Экспертные системы (ЭС)

Назначение экспертных систем

В начале восьмидесятых годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление, получившее название "экспертные системы" (ЭС). Цель исследований по ЭС состоит в разработке программ, которые при решении задач, трудных для эксперта–человека, получают результаты, не уступающие по качеству и эффективности решениям, получаемым экспертом. Исследователи в области ЭС для названия своей дисциплины часто используют также термин "инженерия знаний", введенный Е.Фейгенбаумом как "привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов".

Программные средства (ПС), базирующиеся на технологии экспертных систем, или инженерии знаний (в дальнейшем будем использовать их как синонимы), получили значительное распространение в мире. Важность экспертных систем состоит в следующем:

По мнению ведущих специалистов , в недалекой перспективе ЭС найдут следующее применение:

ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач. Неформализованные задачи обычно обладают следующими особенностями:

Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.

Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма).

Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта–человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно–бумажная промышленность, телекоммуникации и связь и др.

Коммерческие успехи к фирмам–разработчикам систем искусственного интеллекта (СИИ) пришли не сразу. На протяжении 1960 — 1985 гг. успехи ИИ касались в основном исследовательских разработок, которые демонстрировали пригодность СИИ для практического использования. Начиная примерно с 1985 г. (в массовом масштабе с 1988 — 1990 гг.), в первую очередь ЭС, а в последние годы системы, воспринимающие естественный язык (ЕЯ–системы), и нейронные сети (НС) стали активно использоваться в коммерческих приложениях.

Следует обратить внимание на то, что некоторые специалисты (как правило, специалисты в программировании, а не в ИИ) продолжают утверждать, что ЭС и СИИ не оправдали возлагавшихся на них ожиданий и умерли. Причины таких заблуждений состоят в том, что эти авторы рассматривали ЭС как альтернативу традиционному программированию, т.е. они исходили из того, что ЭС в одиночестве (в изоляции от других программных средств) полностью решают задачи, стоящие перед заказчиком. Надо отметить, что на заре появления ЭС специфика используемых в них языков, технологии разработки приложений и используемого оборудования (например, Lisp машины) давала основания предполагать, что интеграция ЭС с традиционными, программными системами является сложной и, возможно, невыполнимой задачей при ограничениях, накладываемых реальными приложениями. Однако в настоящее время коммерческие инструментальные средства (ИС) для создания ЭС разрабатываются в полном соответствии с современными технологическими тенденциями традиционного программирования, что снимает проблемы, возникающие при создании интегрированных приложений.

Причины, приведшие СИИ к коммерческому успеху, следующие.

Интегрированность. Разработаны инструментальные средства искусственного интеллекта (ИС ИИ), легко интегрирующиеся с другими информационными технологиями и средствами (с CASE, СУБД, контроллерами, концентраторами данных и т.п.).

Открытость и переносимость. ИС ИИ разрабатываются с соблюдением стандартов, обеспечивающих открытость и переносимость [14].

Использование языков традиционного программирования и рабочих станций. Переход от ИС ИИ, реализованных на языках ИИ (Lisp, Prolog и т.п.), к ИС ИИ, реализованным на языках традиционного программирования (С, C++ и т.п.), упростил обеспечение интегриро-ванности, снизил требования приложений ИИ к быстродействию ЭВМ и объемам оперативной памяти. Использование рабочих станций (вместо ПК) резко увеличило круг приложений, которые могут быть выполнены на ЭВМ с использованием ИС ИИ.

Архитектура клиент-сервер. Разработаны ИС ИИ, поддерживающие распределенные вычисления по архитектуре клиент-сервер, что позволило:снизить стоимость оборудования, используемого в приложениях, децентрализовать приложения, повысить надежность и общую производительность (так как сокращается количество информации, пересылаемой между ЭВМ, и каждый модуль приложения выполняется на адекватном ему оборудовании).

Проблемно/предметно-ориентированные ИС ИИ. Переход от разработок ИС ИИ общего назначения (хотя они не утратили свое значение как средство для создания ориентированных ИС) к проблемно/предметно-ориентированным ИС ИИ [9] обеспечивает: сокращение сроков разработки приложений; увеличение эффективности использования ИС; упрощение и ускорение работы эксперта; повторную используемость информационного и программного обеспечения (объекты,классы,правила,процедуры).

Наверх

Структура экспертных систем

Типичная статическая ЭС состоит из следующих основных компонентов (рис. 1.):

База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.

База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.

Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.

Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.

Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.

Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.

Рисунок 1

В разработке ЭС участвуют представители следующих специальностей:

Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.

Эксперт определяет знания (данные и правила), характеризующие проблемную область, обеспечивает полноту и правильность введенных в ЭС знаний.

Инженер по знаниям помогает эксперту выявить и структурировать знания, необходимые для работы ЭС; осуществляет выбор того ИС, которое наиболее подходит для данной проблемной области, и определяет способ представления знаний в этом ИС; выделяет и программирует (традиционными средствами) стандартные функции (типичные для данной проблемной области), которые будут использоваться в правилах, вводимых экспертом.

Программист разрабатывает ИС (если ИС разрабатывается заново), содержащее в пределе все основные компоненты ЭС, и осуществляет его сопряжение с той средой, в которой оно будет использовано.

Экспертная система работает в двух режимах: режиме приобретения знаний и в режиме решения задачи (называемом также режимом консультации или режимом использования ЭС).

В режиме приобретения знаний общение с ЭС осуществляет (через посредничество инженера по знаниям) эксперт. В этом режиме эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования с данными, характерные для рассматриваемой области.

Отметим, что режиму приобретения знаний в традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода в случае ЭС разработку программ осуществляет не программист, а эксперт (с помощью ЭС), не владеющий программированием.

В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ его получения. Необходимо отметить, что в зависимости от назначения ЭС пользователь может не быть специалистом в данной проблемной области (в этом случае он обращается к ЭС за результатом, не умея получить его сам), или быть специалистом (в этом случае пользователь может сам получить результат, но он обращается к ЭС с целью либо ускорить процесс получения результата, либо возложить на ЭС рутинную работу). В режиме консультации данные о задаче пользователя после обработки их диалоговым компонентом поступают в рабочую память. Решатель на основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ формирует решение задачи. ЭС при решении задачи не только исполняет предписанную последовательность операции, но и предварительно формирует ее. Если реакция системы не понятна пользователю, то он может потребовать объяснения: "Почему система задает тот или иной вопрос?", "как ответ, собираемый системой, получен?"

Структуру, приведенную на рис. 1, называют структурой статической ЭС. ЭС данного типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Первые ЭС, получившие практическое использование, были статическими.

Рисунок 2

На рис. 1.2 показано, что в архитектуру динамической ЭС по сравнению со статической ЭС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.

Подчеркнем, что структура ЭС, представленная на рис. 1 и 2, отражает только компоненты (функции), и многое остается "за кадром".

Наверх

Этапы разработки экспертных систем

Разработка ЭС имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.

Использовать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче. Чтобы разработка ЭС была возможной для данного приложения, необходимо одновременное выполнение по крайней мере следующих требований:

  1. существуют эксперты в данной области, которые решают задачу значительно лучше, чем начинающие специалисты;
  2. эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;
  3. эксперты способны вербализовать (выразить на естественном языке) и объяснить используемые ими методы, в противном случае трудно рассчитывать на то, что знания экспертов будут "извлечены" и вложены в ЭС;
  4. решение задачи требует только рассуждений, а не действий;
  5. задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);
  6. задача хотя и не должна быть выражена в формальном виде, но все же должна относиться к достаточно "понятной" и структурированной области, т.е. должны быть выделены основные понятия, отношения и известные (хотя бы эксперту) способы получения решения задачи;
  7. решение задачи не должно в значительной степени использовать "здравый смысл" (т.е. широкий спектр общих сведений о мире и о способе его функционирования, которые знает и умеет использовать любой нормальный человек), так как подобные знания пока не удается (в достаточном количестве) вложить в системы искусственного интеллекта.

Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:

Приложение соответствует методам ЭС, если решаемая задача обладает совокупностью следующих характеристик:

  1. задача может быть естественным образом решена посредством манипуляции с символами (т.е. с помощью символических рассуждений), а не манипуляций с числами, как принято в математических методах и в традиционном программировании;
  2. задача должна иметь эвристическую, а не алгоритмическую природу, т.е. ее решение должно требовать применения эвристических правил. Задачи, которые могут быть гарантированно решены (с соблюдением заданных ограничений) с помощью некоторых формальных процедур, не подходят для применения ЭС;
  3. задача должна быть достаточно сложна, чтобы оправдать затраты на разработку ЭС. Однако она не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решать;
  4. задача должна быть достаточно узкой, чтобы решаться методами ЭС, и практически значимой.

При разработке ЭС, как правило, используется концепция "быстрого прототипа". Суть этой концепции состоит в том, что разработчики не пытаются сразу построить конечный продукт. На начальном этапе они создают прототип (прототипы) ЭС. Прототипы должны удовлетворять двум противоречивым требованиям: с одной стороны, они должны решать типичные задачи конкретного приложения, а с другой - время и трудоемкость их разработки должны быть весьма незначительны, чтобы можно было максимально запараллелить процесс накопления и отладки знаний (осуществляемый экспертом) с процессом выбора (разработки) программных средств (осуществляемым инженером по знаниям и программистом). Для удовлетворения указанным требованиям, как правило, при создании прототипа используются разнообразные средства, ускоряющие процесс проектирования.

Прототип должен продемонстрировать пригодность методов инженерии знаний для данного приложения. В случае успеха эксперт с помощью инженера по знаниям расширяет знания прототипа о проблемной области. При неудаче может потребоваться разработка нового прототипа или разработчики могут прийти к выводу о непригодности методов ЭС для данного приложения. По мере увеличения знаний прототип может достигнуть такого состояния, когда он успешно решает все задачи данного приложения. Преобразование прототипа ЭС в конечный продукт обычно приводит к перепрограммированию ЭС на языках низкого уровня, обеспечивающих как увеличение быстродействия ЭС, так и уменьшение требуемой памяти. Трудоемкость и время создания ЭС в значительной степени зависят от типа используемого инструментария.

В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть следующих этапов (рис. 3): идентификацию, концептуализацию, формализацию, выполнение, тестирование, опытную эксплуатацию.

Рисунок 3

На этапе идентификации определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.

На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.

На этапе формализации выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.

На этапе выполнения осуществляется наполнение экспертом базы знаний. В связи с тем, что основой ЭС являются знания, данный этап является наиболее важным и наиболее трудоемким этапом разработки ЭС. Процесс приобретения знаний разделяют на извлечение знаний из эксперта, организацию знаний, обеспечивающую эффективную работу системы, и представление знаний в виде, понятном ЭС. Процесс приобретения знаний осуществляется инженером по знаниям на основе анализа деятельности эксперта по решению реальных задач.

Наверх

Интерфейс с конечным пользователем

Система G2 предоставляет разработчику богатые возможности для формирования простого, ясного и выразительного графического интерфейса с пользователем с элементами мультипликации. Предлагаемый инструментарий позволяет наглядно отображать технологические процессы практически неограниченной сложности на разных уровнях абстракции и детализации. Кроме того, графическое отображение взаимосвязей между объектами приложения может напрямую использоваться в декларативных конструкциях языка описания знаний.

RTworks не обладает собственными средствами для отображения текущего состояния управляемого процесса. Разработчик приложения вынужден использовать систему Dataview фирмы VI Corporation, что в значительной степени ограничивает его возможности.

Интерфейс с пользователем TDC Expert ограничен возможностями системы TDC 3000, т.е. взаимодействие с конечным пользователем ограничивается текстовым режимом работы.

Наверх

Представление знаний в ЭС

Первый и основной вопрос, который надо решить при представлении знаний, — это вопрос определения состава знаний, т.е. определение того, "ЧТО ПРЕДСТАВЛЯТЬ" в экспертной системе. Второй вопрос касается того, "КАК ПРЕДСТАВЛЯТЬ  знания. Необходимо отметить, что эти две проблемы не являются независимыми. Действительно, выбранный способ представления может оказаться непригодным в принципе либо неэффективным для выражения некоторых знаний.

По нашему мнению, вопрос "КАК ПРЕДСТАВЛЯТЬ" можно разделить на две в значительной степени независимые задачи: как организовать (структурировать) знания и как представить знания в выбранном формализме.

Стремление выделить организацию знаний в самостоятельную задачу вызвано, в частности, тем, что эта задача возникает для любого языка представления и способы решения этой задачи являются одинаковыми (либо сходными) вне зависимости от используемого формализма.

Итак, в круг вопросов, решаемых при представлении знаний, будем включать следующие:

Состав знаний ЭС определяется следующими факторами:

В соответствии с общей схемой статической экспертной системы (см. рис. 1) для ее функционирования требуются следующие знания:

Зависимость состава знаний от требований пользователя проявляется в следующем:

Состав знаний о языке общения зависит как от языка общения, так и от требуемого уровня понимания.

С учетом архитектуры экспертной системы знания целесообразно делить на интерпретируемые и неинтерпретируемые. К первому типу относятся те знания, которые способен интерпретировать решатель (интерпретатор). Все остальные знания относятся ко второму типу. Решатель не знает их структуры и содержания. Если эти знания используются каким-либо компонентом системы, то он не "осознает" этих знаний. Неинтерпретируемые знания подразделяются на вспомогательные знания, хранящие информацию о лексике и грамматике языка общения, информацию о структуре диалога, и поддерживающие знания. Вспомогательные знания обрабатываются естественно-языковой компонентой, но ход этой обработки решатель не осознает, так как этот этап обработки входных сообщений является вспомогательным для проведения экспертизы. Поддерживающие знания используются при создании системы и при выполнении объяснений. Поддерживающие знания выполняют роль описаний (обоснований) как интерпретируемых знаний, так и действий системы. Поддерживающие знания подразделяются на технологические и семантические. Технологические поддерживающие знания содержат сведения о времени создания описываемых ими знаний, об авторе знаний и т.п. Семантические поддерживающие знания содержат смысловое описание этих знаний. Они содержат информацию о причинах ввода знаний, о назначении знаний, описывают способ использования знаний и получаемый эффект. Поддерживающие знания имеют описательный характер. Интерпретируемые знания можно разделить на предметные знания, управляющие знания и знания о представлении. Знания о представлении содержат информацию о том, каким образом (в каких структурах) в системе представлены интерпретируемые знания.

Предметные знания содержат данные о предметной области и способах преобразования этих данных при решении поставленных задач. Отметим, что по отношению к предметным знаниям знания о представлении и знания об управлении являются метазнаниями ("знания о знаниях"). В предметных знаниях можно выделить описатели и собственно предметные знания. Описатели содержат определенную информацию о предметных знаниях, такую, как коэффициент определенности правил и данных, меры важности и сложности. Собственно предметные знания разбиваются на факты и исполняемые утверждения. Факты определяют возможные значения сущностей и характеристик предметной области. Исполняемые утверждения содержат информацию о том, как можно изменять описание предметной области в ходе решения задач. Говоря другими словами, исполняемые утверждения — это знания, задающие процедуры обработки. Однако мы избегаем использовать термин "процедурные знания", так как хотим подчеркнуть, что эти знания могут быть заданы не только в процедурной, но и в декларативной форме.

Управляющие знания можно разделить на фокусирующие и решающие. Фокусирующие знания описывают, какие знания следует использовать в той или иной ситуации. Обычно фокусирующие знания содержат сведения о наиболее перспективных объектах или правилах, которые целесообразно использовать при проверке соответствующих гипотез. В первом случае внимание фокусируется на элементах рабочей памяти, во втором — на правилах базы знаний. Решающие знания содержат информацию, используемую для выбора способа интерпретации знаний, подходящего к текущей ситуации. Эти знания применяются для выбора стратегий или эвристик, наиболее эффективных для решения данной задачи.

Качественные и количественные показатели экспертной системы могут быть значительно улучшены за счет использования метазнаний, т.е. знаний о знаниях. Метазнания не представляют некоторую единую сущность, они могут применяться для достижения различных целей. Перечислим возможные назначения метазнаний:

  1. метазнания в виде стратегических метаправил используются для выбора релевантных правил ;
  2. метазнания используются для обоснования целесообразности применения правил из области экспертизы;
  3. метаправила используются для обнаружения синтаксических и семантических ошибок в предметных правилах;
  4. метаправила позволяют системе адаптироваться к окружению путем перестройки предметных правил и функций;
  5. метаправила позволяют явно указать возможности и ограничения системы, т.е. определить, что система знает, а что не знает.

Вопросы организации знаний необходимо рассматривать в любом представлении, и их решение в значительной степени не зависит от выбранного способа (модели) представления. Выделим следующие аспекты проблемы организации знаний:

Наверх

Уровни представления и уровни детальности

Для того чтобы экспертная система могла управлять процессом поиска решения, была способна приобретать новые знания и объяснять свои действия, она должна уметь не только использовать свои знания, но и обладать способностью понимать и исследовать их, т.е. экспертная система должна иметь знания о том, как представлены ее знания о проблемной среде. Если знания о проблемной среде назвать знаниями нулевого уровня представления, то первый уровень представления содержит метазнания, т.е. знания о том, как представлены во внутреннем мире системы знания нулевого уровня. Первый уровень содержит знания о том, какие средства используются для представления знаний нулевого уровня. Знания первого уровня играют существенную роль при управлении процессом решения, при приобретении и объяснении действий системы. В связи с тем, что знания первого уровня не содержат ссылок на знания нулевого уровня, знания первого уровня независимы от проблемной среды.

Число уровней представления может быть больше двух. Второй уровень представления содержит сведения о знаниях первого уровня, т.е. знания о представлении базовых понятий первого уровня. Разделение знаний по уровням представления обеспечивает расширение области применимости системы.

Выделение уровней детальности позволяет рассматривать знания с различной степенью подробности. Количество уровней детальности во многом определяется спецификой решаемых задач, объемом знаний и способом их представления. Как правило, выделяется не менее трех уровней детальности, отражающих соответственно общую, логическую и физическую организацию знаний. Введение нескольких уровней детальности обеспечивает дополнительную степень гибкости системы, так как позволяет производить изменения на одном уровне, не затрагивая другие. Изменения на одном уровне детальности могут приводить к дополнительным изменениям на этом же уровне , что оказывается необходимым для обеспечения согласованности структур данных и программ. Однако наличие различных уровней препятствует распространению изменений с одного уровня на другие.

Наверх

Организация знаний в рабочей системе

Рабочая память (РП) экспертных систем предназначена для хранения данных. Данные в рабочей памяти могут быть однородны или разделяются на уровни по типам данных. В последнем случае на каждом уровне рабочей памяти хранятся данные соответствующего типа. Выделение уровней усложняет структуру экспертной системы, но делает систему более эффективной. Например, можно выделить уровень планов, уровень агенды (упорядоченного списка правил, готовых к выполнению) и уровень данных предметной области (уровень решений).

В современных экспертных системах данные в рабочей памяти рассматриваются как изолированные или как связанные. В первом случае рабочая память состоит из множества простых элементов , а во втором mdash; из одного или нескольких (при нескольких уровнях в РП) сложных элементов (например, объектов). При этом сложный элемент соответствует множеству простых, объединенных в единую сущность. Теоретически оба подхода обеспечивают полноту, но использование изолированных элементов в сложных предметных областях приводит к потере эффективности.

Данные в РП в простейшем случае являются константами и (или) переменными. При этом переменные могут трактоваться как характеристики некоторого объекта, а константы - как значения соответствующих характеристик. Если в РП требуется анализировать одновременно несколько различных объектов, описывающих текущую проблемную ситуацию, то необходимо указывать, к каким объектам относятся рассматриваемые характеристики. Одним из способов решения этой задачи является явное указание того, к какому объекту относится характеристика.

Если РП состоит из сложных элементов, то связь между отдельными объектами указывается явно, например заданием семантических отношений. При этом каждый объект может иметь свою внутреннюю структуру. Необходимо отметить, что для ускорения поиска и сопоставления данные в РП могут быть связаны не только логически, но и ассоциативно.

Наверх

Организация знаний в базе данных

Показателем интеллектуальности системы с точки зрения представления знаний считается способность системы использовать в нужный момент необходимые (релевантные) знания. Системы, не имеющие средств для определения релевантных знаний, неизбежно сталкиваются с проблемой "комбинаторного взрыва". Можно утверждать, что эта проблема является одной из основных причин, ограничивающих сферу применения экспертных систем. В проблеме доступа к знаниям можно выделить три аспекта: связность знаний и данных, механизм доступа к знаниям и способ сопоставления.

Связность {агрегация) знаний является основным способом, обеспечивающим ускорение поиска релевантных знаний. Большинство специалистов пришли к убеждению, что знания следует организовывать вокруг наиболее важных объектов (сущностей) предметной области. Все знания, характеризующие некоторую сущность, связываются и представляются в виде отдельного объекта. При подобной организации знаний, если системе потребовалась информация о некоторой сущности, то она ищет объект, описывающий эту сущность, а затем уже внутри объекта отыскивает информацию о данной сущности. В объектах целесообразно выделять два типа связок между элементами: внешние и внутренние. Внутренние связки объединяют элементы в единый объект и предназначены для выражения структуры объекта. Внешние связки отражают взаимозависимости, существующие между объектами в области экспертизы. Многие исследователи классифицируют внешние связки на логические и ассоциативные. Логические связки выражают семантические отношения между элементами знаний. Ассоциативные связки предназначены для обеспечения взаимосвязей, способствующих ускорению процесса поиска релевантных знаний.

Основной проблемой при работе с большой базой знаний является проблема поиска знаний, релевантных решаемой задаче. В связи с тем, что в обрабатываемых данных может не содержаться явных указаний на значения, требуемые для их обработки, необходим более общий механизм доступа, чем метод прямого доступа (метод явных ссылок). Задача этого механизма состоит в том, чтобы по некоторому описанию сущности, имеющемуся в рабочей памяти, найти в базе знаний объекты, удовлетворяющие этому описанию. Очевидно, что упорядочение и структурирование знаний могут значительно ускорить процесс поиска.

Нахождение желаемых объектов в общем случае уместно рассматривать как двухэтапный процесс. На первом этапе, соответствующем процессу выбора по ассоциативным связкам, совершается предварительный выбор в базе знаний потенциальных кандидатов на роль желаемых объектов. На втором этапе путем выполнения операции сопоставления потенциальных кандидатов с описаниями кандидатов осуществляется окончательный выбор искомых объектов. При организации подобного механизма доступа возникают определенные трудности: Как выбрать критерий пригодности кандидата? Как организовать работу в конфликтных ситуациях? и т.п.

Операция сопоставления может использоваться не только как средство выбора нужного объекта из множества кандидатов; она может быть использована для классификации, подтверждения, декомпозиции и коррекции. Для идентификации неизвестного объекта он может быть сопоставлен с некоторыми известными образцами. Это позволит классифицировать неизвестный объект как такой известный образец, при сопоставлении с которым были получены лучшие результаты. При поиске сопоставление используется для подтверждения некоторых кандидатов из множества возможных. Если осуществлять сопоставление некоторого известного объекта с неизвестным описанием, то в случае успешного сопоставления будет осуществлена частичная декомпозиция описания.

Операции сопоставления весьма разнообразны. Обычно выделяют следующие их формы: синтаксическое, параметрическое, семантическое и принуждаемое сопоставления. В случае синтаксического сопоставления соотносят формы (образцы), а не содержание объектов. Успешным является сопоставление, в результате которого образцы оказываются идентичными. Обычно считается, что переменная одного образца может быть идентична любой константе (или выражению) другого образца. Иногда на переменные, входящие в образец, накладывают требования, определяющие тип констант, с которыми они могут сопоставляться. Результат синтаксического сопоставления является бинарным: образцы сопоставляются или не сопоставляются. В параметрическом сопоставлении вводится параметр, определяющий степень сопоставления. В случае семантического сопоставления соотносятся не образцы объектов, а их функции. В случае принуждаемого сопоставления один сопоставляемый образец рассматривается с точки зрения другого. В отличие от других типов сопоставления здесь всегда может быть получен положительный результат. Вопрос состоит в силе принуждения. Принуждение могут выполнять специальные процедуры, связываемые с объектами. Если эти процедуры не в состоянии осуществить сопоставление, то система сообщает, что успех может быть достигнут только в том случае, если определенные части рассматриваемых сущностей можно считать сопоставляющимися.

Наверх

Методы поиска решений в экспертных системах

Методы решения задач, основанные на сведении их к поиску, зависят от особенностей предметной области, в которой решается задача, и от требований, предъявляемых пользователем к решению. Особенности предметной области с точки зрения методов решения можно характеризовать следующими параметрами:

Требования пользователя к результату задачи, решаемой с помощью поиска, можно характеризовать количеством решений и свойствами результата и (или) способом его получения. Параметр "количество решений" может принимать следующие основные значения: одно решение, несколько решений, все решения. Параметр "свойства" задает ограничения, которым должен удовлетворять полученный результат или способ его получения. Так, например, для системы, выдающей рекомендации по лечению больных, пользователь может указать требование не использовать некоторое лекарство (в связи с его отсутствием или в связи с тем, что оно противопоказано данному пациенту). Параметр "свойства" может определять и такие особенности, как время решения ("не более чем", "диапазон времени" и т.п.), объем памяти, используемой для получения результата, указание об обязательности (невозможности) использования каких–либо знаний (данных) и т.п.

Итак, сложность задачи, определяемая вышеприведенным набором параметров, варьируется от простых задач малой размерности с неизменяемыми определенными данными и отсутствием ограничений на результат и способ его получения до сложных задач большой размерности с изменяемыми, ошибочными и неполными данными и произвольными ограничениями на результат и способ его получения. Из общих соображений ясно, что каким–либо одним методом нельзя решить все задачи. Обычно одни методы превосходят другие только по некоторым из перечисленных параметров.

Рассмотренные ниже методы могут работать в статических и динамических проблемных средах. Для того чтобы они работали в условиях динамики, необходимо учитывать время жизни значений переменных, источник данных для переменных, а также обеспечивать возможность хранения истории значений переменных, моделирования внешнего окружения и оперирования временными категориями в правилах.

Существующие методы решения задач, используемые в экспертных системах, можно классифицировать следующим образом:

Предполагается, что перечисленные методы при необходимости должны объединяться для того, чтобы позволить решать задачи сложность которых возрастает одновременно по нескольким параметрам.

Наверх

Инструментальный комплекс для создания статических экспертных систем (на примере интегрированного комплекса ЭКО)

Рассмотрим особенности инструментальных средств для создания статических ЭС на примере комплекса ЭКО, разработанного в РосНИИ ИТ и АП. Наиболее успешно комплекс применяется для создания ЭС, решающих задачи диагностики (технической и медицинской), эвристического оценивания (риска, надежности и т.д.), качественного прогнозирования, а также обучения.

Комплекс ЭКО используется: для создания коммерческих и промышленных экспертных систем на персональных ЭВМ, а также для быстрого создания прототипов экспертных систем с целью определения применимости методов инженерии знаний в некоторой конкретной проблемной области.

На основе комплекса ЭКО было разработано более 100 прикладных экспертных систем. Среди них отметим следующие:

Наверх

Средства представления знаний и стратегии управления

Комплекс ЭКО включает три компонента.

Ядром комплекса является интегрированная оболочка экспертных систем ЭКО, которая обеспечивает быстрое создание эффективных приложений для решения задач анализа в статических проблемных средах типа 1 и 2.

При разработке средств представления знаний оболочки преследовались две основные цели: эффективное решение достаточно широкого и практически значимого класса задач средствами персональных компьютеров; гибкие возможности по описанию пользовательского интерфейса и проведению консультации в конкретных приложениях. При представлении знаний в оболочке используются специализированные (частные) утверждения типа "атрибут–значение" и частные правила, что позволяет исключить ресурсоемкую операцию сопоставления по образцу и добиться эффективности разрабатываемых приложений. Выразительные возможности оболочки удалось существенно расширить за счет интегрированности, обеспечиваемой путем вызова внешних программ через сценарий консультации и стыковки с базами данных (ПИРС и dBase IV) и внешними программами. В оболочке ЭКО обеспечивается слабая структуризация БЗ за счет ее разделения на отдельные компоненты для решения отдельных подзадач в проблемной среде модели (понятию "модель" ЭКО соответствует понятие "модуль" базы знаний системы G2).

С точки зрения технологии разработки ЭС оболочка поддерживает подходы, основанные на поверхностных знаниях и структурировании процесса решения.

Оболочка функционирует в двух режимах: в режиме приобретения знаний и в режиме консультации (решения задач). В первом режиме разработчик ЭС средствами диалогового редактора вводит в БЗ описание конкретного приложения в терминах языка представления знаний оболочки. Это описание компилируется в сеть вывода с прямыми адресными ссылками на конкретные утверждения и правила. Во втором режиме оболочка решает конкретные задачи пользователя в диалоговом или пакетном режиме. При этом решения выводятся от целей к данным (обратное рассуждение).

Для расширения возможностей оболочки по работе с глубинными знаниями комплекс ЭКО может быть дополнен компонентом К–ЭКО (конкретизатором знаний), который позволяет описывать закономерности в проблемных средах в терминах общих (абстрактных) объектов и правил. К–ЭКО используется на этапе приобретения знаний вместо диалогового редактора оболочки для преобразования общих описаний в конкретные сети вывода, допускающие эффективный вывод решений средствами оболочки ЭКО. Таким образом, использование конкретизатора обеспечивает возможность работы с проблемными средами типа 2.

Третий компонент комплекса — система ИЛИС, позволяющая создавать ЭС в статических проблемных средах за счет индуктивного обобщения данных (примеров) и предназначенная для использования в тех приложениях, где отсутствие правил, отражающих закономерности в проблемной среде, возмещается обширным экспериментальным материалом. Система ИЛИС обеспечивает автоматическое формирование простейших конкретных правил и автономное решение задач на их основе; при этом используется жесткая схема диалога с пользователем. Поскольку при создании реальных приложений эксперты представляют, как правило, и знания о закономерностях в проблемной среде, и экспериментальный материал (для решения частных подзадач), возникает необходимость в использовании правил, сформированных системой ИЛИС, в рамках более сложных средств представления знаний. Комплекс ЭКО обеспечивает автоматический перевод таких правил в формат оболочки ЭКО. В результате удается получить полное (адекватное) представление реальной проблемной среды, кроме того, задать гибкое описание организации взаимодействия ЭС с конечным пользователем.

Наверх

©Лаборатория Систем Мультимедиа