В задачи технологии входит:
а) получение материалов и заготовки заданных свойств;
б) изготовление детали требуемой формы и надлежащей точности;
в) упрочнение рабочих поверхностей деталей;
г) их сборка в агрегаты, испытание узлов и машин.
Пути технологического обеспечения качества поверхностного слоя и долговечности деталей машин упрочнением показаны на рис.1.1.
Рис.1.1 Пути технологического обеспечения качества поверхностного слоя обработкой ППД.
Традиционным является подход, устанавливающий связь режима обработки с эксплутационными свойствами упрочняемой детали (1-5). Недостаток такого подхода в том, что выявленные закономерности не являются справедливыми для других условий. Поэтому при переходе к новому изделию возникает необходимость в повторении трудоемких исследований.
Более обобщенным является обеспечение долговечности детали в две стадии:
На первой (путь 1-3) устанавливается связь технологических факторов с параметрами состояния поверхностного слоя.
На второй (3-5)- влияние этих параметров на эксплуатационные характеристики деталей.
Однако оба подхода имеют основной недостаток- эмпирический путь решения задачи, а следственно, связанные с этим: 1- большую трудоемкость экспериментов, 2- ограниченное число исследований параметров состояния поверхностного слоя, 3- невысокую точность ( в пределах точности метода измерения) их определения.
Эмпирический путь не позволяет использовать ЭВМ для моделирования и технологического проектирования механической обработки деталей с оптимизацией параметров состояния их поверхностного слоя, обеспечивающих заданную долговечность.
Более эффективный подход к технологическому обеспечению эксплуатационных показателей деталей, который базируется на внутренних закономерностях процесса формирования поверхностного слоя в очаге деформации (пути 1-2 и 2-3). Раскрытие таких закономерностей позволит глубже определить влияние параметров состояния поверхностного слоя на процесс разрушения детали (3-4) и эксплуатационные показатели (4-5).
Повышение сопротивления детали разрушению при различных видах эксплуатационного нагружения может быть достигнуто технологическими методами объемного или поверхностного упрочнения. Объемное упрочнение повышает статическую прочность деталей, у которых рабочие напряжения распределены по сечению более или менее равномерно. Для таких деталей используют высокопрочные стали и сплавы, композиционные материалы. Однако большинство деталей работает в условиях, при которых эксплуатационная нагрузка (давление, нагрев, действие окружающей среды и т.п.) воспринимается главным образом их поверхностным слоем. Поэтому износостойкость, зарождение и развитие усталостной трещины, возникновение очагов коррозии зависит от сопротивления поверхностного слоя разрушению. Для деталей, разрушение которых начинается с поверхности, разработано большое количество методов поверхностного упрочнения, основанных не нанесении покрытий или изменения состояния (модификации) поверхности.
При нанесении покрытий упрочнение деталей достигается путем осаждения на нее поверхности материалов, которые по своим свойствам отличаются от основного металла, но наиболее полно отвечают условиям эксплуатации (износ, коррозия, химическое воздействие и т.п.).
При изменении состояния (модификации) поверхностного слоя происходит физико-химическое изнашивание в металле, повышающее его сопротивление разрушению. Модифицирование поверхностного слоя может осуществляться деформационным упрочнением (ППД), поверхностной термообработкой, диффузионным нанесением легирующих элементов.
Не существует универсального метода упрочнения деталей, т.к. один и тот же метод в одних условиях эксплуатации может дать положительный эффект, а в других отрицательный. Поэтому в ряде случаев применяют комбинированное упрочнение деталей, основанное на использовании двух или трех методов упрочнения, каждый из которых позволяет усилить то или иное эксплуатационное качество.
Кроме того, выбор того или иного метода поверхностного упрочнения определяется экономическими соображениями.
Все известные методы упрочнения подразделяются на 6 основных классов:
упрочнение с образованием пленки на поверхности;
с изменением химического состава поверхностного слоя;
с изменением структуры поверхностного слоя;
с изменением энергетического запаса поверхностного слоя;
с изменением микрогеометрии поверхности и наклепом;
с изменением структуры по всему объему материала.
а) осаждение химической реакции (оксидирование, сульфидирование, фосфатирование, нанесение упрочняющего смазочного материала, осаждение из газовой фазы).
б) осаждение из паров (термическое испарение тугоплавких соединений, катодно-ионная бомбардировка, прямое электронно-лучевое испарение, реактивное электронно-лучевое испарение, электронно-химическое испарение).
в) электролитическое осаждение (хромирование, никелирование, электрофорез, никельфосфатирование, борирование, борохромирование, хромофосфатирование).
г) напыление износостойких соединений (плазменное напыление порошковых материалов, детонационное напыление, электродуговое напыление, лазерное напыление, вихревое напыление, индукционное припекание порошковых материалов).
а) диффузионное насыщение (борирование, цианирование, азотирование, нитроцементация и т.п.)
б) химическое и физико-химическое воздействие (химическая обработка, ионная имплантация, электроискровая обработка и т.д.).
а) физико-термическая обработка (лазерная закалка, плазменная закалка);
б) электрофизическая обработка (электроконтактная, электроэрозионная, магнитная обработка);
в) механическая (упрочнение вибрацией, фрикционно-упрочняющая обработка, дробеструйная, обработка взрывом, термомеханическая, электромеханическая);
г) наплавка легированным элементом (газовым пламенем, электрической дугой, плазмой, лазерным лучом, пучком ионов и т.д.).
а) обработка в магнитном поле (термомагнитная обработка, импульсным магнитным полем, магнитным полем);
б) обработка в электрическом поле.
а) обработка резанием (точение, шлифование, сверхскоростное резание);
б) пластическое деформирование (накатывание, обкатывание, раскатывание, выглаживание, вибронакатывание, вибровыглаживание, калибрование, центробежно-ударное упрочнение, виброударное и т.д.);
в) комбинированные методы (анодно-механическая, поверхностное легирование с выглаживанием, резание с воздействием ультразвуковых колебаний, магнитно-абразивная обработка и т.д.).
а) термообработка при положительных температурах (закалка, отпуск, улучшение, закалка ТВЧ, нормализация, термомагнитная обработка);
б) криогенная обработка (закалка с обработкой холодом, термоциклирование).