
Lecture 21 ECE 425

Lecture 21 -- Synthesis 1

Lecture 21 ECE 425

Outline
• Introduction to Synthesis -- Concepts
• Writing Synthesizable Verilog
• Synthesizable State Machines

Lecture 21 ECE 425

What is Synthesis?
• Last time, we defined synthesis tools as any tools that

transforms a design from one format to another

• Most common use of “synthesis” describes tools that
transform designs from hardware description languages
(VHDL/Verilog) into designs that can be fabricated

• This is commonly done through the use of a standard cell
library, which can be viewed as one input to the synthesis
tool

• Tool takes design, standard cell library, and generates an
implementation of the design using only the cells in the
library

Lecture 21 ECE 425

Synthesis
Two-step process

1. Synthesis tool takes HDL description of design and
standard-cell library, generates netlist of standard cells
and connections between them
• Can provide timing requirements to tool as well, and it

will try to generate a netlist that meets those
requirements

2. Place and route tool finds locations for each standard cell
in the netlist, and creates physical wires to implement the
connections

Lecture 21 ECE 425

Writing Synthesizable Verilog/VHDL
• Verilog is a very powerful language, even containing

some of the object-oriented features found in C++/Java
• However, synthesis tools will only do a good job on a

somewhat-structural subset of the language
• Golden rule: If you can’t envision the hardware behind

your Verilog, the synthesizer won’t be able to either
• Tips:

– Synthesizer ignores delays. Your design needs to be
race-free and count only on latches for timing

– Synthesizer won’t implement initial blocks. You need
to provide a reset mechanism

– Define signal widths explicitly, particularly in
assignments

Lecture 21 ECE 425

Verilog Tips 2

Lecture 21 ECE 425

Translation of Verilog Constructs

Lecture 21 ECE 425

Translation of Verilog Constructs

Lecture 21 ECE 425

Translation of Verilog Constructs

Lecture 21 ECE 425

Example of Inferred Latches

Lecture 21 ECE 425

Optimization
• Like compiling programs, generating circuitry that

implements a given line of HDL code is relatively
straightforward
– Most of the work lies in making the generated circuitry

fast/small
• Once the synthesizer has generated an initial netlist for a

design, it applies optimizations
– Logic minimizations
– Transformations of multi-input gates into few-input

gates and vice versa
– Buffer insertion
– Logic re-ordering for timing

Lecture 21 ECE 425

Finite State Machines
• Two classes of finite state machine:

– Moore machine: outputs depend only on current state,
next state depends on current state and inputs

– Mealy machine: outputs and next state depend on both
current state and inputs

• Theory result: Mealy and Moore machines are
equivalent, meaning that you can implement any desired
FSM with either a Mealy or Moore machine
– Equivalency ignores timing effects
– Moore machines generally have more states than an

equivalent Mealy machine

Lecture 21 ECE 425

Implementing Finite State Machines
• I generally recommend the use of Moore-type machines

– More states, but
– Less timing worries --

• outputs only change in response to clock edges
• timing problems in the FSM can be solved by

making clock cycle longer
• No potential for oscillations

• Often useful to break an FSM down into three pieces
– State vector: latches that hold the current state
– Logic that computes the next state
– Logic that computes the outputs of the FSM

Lecture 21 ECE 425

Mealy Machine Example

Lecture 21 ECE 425

Mealy Machine Example

Lecture 21 ECE 425

Mealy Machine Example

Lecture 21 ECE 425

Mealy Machine Example

Lecture 21 ECE 425

Providing Hints to the Synthesis Tool

