Физические основы деформационного упрочнения металлов
Полетаев В.А.
Поверхностный слой детали - это слой, у которого структура, фазовый и химический состав отличаются от основного материала, из которого сделана деталь.
Рис.1. Схема поверхностного слоя детали.
В поверхностном слое можно выделить следующие основные зоны (рис.1.1):
зона адсорбированных из окружающей среды молекул и атомов органических и неорганических веществ. Толщина слоя 1...0,001 мкм.
зона продуктов химического взаимодействия металла с окружающей средой ( обычно оксидов). Толщина слоя 10...1 мкм.
граничная зона толщиной несколько межатомных расстояний, имеющая иную, чем в объеме, кристаллическую и электронную структуру.
зона с измененными по сравнению с основным металлом 5 структурой, фазовым и химическим составом, который возникает при изготовлении детали и изменяется в процессе эксплуатации.
Толщина и состояние указанных слоев поверхностного слоя могут изменяться в зависимости от состава материала, метода обработки, условий эксплуатации. Оценка этого состояния осуществляется методами химического, физического и механического анализа. Многообразие параметров состояния поверхностного слоя и методов их оценки не позволяет выделить единственный параметр, определяющий качество поверхностного слоя. Поэтому в научной и инженерной практике состояние поверхностного слоя оценивается набором единичных или комплексных, с той или иной стороны оценивающих качество поверхностного слоя.
Укрупнено эти параметры характеризуют:
геометрические параметры неровностей поверхности;
физическое состояние;
химический состав;
механическое состояние.
Геометрические параметры неровностей поверхности оцениваются параметрами шероховатости, регулярных микрорельефов, волнистости.
Шероховатость поверхности – это совокупность неровностей с относительно малыми шагами. Примерное отношение высоты неровностей к шагу менее 50.
Волнистость поверхности - это совокупность неровностей, имеющих шаг больший, чем базовая длина, используемая для измерения шероховатости. Отношение высоты к шагу более 50 и менее 1000.
Волнистость в России не стандартизирована, то для ее оценки используют параметры шероховатости.
Регулярные микрорельефы – это неровности, которые в отличие от шероховатости и волнистости, одинаковы по форме, размерам и взаиморасположению.
Регулярный микрорельеф получают обработкой резанием или поверхностным пластическим деформированием роликами, шариками, алмазами.
Физическое состояние поверхностного слоя деталей в технологии упрочнения наиболее часто характеризует параметрами структуры и фазового состава.
Структура - это характеристика металла, зависящая от методов изучения его строения. Выделяют следующие типы структур:
кристаллическая структура;
субструктура;
микроструктура;
макроструктура.
Металлы представляют собой кристаллы с трехмерной периодичностью. Основой кристаллической структуры является трехмерная решетка, в пространстве которой располагаются атомы. В зависимости от характера расположения атомов в кристаллической решетке структуры чистых металлов разделяются на ряд типов ( рис.1.2).
В реальном металле кристаллическая структура множество дефектов, которые в значительной от степени определяют его свойства. Совокупность дефектов решетки и их пространственное распределение в кристалле называется субструктурой. Здесь кристаллы могут образовывать более крупные фрагменты – кристаллиты, блоки, зерна, фрагменты, полигоны.
Размер субмикрозерна: 10-4...10-5см
а- простая кубическая; б- объемно центрированная кубическая; в- гранецентрированная кубическая; г- гексагонально-плотноупакованная.
Рис.2. Типы кристаллической структуры:
Микроструктура - это структура, определяемая с помощью металлографических микроскопов. Этот анализ позволяет определить наличие, количество и форму структурных составляющих сплава.
Размер субзерна: 10-3...10-4см.
Макроструктура - это структура, которая определяется невооруженным глазом или при небольших увеличениях. С помощью макроанализа можно определить трещины, неметаллические включения, примеси и др.
Размер зерна: 10-1...10-2см.
Физическое состояние характеризуется числом и концентрацией фаз, распределением фаз по поверхностному слою, объемом сплава и др.
Исследование физического состояния осуществляется экспериментальными методами физики твердого тела: дифракционными и микроскопическими.
Химический состав характеризуется элементным составом сплава и фаз, концентрацией элементов в объеме фаз, в объеме сплава и др.
Исследования химического состава поверхностного слоя позволяют оценить адсорбцию из окружающей среды молекул и атомов органических и неорганических веществ, диффузионные процессы, процессы окисления и другие, происходящие при обработке металлов.
Механическое состояние металла определяется параметрами:
сопротивления деформированию: предел упругости, предел пропорциональности, предел текучести, предел прочности, твердость и др.;
пластичности: относительное удлинение, относительное сужение, ударная вязкость и другие, устанавливаемые специальными испытаниями образцов.
Например в процессе пластической деформации, которая всегда сопровождает механическую обработку, все характеристики механического состояния поверхностного слоя изменяются: показатели сопротивления деформированию увеличиваются, а показатели пластичности уменьшаются. Это явление называют деформационным упрочнением.
В инженерной практике деформационное упрочнение поверхностного слоя определяют измерением твердости Н или микротвердости. Для этого твердость определяют на поверхности металла и внутри металла (при помощи послойного травления). В результате устанавливают толщину упрочненного слоя hH и степень деформационного упрочнения :
,
где: Нобр и Ниск - соответственно твердость (микротвердость) металла после и до обработки.
Глубина упрочненного слоя определяется следующим образом (рис. 1.3):
Рис.3. Эпюра распределения твердости в поверхностном слое после упрочнения.
Важной характеристикой состояния поверхностного слоя являются остаточные напряжения.
Остаточные напряжения - это упругие напряжения, которые остались в детали после обработки. В зависимости от объема тела, в которых рассчитывают остаточные напряжения, они условно подразделяются на:
остаточные напряжения первого рода, уравновешенные в макрообъемах тела;
остаточные напряжения второго рода, уравновешенные в пределах размера зерен;
остаточные напряжения третьего рода, уравновешенные в пределах нескольких межатомных расстояний.
В зависимости от характера и интенсивности физико- механических процессов, происходящих при обработке, остаточные напряжении могут иметь различный знак: + или - .
+ - растягивание;
- - сжимание.
Условие равновесия требует, чтобы в объеме детали сумма проекций всех сил была равна нулю. Поэтому в детали есть область со сжимающими и растягивающими остаточными напряжениями.
В инженерной практике остаточные напряжения первого рода принято
представлять в виде проекции на оси заданной системы координат. Например, для
тела вращения используют понятия осевых
Обобщенно можно сказать, сто остаточные напряжения первого рода есть результат неравномерных пластических деформаций различных слоев детали. Пример – искривление детали в ту или иную сторону.
Остаточные напряжении оказывают существенное влияние на прочность и долговечность деталей машин и конструкций: остаточные сжимающие напряжения ( - ), возникающие в поверхностном слое, повышают циклическую прочность деталей, т.к. они разгружают поверхностные слой от напряжений, вызванных нагрузками и, наоборот, растягивающие остаточные напряжения (+) уменьшают прочность деталей вследствие повышения напряженности поверхностного слоя.