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Outline
• Introduction to Synthesis -- Concepts
• Writing Synthesizable Verilog
• Synthesizable State Machines
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What is Synthesis?
• Last time, we defined synthesis tools as any tools that

transforms a design from one format to another

• Most common use of “synthesis” describes tools that
transform designs from hardware description languages
(VHDL/Verilog) into designs that can be fabricated

• This is commonly done through the use of a standard cell
library, which can be viewed as one input to the synthesis
tool

• Tool takes design, standard cell library, and generates an
implementation of the design using only the cells in the
library
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Synthesis
Two-step process

1. Synthesis tool takes HDL description of design and
standard-cell library, generates netlist of standard cells
and connections between them
• Can provide timing requirements to tool as well, and it

will try to generate a netlist that meets those
requirements

2. Place and route tool finds locations for each standard cell
in the netlist, and creates physical wires to implement the
connections
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Writing Synthesizable Verilog/VHDL
• Verilog is a very powerful language, even containing

some of the object-oriented features found in C++/Java
• However, synthesis tools will only do a good job on a

somewhat-structural subset of the language
• Golden rule:  If you can’t envision the hardware behind

your Verilog, the synthesizer won’t be able to either
• Tips:

– Synthesizer ignores delays.  Your design needs to be
race-free and count only on latches for timing

– Synthesizer won’t implement initial blocks.  You need
to provide a reset mechanism

– Define signal widths explicitly, particularly in
assignments
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Verilog Tips 2
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Translation of Verilog Constructs
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Translation of Verilog Constructs
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Translation of Verilog Constructs
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Example of Inferred Latches
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Optimization
• Like compiling programs, generating circuitry that

implements a given line of HDL code is relatively
straightforward
– Most of the work lies in making the generated circuitry

fast/small
• Once the synthesizer has generated an initial netlist for a

design, it applies optimizations
– Logic minimizations
– Transformations of multi-input gates into few-input

gates and vice versa
– Buffer insertion
– Logic re-ordering for timing
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Finite State Machines
• Two classes of finite state machine:

– Moore machine: outputs depend only on current state,
next state depends on current state and inputs

– Mealy machine: outputs and next state depend on both
current state and inputs

• Theory result:  Mealy and Moore machines are
equivalent, meaning that you can implement any desired
FSM with either a Mealy or Moore machine
– Equivalency ignores timing effects
– Moore machines generally have more states than an

equivalent Mealy machine
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Implementing Finite State Machines
• I generally recommend the use of Moore-type machines

– More states, but
– Less timing worries --

• outputs only change in response to clock edges
• timing problems in the FSM can be solved by

making clock cycle longer
• No potential for oscillations

• Often useful to break an FSM down into three pieces
– State vector: latches that hold the current state
– Logic that computes the next state
– Logic that computes the outputs of the FSM
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Mealy Machine Example
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Mealy Machine Example
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Mealy Machine Example
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Mealy Machine Example
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Providing Hints to the Synthesis Tool


