver was run on two separate machines than the Web Service. Systems were
connected via a 1GB Ethernet link.

Web Service host machine
Dell Power Edge 2650 2 x 3.06GHz w/ 2GB RAM
Windows Server 2003 Enterprise Edition with .NET 1.1 enabled
J2SE 1.4.2.0.5 SDK (uses 1GB heap)
JWSDP 1.4 with Tomcat 5

Benchmark client driver machines (2)
Unisys 4 x 3.0GHz w/ 8GB RAM
Windows Server 2003 Enterprise Edition
J2SE 1.4.2.05 SDK (uses 1GB heap)
JWSDP 1.4

The Java Web Services Developer Pack Version 1.4 was used for testing the JAX-RPC
implementation. This pack includes Tomcat 5.0 as the Web server. Windows Server
2003 includes .NET 1.1 and IIS 6.0 as the Web server.

WSTest Configuration
For the results reported, WSTest was run with the following parameters set, with the mix
changed to 100% for each of the Web Services tested:

Machines client driver run on
2

Config for each client machine
Agents = 8
RampUp = 300
SteadyState = 300
RampDown = 10
NumBytes = 1024
ListSize = 20, 100 and 200 to test three different message sizes

Windows Tuning
We did not find any of the following tuning parameters to have a material impact on
either the Java or the .NET results. Instead we found the Windows® tuning performed
by Sun below to be completely unnecessary, but we replicated it anyway to be consistent
with Sun’s tests:

Disabling the following services:
Alerter
ClipBook
Computer Browser
DHCP Client
DHCP Server
Fax Service
File Replication
Infrared Monitor
Internet Connection Sharing
Messenger
NetMeeting Remote Desktop Sharing
Network DDE
Network DDE DSDM
NWLink NetBIOS
NWLink IPX/SPX
Print Spooler
TCP/IP NetBIOS Helper Service
Telephony
Telnet
Uninterruptible Power Supply

Setting registry keys
\\HKEY_LOCAL_MACHINE\System\Current_Control_Set\Services\Tcp\parameters:

TcpWindowSize = 0xFFFF
TcpMaxSendFree = 64240

.NET Tuning
The table below shows the .NET tuning applied by Sun and the .NET tuning applied by
Microsoft in our replicated tests.

Key differences:

• We find no impact in changing the Garbage Collection mode for .NET and chose
to leave it at its default setting

• It is unnecessary in this test on a 2-proc machine to increase the number of worker
processes

• If Sun used a .NET client driver program vs. a Java driver program for their tests
(their report does not say), they should have increased MaxNetworkConnections
in machine.config on their client machine. The default setting of 2 throttles the
number of outbound network connections for the client to make Web Service
calls, and should have been set to at least equal the number of client threads being
run. Since we used a common Java driver program for the benchmark, this client-
side setting did not need to be applied in our tests.

Element Tuned Sun’s Setting Microsoft’s Setting
.NET Garbage Collection
Mode

Server Default (User)

IIS Logging Disabled Disabled
Worker Process Recycling Disabled Disabled
Pinging and Rapid Fail
Protection

Disabled Disabled

Number of Kernel Requests Unlimited Unlimited
Number of Worker
Processes

4 1 (default value)

ASP.NET Session State Disabled Disabled
ASP.NET Authentication
Mode

None None

Debug Compilation False False
IIS Web Server
Authentication Mode

Not specified (presumably
default of integrated
Windows Authentication)

Anonymous (integrated
authentication disabled to
match Java Tomcat
authentication behavior)

Java Tuning
We precisely matched Sun’s Java tuning as follows:

1. The following parameters were changed from their default value for Tomcat in
<JWSDP_HOME>\conf\server.xml :

<!-- Disable access log writing
<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
prefix="access_log." suffix=".txt" resolveHosts="false"/>
-->

<!-- Disable Connector lookups of Non-SSL connections
<enableLookups="false"/>
-->

<!-- Set the minimium processors of Non-SSL connections
<minProcessors="8"/>

2. The JVM options for Catalina server in <JWSDP_HOME\jwsdpshared\
bin\launcher.xml were set as follows :

<launch classname="org.apache.catalina.startup.Bootstrap" ... >
<jvmarg value="-server" />
<jvmarg value="-Xms256m" />

<jvmarg value="-Xmx256m" />

3. On the client side, the JVM options were changed in
<WSTest_HOME>\Java\src\build.xml :
-Dhttp.maxConnections=256 -Xms300M -Xmx300M

Performance Results
The measured throughput and response times obtained are shown graphically below, with
throughput measured in transactions per second (higher is better) and response times
measured in millseconds (lower is better). In the four simple tests Sun performed, .NET
performed 2-3 times better than Sun reported across the board, beating the Java results in
both the echoStruct and echoList tests even with a small list size of 20 (as Sun tested).
As the list size was increased in these tests, hence increasing the XML SOAP message
size, .NET exceeded Java performance by a wider and wider margin. For example, with
a list size of 100 .NET performed 72% better in the echoList test, while at a list size of
200 .NET performed 82% better than Java. .NET also exceeded Java performance in the
new test GetOrder.

echoVoid Throughput

0

500

1000

1500

2000

2500

3000

Java .NET

TP
S

echoVoid Response Time

0

1

2

3

4

5

6

7

8

9

Java .NET

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
d)

echoStruct listsize 20 Throughput

0

200

400

600

800

1000

1200

1400

Java .NET

TP
S

echoStruct listsize 20 Response Time

11

11.5

12

12.5

13

13.5

14

14.5

Java .NET

R
es

po
ns

e
Ti

m
e

(m
illi

se
co

nd
)

echoStruct listsize 100 Throughput

0

100

200

300

400

500

600

Java .NET

TP
S

echoStruct listsize 100 Response Time

0
5

10
15

20
25
30

35
40

45
50

Java .NET

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
d)

echoStruct listsize 200 Throughput

0

50

100

150

200

250

300

350

Java .NET

TP
S

echoStruct listsize 200 Response Time

0

10

20

30

40

50

60

70

80

90

Java .NET

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
d)

echoList listsize 20 Throughput

0

200

400

600

800

1000

1200

Java .NET

TP
S

echoList listsize 20 Response Time

0

2

4

6

8

10

12

14

16

18

Java .NET

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
d)

echoList listsize 100 Throughput

0

50

100

150

200

250
300

350

400

450

500

Java .NET

TP
S

echoList listsize 100 Response Time

0

10

20

30

40

50

60

70

Java .NET

R
es

po
ns

e
Ti

m
e

(m
illi

se
co

nd
)

echoList listsize 200 Throughput

0

50

100

150

200

250

300

Java .NET

TP
S

echoList listsize 200 Response Time

0

20

40

60

80

100

120

Java .NET

R
es

po
ns

e
Ti

m
e

(m
illi

se
co

nd
)

echoSynthetic Throughput

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Java .NET

TP
S

echoSynthetic Response Time

0

2

4

6

8

10

12

Java .NET

R
es

po
ns

e
Ti

m
e

(m
ill

is
ec

on
d)

getOrder Throughput

0

100

200

300

400

500
600

700

800

900

1000

Java .NET

TP
S

getOrder Response Time

0

5

10

15

20

25

30

Java .NET

R
es

po
ns

e
Ti

m
e

(m
illi

se
co

nd
)

Conclusion
In this paper, we respond to the Sun representation of .NET vs. Java relative Web Service
performance with corrected results for .NET, and expand on Sun’s tests to show relative
.NET vs. J2EE performance for more realistic Web Services that do more work. We
provide all the source code including the .NET implementation, the Java implementation,
and the Java driver program so customers can replicate the results. We believe we have
accurately re-created Sun’s original tests given that the Java results we achieve for Sun’s
four original tests very closely match Sun’s reported results when taking into account the
slightly faster server hardware we used in our testing (3 GHz vs. 2.6 GHz CPUs).
However, we find the .NET results to be 2-3 times better than Sun reports. Finally, we
find .NET to significantly exceed the performance of Sun’s JWSDP 1.4 in tests involving
larger message sizes. We encourage customers to download our benchmark kit and test
the platforms for themselves; and also to examine the more comprehensive Doculabs
@Bench Web Services benchmark which can be downloaded from
http://www.theserverside.net/articles/content/DoculabsWebServiceScalability/DoculabsWebServiceScalability.pdf.

© 2004 Microsoft Corporation. All rights reserved. Microsoft, Windows, and Windows
Server are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. The names of actual companies and products
mentioned herein may be the trademarks of their respective owners.

http://www.theserverside.net/articles/content/DoculabsWebServiceScalability/DoculabsWebServiceScalability.pdf

