Основные методы модуляции в системах радиосвязи
Рис.1
Для связи на небольшие расстояния (до нескольких десятков километров) в массовом масштабе преимущественное развитие получают системы доступа и распределения информации. К таким системам относятся узкополосные и широкополосные системы радиосвязи, а также оптические телекоммуникацион-ные системы открытого распространения. Радиосистемы подразделяются по современной терминологии на узкополосные и широкополосные. Различие заключается, прежде всего, в структуре применяемых несущих колебаний. Традиционные радиосредства, которые и относятся к группе узкополосных, используют в качестве несущего сигнала одночастотные гармонические колебания. Для обеспечения возможности работы многих пользователей в выделенных диапазонах частот в таких системах стремятся сделать полосу частот передаваемых сигналов как можно меньше. В широкополосных системах связи в качестве несущих колебаний применяются широкополосные псевдослучайные сигналы. При этом сигнал каждого пользователя занимает весь выделенный участок диапазона частот, а отделение отдельных сигналов проводится кодовыми методами. К характерной особенности современных радиосредств мож-но отнести переход на все более высокочастотные участки радиодиапазона от 2 до 100 ГГц. При этом обеспечивается передача достаточно больших объемов информации на расстоянии прямой видимости. При этом частоты нижних участков диапа-зона проходят через атмосферу лучше и, к примеру, в диапазоне 2 ГГц могут перекрыть расстояние вплоть до 90 км, а радиосистема с той же мощностью передатчика в диапазоне 38 ГГц обеспечит протяженность не более чем 5-7 км. Одно из названий наземных систем работающих в диапазонах 2-100 ГГц - микроволновая связь. К ним относятся радиорелейные линии и сети связи прямой видимости, системы распределения информации, радиомосты и некоторые сотовые структуры. Современная аппаратура для радиорелейных линий и сетей связи прямой видимости выпускается на диапазоны частот 2, 4, 6, 8, 11, 13, 15, 17, 23, 27, 38 ГГц и выше. Несколько десятков фирм в мире, таких как Ericsson, Siemens, Nokia, Nera, Harris, MRC, Alcatel и др. производят сотни вариантов оборудования для микроволновой связи. В последние годы, в России, так же развернуто производство цифровых радиорелейных систем связи малой и средней емкости: Радан, Радиан, Радиус, Эриком, «Бист», Sandra, Просвет, Перевал - вот малая часть названий оборудования отечественного производства (www.vestnik-sviazy.ru/archive). Оптические системы связи открытого распространения, разработанные в последние годы, подразделяются на инфракрасные и лазерные. Эти системы позволяют передавать значительные объемы информации на малые расстояния (сотни и тысячи метров). Небольшая дальность объясняется влиянием тумана, дождя, снега, смога, града и различных естественных и искусственных препятствий. Лучшие системы позволяют передавать цифровые потоки со скоростью 155 Мбит/с на расстояние до 4-5 км при любых погодных условиях (например, систе-мы Canobeam, Lightpoint), концентрируя сигнал в чрезвычайно плотный луч и применяя автоматический поиск и юстировку системы, которая удерживает луч света в апертуре антенны (www.canon.com, www.lightpointcom.com). К важнейшему преимуществу инфракрасного и лазерного оборудования можно отнести то, что оно применимо везде, без всяких лицензий или разрешений в отличие от других систем. Классификация систем связи по диапазонам частот, по назначению и принципам организации приведена в [1, разд. 1.2; 2, с. 6-9; 3, разд. 1.3].
Рис. 2
Рис. 3
В самом простом виде структурная схема беспроводной телекоммуникационной линии состоит из модулятора (вторичная ступень), передатчика с антенной, тракта распространения электромагнитной энергии, приемника с антенной и демодулятора (рис. 3). Модуляция в микроволновых системах, чаще всего, осуществляется не на рабочей частоте линии связи, а на промежуточной частоте. При этом проще получить высокие качественные параметры модулированных сигналов, а модемное оборудование становится стандартным, не зависящим от диапазона частот линии связи. Последнее обстоятельство позволяет производителям аппаратуры выпускать наборы унифицированного оборудования, отличающегося только рабочей несущей частотой. Величина промежуточной частоты (в последние годы) выбирается в диапазоне от 70 до 2000 МГц. Передатчик выполняет функцию преобразования модулированного сигнала в рабочую несущую частоту, а также, обеспечивает необходимый уровень мощности выходного сигнала. Очевидно, что приемник выполняет обратное преобразование несущего сигнала в промежуточную частоту и усиление сигнала этой частоты. Обобщенный вариант выполнения структурной схемы современной цифровой микроволновой аппаратуры можно найти здесь. В последнее время, наряду с традиционными системами беспроводной связи на одной несущей частоте, все большее развитие получают цифровые технологии с использованием шумоподобных широкополосных несущих. Соответственно с этим признаком, различаются узкополосные и широкополосные линии связи. Обобщенные принципы работы широкополосных систем связи на примере технологии CDMA (кодовое распределение каналов) описаны в [12, с. 140-156].
· многоуровневая кодированная модуляция, · сложные системы обработки и коррекции сигналов, · поляризационные развязки, · адаптивные методы работы.
· закрытие трассы при субрефракции, · интерференция радиоволн, · влияние гидрометеоров.
· линии высокого качества, · линии среднего качества (четыре класса), · линии локального качества.
· полосу пропускания абонентского приемного устройства, · требуемое отношение сигнал/шум на входе абонентского приемника, · затухание сигнала в свободном пространстве, · коэффициенты усиления спутниковой передающей антенны и абонентской антенны.