На главную Библиотека Литература

Сигнал и его варианты задания

1.1 Общие сведения и понятия. 2

1.1.1 Понятие сигнала. 2

1.1.2 Шумы и помехи. 2

1.1.3 Размерность сигналов. 3

1.1.4 Математическое описание сигналов. 3

1.1.5 Математические модели сигналов. 3

1.1.6 Виды моделей сигналов. 4

1.1.7 Классификация сигналов. 4

1.2 Типы сигналов. 4

1.2.1 Аналоговый сигнал. 4

1.2.2 Дискретный сигнал. 5

1.2.3 Цифровой сигнал. 6

1.3 Преобразования типа сигналов. 7

1.4 Спектральное представление сигналов. 7


1.1 Общие сведения и понятия

1.1.1 Понятие сигнала

Сигнал - это информационная функция, несущая сообщение о физических свойствах, состоянии или поведении какой-либо физической системы, объекта или среды, а целью обработки сигналов в самом общем смысле можно считать извлечение определенных информационных сведений, которые отображены в этих сигналах (кратко - полезная или целевая информация) и преобразование этих сведений в форму, удобную для восприятия и дальнейшего использования.

Рисунок 1.Сигнал.

1.1.2 Шумы и помехи

При детектировании сигналов, несущих целевую для данного вида измерений информацию, в сумме с основным сигналом одновременно регистрируются и мешающие сигналы - шумы и помехи самой различной природы (рисунок 2). К помехам относят также искажения полезных сигналов при влиянии различных дестабилизирующих факторов на процессы измерений, как, например, грозовых разрядов на электроразведочные методы измерений и т.п. Выделение полезных составляющих из общей суммы зарегистрированных сигналов или максимальное подавление шумов и помех в информационном сигнале при сохранении его полезных составляющих является одной из основных задач первичной обработки сигналов (результатов наблюдений).

Рисунок 2. Сигнал с помехами.

Следует заметить, что деление сигналов на полезные и мешающие (шумовые) является достаточно условным. Источниками мешающих сигналов также являются определенные физические процессы, явления или объекты. При выяснении природы мешающих сигналов они могут переводиться в разряд информационных.

1.1.3 Размерность сигналов

В общем случае сигналы являются многомерными функциями пространственных, временных и прочих независимых переменных. Все большее применение находят также многомерные сигналы, образованные некоторым множеством одномерных сигналов.

Рисунок 3. Двумерный сигнал.

Многомерные сигналы могут иметь различное представление по своим аргументам. Также многомерный сигнал может рассматриваться, как упорядоченная совокупность одномерных сигналов. С учетом этого при анализе и обработке сигналов многие принципы и практические методы обработки одномерных сигналов, математический аппарат которых развит достаточно глубоко, распространяются и на многомерные сигналы. Физическая природа сигналов для математического аппарата их обработки значения не имеет.

Вместе с тем обработка многомерных сигналов имеет свои особенности и может существенно отличаться от одномерных сигналов в силу большего числа степеней свободы. Так, при дискретизации многомерных сигналов имеет значение не только частотный спектр сигналов, но и форма растра дискретизации.

1.1.4 Математическое описание сигналов

Сигналы могут быть объектами теоретических исследований и практического анализа только в том случае, если указан способ их математического описания - математическая модель сигнала. Математическое описание позволяет абстрагироваться от физической природы сигнала и материальной формы его носителя, проводить классификацию сигналов, выполнять их сравнение, устанавливать степень тождества, моделировать системы обработки сигналов. Как правило, описание сигнала задается функциональной зависимостью определенного информационного параметра сигнала от независимой переменной (аргумента) – s(х), y(t) и т.п. Функции математического описания сигналов могут быть как вещественными, так и комплексными.

1.1.5 Математические модели сигналов.

Теория анализа и обработки физических данных базируется на математических моделях соответствующих физических полей и физических процессов. Модели могут задаваться таблицами, графиками, функциональными зависимостями, уравнениями состояний и переходов из одного состояния в другое и т.п. Формализованное описание может считаться математической моделью оригинала, если оно позволяет с определенной точностью прогнозировать состояние и поведение изучаемых объектов путем формальных процедур над их описанием.

Неотъемлемой частью любой математической модели сигнала является также область определения сигнала, которая устанавливается интервалом задания независимой переменной. Примеры задания интервала для переменных:

axb, x Î [a,b].

a < y ≤ b, y Î (a,b].

a < z < b, z Î (a,b).

Пространство значений независимой переменной от -Ґ до +Ґ обычно обозначаетcя через индекс R:=(-Ґ ,+Ґ ), x Î R.

Кроме задания области определения сигнала могут быть также заданы виды численных значений переменных (целые, рациональные, вещественные, комплексные).

1.1.6 Виды моделей сигналов.

При анализе физических данных используются два основных подхода к созданию математических моделей сигналов.

Первый подход оперирует с детерминированными сигналами, значения которых в любой момент времени или в произвольной точке пространства являются априорно известными или могут быть достаточно точно определены (вычислены). С математических позиций детерминированный сигнал - это сигнал, который с достаточной степенью точности можно описать явными математическими формулами или вычислительными алгоритмами.

Второй подход предполагает случайный характер сигналов, которые принимают конкретные значения с некоторой вероятностью и которые можно описать только с использованием статистических характеристик. Случайность может быть обусловлена как собственной физической природой сигналов, что характерно, например, для методов ядерной геофизики, так и вероятностным характером регистрируемых сигналов как по времени или месту их появления, так и по содержанию. С этих позиций случайный сигнал может рассматриваться как отображение случайного по своей природе процесса или физических свойств объекта (процесса), которые определяются случайными параметрами или сложным строением геологической среды, результаты измерений в которой трудно предсказуемы.

1.1.7 Классификация сигналов.

Осуществляется на основании существенных признаков соответствующих математических моделей сигналов. Все сигналы разделяют на две крупных группы: детерминированные и случайные (рисунок 4).

Рисунок 4. Классификация сигналов.




1.2 Типы сигналов

1.2.1 Аналоговый сигнал

Рисунок 5. Аналоговый сигнал.

Аналоговый сигнал (analog signal) является непрерывной функцией непрерывного аргумента, т.е. определен для любого значения аргументов. Источниками аналоговых сигналов, как правило, являются физические процессы и явления, непрерывные в динамике своего развития во времени, в пространстве или по любой другой независимой переменной, при этом регистрируемый сигнал подобен (“аналогичен”) порождающему его процессу. Пример математической записи сигнала: y(t) = 4.8 exp[-(t-4)2/2.8]. Пример графического отображения данного сигнала приведен на рисунке 5, при этом как сама функция, так и ее аргументы, могут принимать любые значения в пределах некоторых интервалов y1 Јy Ј y2, t1 Јt Ј t2. Если интервалы значений сигнала или его независимых переменных не ограничиваются, то по умолчанию они принимаются равными от -Ґ до +Ґ. Множество возможных значений сигнала образует континуум - непрерывное пространство, в котором любая сигнальная точка может быть определена с точностью до бесконечности. Примеры сигналов, аналоговых по своей природе - изменение напряженности электрического, магнитного, электромагнитного поля во времени и в пространстве.

1.2.2 Дискретный сигнал

Рисунок 6. Дискретный сигнал.

Дискретный сигнал (discrete signal) по своим значениям также является непрерывной функцией, но определенной только по дискретным значениям аргумента. По множеству своих значений он является конечным (счетным) и описывается дискретной последовательностью отсчетов (samples) y(nDt), где y1 Јy Ј y2, Dt - интервал между отсчетами (интервал или шаг дискретизации, sample time), n = 0,1,2,...,N. Величина, обратная шагу дискретизации: f = 1/Dt, называется частотой дискретизации (sampling frequency). Если дискретный сигнал получен дискретизацией (sampling) аналогового сигнала, то он представляет собой последовательность отсчетов, значения которых в точности равны значениям исходного сигнала по координатам nDt.

Пример дискретизации аналогового сигнала, приведенного на рисунке 5, представлен на рисунке 6. При Dt = const (равномерная дискретизация данных) дискретный сигнал можно описывать сокращенным обозначением y(n) или y[t]. При неравномерной дискретизации сигнала обозначения дискретных последовательностей обычно заключаются в фигурные скобки - {s(ti)}, а значения отсчетов приводятся в виде таблиц с указанием значений координат ti. Для числовых последовательностей (равномерных и неравномерных) применяется и следующее числовое описание: s(ti) = {a1,a2, ..., aN}, t = t1,t2, ...,tN.

1.2.3 Цифровой сигнал

Рисунок 7. Цифровой сигнал.

Цифровой сигнал (digital signal) квантован по своим значениям и дискретен по аргументу. Он описывается квантованной решетчатой функцией yn = Qk[y(nDt)], где Qk - функция квантования с числом уровней квантования k, при этом интервалы квантования могут быть как с равномерным распределением, так и с неравномерным, например - логарифмическим. Задается цифровой сигнал, как правило, в виде дискретного ряда числовых данных - числового массива по последовательным значениям аргумента при Dt = const, но в общем случае сигнал может задаваться и в виде таблицы для произвольных значений аргумента.

По существу, цифровой сигнал по своим значениям (отсчетам) является формализованной разновидностью дискретного сигнала при округлении отсчетов последнего до определенного количества цифр, как это показано на рисунке 7. Цифровой сигнал конечен по множеству своих значений. Процесс преобразования бесконечных по значениям аналоговых отсчетов в конечное число цифровых значений называется квантованием по уровню, а возникающие при квантовании ошибки округления отсчетов (отбрасываемые значения) – шумами (noise) или ошибками (error) квантования.

В дискретных системах и в ЭВМ сигнал всегда представлен с точностью до определенного количества разрядов, а, следовательно, всегда является цифровым. С учетом этих факторов при описании цифровых сигналов функция квантования обычно опускается (подразумевается равномерной по умолчанию), а для описания сигналов используются правила описания дискретных сигналов. Что касается формы обращения цифровых сигналов в системах хранения, передачи и обработки, то, как правило, они представляет собой комбинации коротких одно- или двуполярных импульсов одинаковой амплитуды, которыми в двоичном коде с определенным количеством числовых разрядов кодируются числовые последовательности сигналов (массивов данных).

Рисунок 8. Дискретно-аналоговый сигнал.

В принципе, квантованными по своим значениям могут быть и аналоговые сигналы, зарегистрированные соответствующей аппаратурой (рисунок 8), которые принято называть дискретно-аналоговыми. Но выделять эти сигналы в отдельный тип не имеет смысла - они остаются аналоговыми кусочно-непрерывными сигналами с шагом квантования, который определяется допустимой погрешностью измерений.

1.3 Преобразования типа сигналов.

Операция дискретизации (discretization) осуществляет преобразование аналоговых сигналов (функций), непрерывных по аргументу, в функции мгновенных значений сигналов по дискретному аргументу, как, например s(t) Ds(nDt), где значения s(nDt) представляют собой отсчеты функции s(t) в моменты времени t = nDt, n = 0,1,2,...N.

Операция восстановления аналогового сигнала из его дискретного представления обратна операции дискретизации и представляет, по существу, интерполяцию данных.

В общем случае, дискретизация сигналов может приводить к определенной потере информации о поведении сигналов в промежутках между отсчетами. Однако существуют условия, определенные теоремой Котельникова-Шеннона, согласно которым аналоговый сигнал с ограниченным частотным спектром может быть без потерь информации преобразован в дискретный сигнал и затем абсолютно точно восстановлен по значениям своих дискретных отсчетов.

Операция квантования или аналого-цифрового преобразования (АЦП; английский термин Analog-to-Digital Converter, ADC) заключается в преобразовании дискретного сигнала s(nDt) в цифровой сигнал s(n) = sn » s(nDt), n = 0,1,2,..,N, как правило, кодированный в двоичной системе счисления. Процесс преобразования отсчетов сигнала в числа называется квантованием по уровню (quantization), а возникающие при этом потери информации за счет округления – ошибками или шумами квантования (quantization error, quantization noise).

При преобразовании аналогового сигнала непосредственно в цифровой сигнал операции дискретизации и квантования совмещаются.

Операция цифро-аналогового преобразования (ЦАП; Digital-to-Analog Converter, DAC) обратна операции квантования, при этом на выходе регистрируется либо дискретно-аналоговый сигнал s(nDt), который имеет ступенчатую форму, либо непосредственно аналоговый сигнал s(t), который восстанавливается из s(nDt), например, путем сглаживания.

Так как квантование сигналов всегда выполняется с определенной и неустранимой погрешностью (максимум - до половины интервала квантования), то операции АЦП и ЦАП не являются взаимно обратными с абсолютной точностью.

1.4 Спектральное представление сигналов.

Кроме привычного динамического представления сигналов и функций в виде зависимости их значений от определенных аргументов (времени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой сколь угодно сложный по своей форме сигнал, не имеющий разрывов первого рода, можно представить в виде суммы более простых сигналов, и, в частности, в виде суммы простейших гармонических колебаний, что выполняется при помощи преобразования Фурье. Соответственно, математически разложение сигнала на гармонические составляющие описывается функциями значений амплитуд и начальных фаз колебаний по непрерывному или дискретному аргументу – частоте изменения функций на определенных интервалах аргументов их динамического представления. Совокупность амплитуд гармонических колебаний разложения называют амплитудным спектром сигнала, а совокупность начальных фаз – фазовым спектром. Оба спектра вместе образуют полный частотный спектр сигнала, который по точности математического представления тождественен динамической форме описания сигнала.

Линейные системы преобразования сигналов описываются дифференциальными уравнениями, причем для них верен принцип суперпозиции, согласно которому реакция систем на сложный сигнал, состоящий из суммы простых сигналов, равна сумме реакций от каждого составляющего сигнала в отдельности. Это позволяет при известной реакции системы на гармоническое колебание с определенной частотой определить реакцию системы на любой сложный сигнал, разложив его в ряд гармоник по частотному спектру сигнала.

  1. Дмитриев В.И. Прикладная теория информации: Учебник для вузов. - М.: Высшая школа, 1989.
     
  2. Лосев А.К. Линейные радиотехнические цепи: Учебник для вузов. - М.: Высшая школа, 1971.
     
  3. Сергиенко А.Б. Цифровая обработка сигналов. / Учебник для вузов. – СПб.: Питер, 203. – 608
     
На главную Библиотека Литература