
Web Services Performance

Comparing JavaTM 2 Enterprise Edition
(J2EETM platform) and .NET Framework

Sun Microsystems Inc.

June 2004

Introduction

Web services are Web-based enterprise applications that use open, XML-based standards
and transport protocols to exchange data with calling clients. Web services are becoming
the most important technology for communications between disparate applications in
different enterprises. Even within an enterprise, web services are fast becoming a de facto
standard as more applications use XML to communicate and store data.

As web services deployments go mainstream, it is important for organizations to
understand the features and performance of the implementations of this technology in
various product offerings.

In this paper, we consider the performance of web service technologies in the two
primary middleware platforms today: J2EE and .NET. Both, the J2EE platform and .NET
framework offer similar facilities for creating and using web services. We consider a
basic web service method that is called with different types and sizes of arguments in
both platforms and compare its performance.

Summary of Findings

In all the tested cases, the J2EE platform outperformed .NET. We took care to ensure
that the application code used on both platforms are as similar as possible in order to
make an apples-to-apples performance comparison. We highlight the results in the
sections to follow and also provide the reader with the information necessary to conduct
the test independently and confirm the superior web services performance of J2EE
technology.

Test Description

WSTest is a web services test developed at Sun Microsystems. It is designed to measure
the performance of various types of web services calls, which are described below :

• echoVoid – Sends and receives an empty message. This tests the performance of

the web services infrastructure.
• echoStruct – Sends and receives an array of size 20 – each element is a structure

composed of one element each of an integer, float and string data type.
• echoList – Sends and receives a linked list of 20 elements – each element is a

Struct as defined in echoStruct.
• echoSynthetic – Sends and receives multiple parameters of different types –

String, Struct and a byte array of size 1K.

WSTest simulates a multi-threaded server program that makes multiple web services
calls in parallel. To avoid the effects of other platform components, the web service
methods perform no business logic but simply return the parameters that were passed in.

WSTest measures the throughput of a system handling multiple types of web service
requests. The notion of a web service operation here corresponds to a request/response
cycle. WSTest reports the Throughput - Average number of web service operations
executed per second and the Response Time – Average time taken to process a request.
These metrics are reported for each of the 4 types of operations tested.

Test Details

WSTest can be configured using the following parameters, specified in an initialization
file:

• Agents - This is the number of client threads and is set to maximize CPU
utilization and system throughput.

• RampUp - Time allotted for warmup of the system.
• SteadyState - The interval when throughput is measured.
• RampDown - Time allotted for rampdown, completing operations in flight.
• EchoVoidMix - %Mix of operations that are EchoVoid
• EchoStructMix - %Mix of operations that are EchoStruct
• EchoListMix - %Mix of operations that are EchoList
• ListSize – size of list for echoList
• EchoSyntheticMix - %Mix of operations that are EchoSynthetic
• NumBytes – size of byte array for echoSynthetic

WSTest reads these properties at initialization into an in-memory structure that is then
accessed by each thread to initiate an operation as per the defined mix. A new operation
is started as soon as a prior operation is completed (there is no think time). The number of
operations executed and the response time is accumulated during the SteadyState period
and is reported at the end of the run.

System Configuration

WSTest was run on the following system configuration (the same hardware and Windows
operating system was used for both, J2EE and .NET platforms). The client drivers were
run on a different system with the same configuration. Both the systems were directly
connected using a 1GB ethernet link.

• Dell Server 4600
• 2 Intel Xeon cpus at 2.6 GHz (2-way hyper-threaded)
• 2 GB main memory
• Windows Server 2003 Standard Edition
• J2SE 1.4.2 SDK (uses 1 GB heap)
• JWSDP 1.3

The Java Web Services Developer Pack (JWSDP) Version 1.3 was used for testing the
JAX-RPC implementation. The pack includes Tomcat 5.0 as the web server. Windows
Server 2003 includes .NET 1.1 and IIS 6.0 as the web server.

WSTest Configuration

For the test results reported, WSTest was run with the following parameters set in the
initialization file, with the mix changed to 100% for each of the types :

#Agents determines the number of concurrent threads
Agents = 8
#Rampup time for the run in seconds
RampUp = 300
#SteadyState time for the run in seconds
SteadyState = 300
#Rampdown time for the run in seconds
RampDown = 10
#Output directory where the results are generated
OutputDir = ../../results
#Prefix for the output result file
OutputFilePrefix = WSTestReportSummary
%Mix of the different types of web services calls
EchoVoidMix = 100
EchoStructMix = 0
EchoListMix = 0
EchoSyntheticMix = 0
NumBytes = 1024
ListSize = 20

Windows Tuning

For both the J2EE platform and .NET runs, the server was tuned as follows :

• The following services were disabled, as this is a dedicated web server :
Alerter
ClipBook
Computer Browser
DHCP Client
DHCP Server
Fax Service
File Replication
Infrared Monitor
Internet Connection Sharing
Messenger
NetMeeting Remote Desktop Sharing
Network DDE
Network DDE DSDM
NWLink NetBIOS
NWLink IPX/SPX
Print Spooler
TCP/IP NetBIOS Helper Service
Telephony
Telnet
Uninterruptible Power Supply

• The following parameters were changed in
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters
• TcpMaxSendFree - Changed to 0xFFFF, from 5000, to bump the size of the TCP

Header table
• TcpWindowSize - Changed to 64240 (maximum size)

.NET Tuning

• The Garbage Collection mode was modified to run in server mode.

IIS Tuning

• Logging was disabled.

The Application Pool was tuned as follows :
• The worker processes were prevented from being shutdown.
• The number of requests to the kernel request queue was not limited.
• The number of worker processes in the web garden was set to 4.
• Pinging and rapid-fail protection was disabled.

In web.config, the following changes were made for the application's website :
• session state management was disabled.
• authentication mode was set to None.

• Debug for compilation was set to false.

J2EE Tuning

1. The following parameters were changed from their default value for Tomcat in
<JWSDP_HOME>\conf\server.xml :

<!-- Disable access log writing
<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
prefix="access_log." suffix=".txt" resolveHosts="false"/>
-->

<!-- Disable Connector lookups of Non-SSL connections
<enableLookups="false"/>
-->

<!-- Set the minimium processors of Non-SSL connections
<minProcessors="8"/>

2. The JVM options for Catalina server in <JWSDP_HOME\jwsdp-
shared\bin\launcher.xml were set as follows :
<launch classname="org.apache.catalina.startup.Bootstrap" ... >
<jvmarg value="-server" />
<jvmarg value="-Xms256m" />
<jvmarg value="-Xmx256m" />

3. On the client side, the JVM options were changed in
<WSTest_HOME>\Java\src\build.xml :

-Dhttp.maxConnections=256 -Xms300M -Xmx300M

Performance Results

The measured throughput and response times obtained are shown below. In the basic web
services call, echoVoid, and the most complex one, echoSynthetic, JAX-RPC performs
nearly 3 times better than .NET. In the other cases, J2EE technology performs nearly
twice as well as .NET.

Conclusion

Web services are becoming the most important technology for communications between
disparate applications in different enterprises or even within the enterprise itself. The
performance of core SOAP-based web services calls is therefore crucial and must be
taken into consideration when evaluating web services platforms. In this paper, we used
WSTest to compare the performance of the J2EE and Windows .NET platforms when
performing basic web services. Our findings indicate that for almost all meaningful
cases, the JAX-RPC based web services technology of the J2EE platform offers better
performance and scalability than .NET. Moreover, since the J2EE platform is completely
portable, developers can expect to see this top-of-the-line performance on the Linux and
Solaris platforms as well.

Void Struct List Synthetic

0

2

4

6

8

10

12

14

16

18

Avg. Response Time (MilliSeconds)

J2EE

.NET

Void Struct List Synthetic

0

200

400

600

800

1000

1200

1400

1600

1800

Throughput

J2EE

.NET

