Русов В.А. "Спектральная вибродиагностика" 1996 г.


Источник: www.vibrocenter.ru/book8.htm

4.8. Электромагнитные дефекты

Анализируя сигналы с вибродатчиков, установленных на подшипниках электрических машин можно выявить достаточно много специфических причин повышенной вибрации, возникающих только в электродвигателях и генераторах различного типа. Эти причины могут являться как прямым результатом наличия различных внутренних электромагнитных дефектов электрических машин, так и быть просто связанными со специфическими особенностями проявления электромагнитных процессов в обмотках и сердечниках, отражать особенности нормальной работы электродвигателей и генераторов в агрегатах.

Вибродиагностические методы контроля состояния двигателей и генераторов обычно являются первым этапом в оценке состояния, т. к. позволяют анализировать состояние оборудования непосредственно во время его работы. После выявления при помощи контроля вибропараметров в электрических машинах основных характерных признаков существования того или иного дефекта необходимо применять другие, специализированные и, естественно, более точные методы диагностики.

Обычные, широко распространенные причины повышенной вибрации электрических машин “не электромагнитного характера”, такие как небаланс, проблемы подшипников и т. д. в данном разделе не рассматриваются. По вопросам их диагностики в двигателях и генераторах следует обращаться к другим разделам данного руководства.

4.8.1. Общие вопросы описания физических процессов

Вопросами диагностики текущего технического состояния и поиска дефектов в электрических машинах обычно занимаются специальные электротехнические службы, знакомые с особенностями физических процессов в двигателях и генераторах. Для тех, кто раньше не был связан с вибродиагностикой электротехнического оборудования, необходимо обязательно ознакомиться со специальной литературой, описывающей основные особенности его работы.

Здесь же, на первом этапе, для простоты объяснения причин возникновения вибрации в электрических машинах, а также чтобы не загромождать объяснения в дальнейшем, кратко вспомним некоторые основные определения и понятия из минимального, по объему, курса электрических машин. Знание этих понятий совершенно необходимо для проведения корректного диагностирования дефектов электрических машин.

Необходимо вспомнить следующее:

а) Неподвижная часть электрической машины обычно называется статором, подвижная - ротором. По принципу действия различают три основных типа широко применяемых электрических машин:

  • синхронные машины переменного тока, в которых частота вращения ротора совпадает с частотой вращения электромагнитного поля в зазоре;
  • асинхронные машины переменного тока, в которых ротор вращается несколько медленнее, на несколько процентов, чем частота вращения электромагнитного поля в зазоре;
  • машины постоянного тока.

В данном разделе методического руководства будут рассмотрены основные способы диагностики состояния и поиска дефектов состояния машин переменного тока, синхронных и асинхронных, как наиболее распространенных в промышленности.

Синхронные и асинхронные машины являются по своему принципу действия обратимыми, т. е. могут работать в как режиме двигателя, так и в режиме генератора. В дальнейшем диагностика дефектов статоров синхронных и асинхронных машин, двигателей и генераторов, не будет подразделяться, т. к. они имеют одинаковые по конструкции статоры. Синхронные машины отличаются от асинхронных только конструкцией ротора, что найдет отражение в разделе, где будут описаны дефекты короткозамкнутых роторов.

б) Очень важно уже на самом первом этапе диагностики представлять диапазон численных значений частоты вращения ротора и электромагнитного поля в зазоре, знать оборотную частоту вращения поля статора и оборотную частоту вращения ротора электрической машины переменного тока.

- Максимальная частота вращения ротора электрической машины, в обычных условиях [ об / мин ], численно равна произведению частоты питающей сети, измеряемой в [ 1 / сек = Гц ], умноженной на переводной коэффициент, равный 60 ( количество секунд в минуте ). При 50 Гц питающей сети максимальная частота вращения двигателей и генераторов равна 3000 об / мин. При частоте сети в 60 Гц, что является общепринятым в Америке и в Японии, максимальная частота вращения ротора машины переменного тока составит 3600 об / мин. Справедлива формула:

- Реально частота вращения электромагнитного поля в зазоре электрической машины N0 равняется частному от деления максимальной частоты вращения электромагнитного поля в зазоре на число “пар полюсов статора - Р”. Это конструктивный параметр обмотки статора и он может принимать только целые значения, равные 1, 2, 3, 4, 5 и т. д. При этом частота вращения поля в зазоре электрической машины будет равна соответственно 3000 об / мин, 1500, 1000, 750, 600 и т. д.

При числе пар полюсов, отличном от единицы, частота вращения поля в зазоре электрической машины отлична от частоты питающей сети. Это очень важно учитывать при диагностике состояния “мало знакомых” электрических машин по спектрам вибросигналов.

с) В асинхронных машинах частота вращения ротора всегда меньше частоты вращения электромагнитного поля в зазоре на небольшую величину, ротор отстает от электромагнитного поля. Это отставание обычно называется скольжением “s” и измеряется в долях от единицы или в процентах. Имеющаяся небольшая разница в частотах вращения поля и ротора называется частотой скольжения ротора, которая измеряется в герцах или в процентах. В диагностике дефектов ротора асинхронного двигателя эта частота имеет большое значение.

Стандартный ряд рабочих частот вращения роторов асинхронных двигателей, связанных с частотой вращения электромагнитного поля в зазоре, можно представить в виде ( с точностью ± 1 % ) - 2900 об/мин, 1450 об/мин, 970 об/мин и т. д.

д) Следует обязательно сказать, что широко используемое диагностическое правило о преобладающем влиянии второй гармоники питающей сети в электромагнитных процессах двигателей и генераторов является не совсем корректным с точки зрения теории.

Причина этого кроется в природе электромагнитных процессов. Поскольку часть вибрации в электрических машинах возбуждается силами электромагнитного взаимодействия между элементами машины, будь то силы магнитного тяжения между элементами сердечника или “амперовы силы” между элементами обмотки с током, более корректно будет использование другого диагностического правила.

Более правильно будет говорить, что основная, или, говоря терминами, принятыми в спектральной вибродиагностике, оборотная частота электромагнитных сил и вибраций равна удвоенной частоте питающей сети. Это математически вытекает из того, что магнитные процессы пропорциональны квадрату “синусоиды” питающей сети, а это и есть колебание с удвоенной частотой от исходного.

Это совершенно отдельная сила, не связанная с частотой вращения ротора, что может быть легко выяснено при помощи средств кепстрального анализа. Она просто имеет частоту, равную удвоенной частоте питающей сети. Гармоники основной частоты этой силы имеют значения 200 Гц, 300, 400 и т. д. В чистом виде эта сила очень явно проявляется в статическом электрооборудовании. Примером этого является трансформатор, в котором гармоника вибрации с частотой питающей сети в 50 Гц практически отсутствует, а максимальна гармоника с частотой 100 Гц.

е) На статоре и на роторе обмотка укладывается в пазах. При вращении ротора в зазоре возникает периодическое чередование ферромагнитных зубцов и пазов на статоре и роторе. При разработке электрических машин принимаются все меры, чтобы исключить влияние зубцово - пазовой структуры на работу машины - на статоре и роторе различное число пазов, на роторе применяется “скос” пазов, когда ось паза идет не вдоль оси ротора, а как бы немного закручена вокруг оси и т. д. Тем не менее в практике имеют место случаи, когда “пазовые” частоты явно выражены на спектре.

Объединим все вышесказанное.

Вибрации в двигателях и генераторах переменного тока, в общем случае, могут вызываться, в основном, пятью силами электромагнитной природы, имеющими свои собственные частоты:

- Первая сила связана с частотой питающей сети F1, имеет пик на частоте 50 герц.

- Вторая сила FЭМ генерирует колебания с частотой проявления электромагнитных процессов в меди и стали электрической машины, имеет пик на частоте 100 герц, проявляется в вибрации сердечника и обмоток всех машин переменного тока.

- Третья связана с частотой вращения электромагнитного поля в зазоре электрической машины и есть частное от деления частоты питающей сети на число пар полюсов статора

F0 = ( F1 / P )

В синхронных машинах это частота вращения ротора.

- Четвертая FP связана с частотой вращения ротора и в асинхронных машинах всегда на несколько процентов меньше частоты вращения электромагнитного поля. У синхронных машин эти две силы возбуждают колебания с одной и той же частотой, что прямо вытекает из принципа действия синхронной машины.

- Пятая FП вызывается наличием зубцово - пазовой структуры в зазоре электрической машины. Вибрация может быть пропорциональна произведению частоты вращения на число пазов статора, ротора или их частоте биений. Косвенным проявлением влияния пазов является несимметрия ротора неявнополюсного турбогенератора, когда в одной части ротора есть пазы, а в другой нет. В результате прогиб ротора различен при повороте его на 90 градусов. Это всегда приводит, при частоте вращения ротора с частотой 50 Гц, к увеличенным вибрациям в вертикальном направлении с частотой в 100 Гц.

Основной признак того, что диагностируемый дефект имеет электромагнитную причину - мгновенное исчезновение его признаков в спектре вибрации после отключения электрической машины от сети.

Очень важным является то, что диагностика причин повышенной вибрации электрических машин должна проводиться при возможно большей нагрузке двигателя. Если исследования проводятся на холостом ходу, то очень часто удается выявить только малую часть всех имеющихся в оборудовании электромагнитных проблем.

Для успешной диагностики различных электромагнитных проблем в электрических двигателях и генераторах необходим спектроанализатор с очень высокой разрешающей способностью, с числом спектральных линий, не меньшем, чем 3200.

Измерение вибрации на подшипниках электродвигателей и генераторов нужно всегда проводить в трех направлениях - вертикальном, поперечном и осевом, иначе потом будет невозможно провести полную диагностику состояния. Идеальным является синхронная регистрация ( не путать с синхронизированной регистрацией, которая гораздо менее эффективна ) сразу шести вибросигналов с двух подшипников электрической машины. Обычно это повышает достоверность диагнозов дополнительно не менее чем на 10 %.

4.8.2. Сводка электромагнитных проблем

Приведем краткую сводку по электромагнитным проблемам электрических машин, которые можно эффективно диагностировать по спектрам вибросигналов. Здесь же приведем все характерные признаки каждого вида дефекта.

Для описания дефектов здесь и далее будем использовать термины:

- F1 - частота питающей сети, в России равна 50 Гц;

- FЭМ - частота электромагнитных сил в электрических машинах, равна удвоенной частоте сети, в России 100 Гц;

- N0 - частота вращения поля в зазоре электрической машины, численно равна частному от деления 3000 на число пар полюсов “Р”, которое может принимать целые значения от единицы и более ( об/мин );

- F0 - частота электромагнитного поля в зазоре ( Гц );

- NР - собственная частота вращения ротора электрической машины, для синхронных машин она совпадает с частотой вращения поля, для асинхронных всегда меньше на величину скольжения;

- s - скольжение ротора относительно электромагнитного поля в асинхронных машинах, безразмерная величина, численно равняется разнице между частотой вращения поля в зазоре и частотой вращения ротора, отнесенной к частоте вращения поля в зазоре

s = ( N0 - NР ) / N0

- FP - частота вращения ротора, у синхронных машин численно равна частоте вращения поля в зазоре, а асинхронных всегда меньше частоты вращения поля на величину произведения частоты вращения поля на скольжение ротора

FР = F0 ( 1 - s );

- FП - зубцово - пазовая частота вибрации, численно равная произведению числа пазов ( на роторе или статоре ) на частоту электромагнитного поля в зазоре. Может быть повышенной относительно статора, относительно ротора, может быть разностная или суммарная частота биений пазовых частот ротора и статора.

Наиболее важные проблемы статора, которые можно

определить по вибропараметрам:

  • Ослабление прессовки пакета стали, обрыв или замыкание в обмотке. Проявляются на частоте действия электромагнитных сил FЭМ, равной двойной частоте питающей сети. Особое внимание следует уделять наличию дробных гармоник электромагнитной частоты - 1/2, 3/2, 5/2 и т. д. от основной частоты. По значению частоты эти гармоники соответствуют основной и нечетным гармоникам питающей сети
  • Эксцентриситет, эллипсность, внутренней расточки статора относительно оси вращения ротора. Возникает обычно как дефект монтажа подшипниковых стоек, дефект состояния подшипниковых щитов или при деформации статора. В вибрации проявляется на частоте вращения поля в зазоре и на частоте электромагнитных сил 100 Гц. Иногда сопровождается появлением боковых гармоник. Обычно сопровождается неравенством вертикальной и поперечной составляющих соответствующих гармоник. Пространственный максимум гармоник соответствует направлению эксцентриситета, смещения оси статора. Наиболее просто диагностируется при снятии “розы вибраций”, когда датчик последовательно перемещается по огибающей вокруг подшипника со смещением при каждом измерении на угол 30 - 45 градусов
  • Неправильный взаимный осевой монтаж активных пакетов ротора и статора. Иногда для данного дефекта используется термин: “неправильная установка электромагнитных осевых разбегов”. При работе электрической машины, в результате сил магнитного притяжения, пакет ротора всегда стремится к положению точно под пакетом статора. Если этому будут препятствовать условия монтажа подшипников, то в неправильно установленном подшипнике, сдвинутом в осевом направлении, возникнут осевые нагрузки и вибрации. Подшипники достаточно быстро нагреются и выйдут из строя. Иногда ротор двигателя “утягивается” в осевом направлении валом механизма, что возможно при неправильном осевом монтаже всего механизма и в случае малой подвижности в соединительной муфте

Основные проблемы ротора, диагностируемые по вибрации:

  • Эксцентриситет внешней поверхности ротора относительно оси его вращения. На спектре вибросигнала этот дефект проявляется в усилении первой гармоники частоты вращения ротора. Усиливается частота действия электромагнитной силы, вокруг которой иногда появляются боковые гармоники, сдвинутые друг от друга на частоту скольжения ротора, умноженную на число полюсов
  • Обрыв или нарушение контакта в стержнях или кольцах “беличьей клетки” в асинхронном двигателе. Обычно проявляется вблизи частоты вращения вала ротора и всегда сопровождается появлением боковых полос, сдвинутых относительно гармоники частоты вращения ротора на интервал, равный произведению частоты скольжения на число полюсов двигателя
  • Ослабление прессовки всего пакета стали ротора или только в области зубцов. Сопровождается усилением второй гармоники питающей сети или, при ослаблении стали в области зубцов, появлением пазовой частоты ротора с боковыми полосами, сдвинутыми друг от друга на частоту, равную двойной питающей частоте
4.8.3. Проблемы стали и меди статора

При всех проблемах статора синхронной или асинхронной электрической машины, имеющих первопричину электромагнитной природы, возникающих в активной стали или в обмотке, в спектре вибросигнала возникает специфическая картина. В основном это вибрация с высокой амплитудой гармоники на частоте электромагнитных процессов FЭМ. Как уже неоднократно говорилось выше, ее частота равна второй гармонике частоты питающей сети, т. е. равная 100 Гц.

Это достаточно хорошо объясняется с точки зрения физики происходящих процессов. Силы взаимного тяжения, действующие между “распрессоваными” листами электротехнического железа или элементами крепления пакета стали, имеют максимум амплитуды дважды за один период изменения питающей сети - во время минимума и максимума магнитного потока. Аналогично выглядит картина взаимодействия между элементами обмотки статора. Математически это объясняется тем, что электромагнитные силы пропорциональны квадрату тока или магнитного потока. Поскольку и тот и другой синусоидальны, то их произведение также пропорционально синусоиде, но изменяющейся уже с удвоенной частотой, относительно исходной частоты питающей сети.

На спектре вибросигнала, приведенном на рисунке 4.8.1., картина появления электромагнитных проблем в статоре выражается в усилении пика на электромагнитной частоте. При значительных дефектах в стали могут появиться и вторая ( 200 Гц ) гармоника частоты FЭМ, третья ( 300 ), а также ряд дробных гармоник, которые в такой ситуации по своей частоте численно соответствуют синхронным, целым нечетным гармоникам частоты питающей сети.

Гармоники вибрации от электромагнитных процессов в статоре синхронной машины, по своей физической природе, являются синхронными относительно частоты вращения ротора. В асинхронном двигатели эти же гармоники являются несинхронными, т. к. частота вращения ротора и частота питающей сети не кратны между собой, а различаются между собой пропорционально частоте скольжения.

Ослабление прессовки активного железа статора обуславливается, в основном, двумя причинами - или общим ослаблением элементов крепления железа статора, или же явлением “отслоения” крайних листов и пакетов стали.

При этих локализациях дефекта железа статора важную роль начинает играть место установки вибродатчика. Чем ближе он устанавливается к дефектному месту пакета статора, чем короче будет путь прохождения полезной виброинформации, тем более корректно можно будет проводить диагностирование и, достаточно часто, удается даже локализовать место проявления дефекта.

Аналогично обстоит дело и с особенностями проявления в спектрах вибросигналов различных дефектов обмоток статора, но поиск их и локализация происходят гораздо сложнее.

Самое главное, что нужно помнить, что различить вид диагностируемого в статоре дефекта, имеет - ли он “электрическую природу”, или же он обусловлен чисто “магнитными проблемами”, методами спектральной вибродиагностики достаточно сложно. Единственный, достаточно корректный признак наличия замкнутого витка в статоре - наличие боковой гармоники вблизи частоты 100 Гц. В большинстве практических случаев необходимо применение более специализированных методов диагностики состояния электрических машин.

4.8.4. Проблемы эксцентричности статора

Эксцентриситет статора возникает чаще всего как дефект изготовления “шихтованного” пакета стали статора, как дефект монтажа статора. Очень высока вероятность возникновения эксцентриситета статора в процессе монтажа электрической машины, особенно, если статор и подшипниковые опоры монтируются раздельно. Данный дефект статора может возникнуть в результате ослабления фундамента или же как итог тепловых и иных деформаций в агрегате и фундаменте.

Для примера на рисунке 4.8.2. приведен спектр вибросигнала, зарегистрированного на подшипнике асинхронного двигателя, имеющего номинальную частоте вращения ротора, равную n0 = 1480 об/мин.

Этот спектр соответствует наличию в электрической машине достаточно развитого дефекта типа “эксцентриситет статора”.

Эксцентриситет статора приводит, с точки зрения физики протекания электромагнитных процессов, к периодическому изменению магнитной проводимости воздушного зазора, к ее пульсации, или, говоря иными словами, к ее модуляции. Эта пульсация происходит с удвоенной частотой сети, т. е. с частотой воздействия электромагнитных сил.

Удвоение частоты пульсации относительно питающей сети возникает из - за того, что мимо зоны окружности статора, где произошло изменение величины зазора, поочередно проходят северный и южный полюса поля, вращающегося в зазоре. Удвоенные пульсации магнитной проводимости приводят к такой же пульсации магнитного потока и, как результат, к пульсации электромагнитной силы и вибрации с частотой 100 Гц.

Дополнительно несколько возрастает амплитуда гармоники на частоте вращения электромагнитного поля в зазоре. Это позволяет в асинхронных двигателях хорошо дифференцировать эксцентричность статора от эксцентричности ротора, где вибрация идет с частотой вращения ротора. Для выявления этого различия необходимо наличие спектроанализатора с хорошим разрешением.

Для разделения эксцентриситетов статора и ротора в синхронной машине между собой, при диагностике следует помнить, что эксцентриситет статора неподвижен в пространстве и различен по амплитуде вибрации в различных проекций измерения. Благодаря такой локализации эксцентриситет статора приводит к возникновению направленной в пространстве вибрации. Это можно выявить при помощи последовательного перемещения вибродатчика по контролируемому подшипнику “вокруг вала”. Эксцентриситет же ротора всегда “вращается” вместе с ротором, поэтому он не имеет стационарного максимума при определенном значении угла установки датчика. При эксцентриситете статора такой максимум явно выражен.

Для исключения проявления эксцентриситета в вибрации электрических машин необходимо, чтобы воздушный зазор между статором и ротором должен быть неизменным по окружности. При монтаже он должен тщательно контролироваться.

Обязательно должно соблюдаться требование к качеству взаимного монтажа статора и ротора, что различие в величине воздушного зазора вдоль окружности не должно превышать значение в 5% для асинхронных двигателей и генераторов, и не превышать 10 % для синхронных двигателей. Значение этого параметра жестко контролируется при помощи специальных щупов при монтаже электрической машины. Такая процедура измерения должна производится при нескольких взаимных положениях ротора и статора.

4.8.5. Неправильный осевой монтаж двигателя

Принцип действия всех электрических машин переменного тока примерно одинаков - вращающий момент создается за счет взаимодействия магнитного поля статора с:

  • магнитным полем ротора ( синхронные машины );
  • роторными проводниками с током ( асинхронные машины )

В синхронной машине энергия подается одновременно: в ротор от источника постоянного тока, в статор от питающей сети. В асинхронной машине энергия подается только от сети в статор, поэтому для работы машины часть энергии должна быть передана через зазор в ротор, и только тогда возникает электромагнитное взаимодействие. Наличие передачи энергии через зазор объясняет наличие меньшего зазора в асинхронных машинах, а так же их большую чувствительность к нелинейности величины зазора между ротором и статором.

Сила взаимного притяжения между ротором и статором является векторной величиной и состоит из трех составляющих - радиальной составляющей, касательной, полезной, и осевой. Радиальная составляющая есть сила притяжения ротора к статору и при постоянстве воздушного зазора эти силы диаметрально противоположно взаимно уничтожается. Касательная составляющая является полезной, т. к. именно она создает вращающий момент.

Рассмотрим чуть подробнее осевую составляющую. Если ферромагнитные сердечники ротора и статора расположены непосредственно друг под другом, то и суммарная осевая составляющая силы электромагнитного тяжения равна нулю. Иначе будет происходить при осевом смещении сердечников ротора и статора. При этом итоговая осевая сила не равна нулю и будет стремиться вернуть ротор в исходное нейтральное положение.

Если осевая подвижность ротора достаточна для перемещения в нейтральное положение, то проблем с вибрацией не будет. Если же возникнет препятствие к такому осевому перемещению, то на нем возникнет значительная осевая вибрация. Частота этой вибрации, см. рис 4.8.3., может быть равна как частоте сети, так и частоте вращения ротора и зависит от типа трения в препятствии к осевому смещению.

Часто такая проблема возникает у двигателей с подшипниками качения, осевая подвижность которых почти нулевая. Осевая вибрация возникает при осевом смещении пакета статора, при неполной посадке подшипников на вал, при смещении подшипниковых щитов и т. д. Большинство подшипников не предназначены для компенсации осевых усилий и быстро выходят из строя.

У подшипников скольжения существует значительный “осевой разбег”, но и его может оказаться недостаточно для компенсации дефектов монтажа, и возникает трение галтели вала о торцевую поверхность вкладыша. Достаточно часто вал электродвигателя “утягивается” валом насоса при дефектах системы осевой разгрузки рабочего колеса насоса. Парадокс диагностики - дефект в насосе, а вибрация в двигателе.

На практике бывают случаи, когда ротор в подшипниках скольжения перед пуском принудительно смещают в ту или иную сторону в осевом направлении, например при помощи лома, и двигатель некоторое время хорошо работает. С течением времени, в процессе работы, ротор смещается обратно и осевые вибрации агрегата снова возрастают.

Для устранения осевой вибрации в насосных агрегатах необходимо корректно и комплексно выставлять при монтаже все три так называемых в практике “осевых разбега” - в насосе, в муфте и в двигателе.

4.8.6. Эксцентричный ротор

Это достаточно часто встречающаяся в практике причина повышенной вибрации электрических машин.

При наличии эксцентриситета ротора в характере распределения электромагнитного поля в зазоре двигателя возникает ряд особенностей. Плотность электромагнитного поля по окружности зазора изменяется вместе с вращением ротора и приводит, из - за переменного зазора, к неравномерности тягового усилия двигателя. При совпадении оси поля статора с зоной увеличенного зазора тяговое усилие несколько уменьшается, при этом возрастает величина частоты скольжения. При смещении оси поля в зону меньшего зазора тяговое усилие растет, частота скольжения падает. При числе пар полюсов статора, большем единицы, такой процесс повторяется “Р” раз.

Если бы мы имели очень чувствительные приборы для измерения частоты вращения ротора, то мы бы обнаружили следующее. В интервале перемещения ротора от зоны, с увеличенным зазором в сторону зоны, с уменьшенным зазором, ротор бы ускорился в своей частоте вращения на небольшое значение. На интервале перехода ротора обратно, к зоне с увеличенным зазором, ротор бы замедлился на то же значение. Конечно таких приборов у нас нет, но это видно на спектре с большой разрешающей способностью есть признаки таких изменений скорости.

На спектре вибросигнала, вокруг основной частоты вращения ротора, должны появиться симметрично расположенные боковые пики, гармоники, напоминающие зубцы короны. Симметрия пиков относительно основной частоты достаточно хорошо понятна - это следствие “миниускорений и замедлений” частоты вращения ротора вокруг своего среднего значения.

Аналогичные зубцы, даже еще большей интенсивности, появляются и вокруг пика электромагнитной силы, на частоте, равной второй гармонике питающей сети. Необходимо пояснить причины проявления эксцентричности ротора на этой частоте.

Вращение эксцентричного ротора модулирует проводимость зазора с удвоенной частотой. При числе пар полюсов, равном единице частота вращения поля равна 50 Гц, удвоенная частота сети, частота электромагнитной вибрации равна 100 Гц. Эксцентричность ротора приводит к модуляции электромагнитной силы. При уменьшении числа пар полюсов частота вращения поля в зазоре уменьшится в Р раз. Переменный зазор ротора за один свой оборот будет модулировать электромагнитную силу 2 х Р раз больше частоты своего вращения, что как раз и соответствует частоте электромагнитной силы.

Эксцентричный ротор генерирует вокруг FР и вокруг FЭМ семейства гармоник, представляющих из себя пики, сдвинутые на одинаковый шаг по частоте. Сдвиг между этими гармониками равен произведению частоты скольжения на число полюсов обмотки статора

D F = FS x 2 х P

Необходимо помнить, что во временном сигнале эксцентриситет ротора проявляется в виде пульсирующей вибрации, средняя частота которой располагается в диапазоне частот ( или вблизи него ) между FЭМи гармоникой оборотной частоты ротора, по частоте чуть меньшей, чем у электромагнитной силы ( порядковый номер этой гармоники ротора равен удвоенному числу пар полюсов статора ). Разделить эти гармоники на спектре можно только при его высоком разрешении.

Эксцентричность ротора обычно проявляется и в вертикальной и поперечной проекциях вибрации. Иногда ее удается обнаружить даже и в осевой проекции. Так бывает при наличии эксцентричности ротора не по всей его длине, а только в районе одного, если смотреть вдоль оси ротора, края пакета электротехнической стали.

Эксцентричность ротора часто носит нестационарный характер, когда в спектре работающего двигателя имеется характерная картина, а практические измерения зазора не подтверждают диагноз. Причина здесь обычно в термических процессах , когда по тем или иным причинам ротор несимметрично нагревается, изгибается и дает картину эксцентриситета.

После останова двигателя, в процессе его разборки для измерения зазора, температуры быстро выравниваются и диагноз не подтверждается. Часто так бывает при обрывах стержней или частичных “задеваниях” ротора об неподвижные элементы, когда ротор так же начинает односторонне нагреваться.

4.8.7. Обрыв стержней ротора

Наиболее распространенной конструкцией ротора асинхронного двигателя является короткозамкнутый ротор с “беличьей клеткой”. У такого ротора в пазах, без изоляции, забиваются медные, латунные стержни или пазы залиты сплавом алюминия. Концы стержней объединяются короткозамыкающими кольцами из такого же материала. В процессе работы по стержням протекает большой ток, они сильно нагреваются, особенно во время пуска. Частой причиной выхода из строя двигателя является отгорание стержней, приводящее к увеличению нагрузки на оставшиеся, перегреву и отгоранию их и т. д. Процесс завершается “лавинообразным” выходом двигателя из строя.

Выявление начальных фаз зарождения процесса “отгорания” стержней беличьей клетки ротора является очень актуальной задачей и позволяет повысить надежность работы асинхронных двигателей с короткозамкнутой клеткой на роторе.

Рассмотрим особенности физических процессов в роторе, имеющем характерные особенности в спектре, свойственные хотя бы начальной стадии данного дефекта - отгорел один стержень.

Необходимо сразу же сказать, что спектр двигателя с отгоревшим стержнем во многом похож на спектр двигателя с эксцентричным ротором. На первый взгляд между этими дефектами мало общего, но при ближайшем рассмотрении можно выявить сходства.

Как и при эксцентричном роторе отгоревший стержень приводит к модулированию тягового усилия двигателя. В момент прохождения зоны отгоревшего стержня мимо полюса тяговое усилие скачком уменьшиться, ротор чуть - чуть призамедлится. В это время под полюс подойдет зона бездефектного стержня, в нем за счет возросшего скольжения будет больший ток, тяговое усилие возрастет, ротор чуть ускорится. Эти мини - ускорения и мини - замедления на спектре будут характеризоваться возникновением зубцов вокруг основной гармоники частоты вращения ротора. Такой спектр для двигателя с частотой вращения ротора 2920 об/мин показан на рис 4.8.5.

Разделить эти две причины - эксцентриситет ротора и отгоревшие стержни беличьей клетки возможно, но только при наличии хорошего спектроанализатора. Различие в их проявлениях заключаются в следующем:

- Характерная “корона” из зубцов вокруг пика электромагнитной частоты FЭМ проявляется по разному - при эксцентриситете ротора она имеется во всех режимах, а при отгоревших стержнях появляется только при значительной нагрузке.

- При эксцентриситете ротора “корона” практически симметрична по величинам мини - пиков относительно центрального пика, а при отгоревшем стержне и под нагрузкой пик на меньшей частоте всегда меньше “зеркального” пика на большей частоте. Этот факт достаточно хорошо сообразуется с картиной физических процессов. Уменьшение скорости происходит при нормальном скольжении и нормальном токе в последнем “хорошем” стержне клетки. Ускорение происходит при увеличенном скольжении, большем токе в первом “хорошем” стержне и, как результат, с большей интенсивностью.

- За счет колебательного “успокоения” ротора после прохождения дефектного стержня на спектре может возникнуть несколько гармоник частоты вращения ротора, и обычно все они окружены “коронами”.

В качестве численного ограничения степени проявления этого дефекта можно считать, что “короны” у исправного двигателя быть не должно. Если она появилась и под нагрузкой наибольший пик “короны” превысил 10 % от центрального пика - вероятность существования отгоревших стержней очень большая. Для контроля численного значения дефекта лучше использовать спектры с логарифмической шкалой по амплитуде. Если при этом пики “короны” будут меньше основного пика менее, чем на 20 dВ, то дефект имеет место.

В заключение, подчеркивая особенности диагностики данной причине повышенной вибрации, необходимо еще раз указать, что такая диагностика возможно только с применением спектроанализаторов с высокой разрешающей способностью. Это нужно для разделения на спектре частот вращения поля, ротора и боковых гармоник. Центральный пик “короны” должен соответствовать частоте вращения ротора, а не быть равным частоте вращения поля в зазоре.

4.8.8. Дефекты зубцово - пазовой структуры

Такая неисправность не очень часто встречается в практике, но тем не менее ее можно описать и диагностировать.

Условно эту неисправность можно представить в виде ротора, у которого отсутствует один ферромагнитный зуб. Это приводит к тому, что мимо пазов статора перемещается магнитно - непериодический элемент, наводящий в обмотке статора импульсы, число которых за один оборот будет численно равно числу пазов на статоре. На спектре это будет представлено пиком на частоте, равной произведению частоты вращения ротора на число пазов статора.

Не вдаваясь в тонкости физического описания следует также сказать, что дефектный зуб будет модулировать и электромагнитную силу статора. Это будет потому, что дважды за свой один оборот вращающееся поле “будет натыкаться” на дефект магнитной проводимости воздушного зазора двигателя, на “отсутствующий” зуб ротора. На спектре вблизи пика зубцовой частоты появятся два зеркально расположенных пика, сдвинутых относительно своего “главного пика” на частоту электромагнитной силы FЭМ, как уже неоднократно говорилось равную удвоенной частоте питающей сети.

При наличии дефектов в зубцово - пазовой структуре статора может быть зарегистрирована вибрация с частотой, равной произведению числа пазов ротора на частоту вращения ротора, т. к. магнитный дефект статора будет перемещаться относительно ротора. Все остальное, включая возникновение “зеркальных” пиков вокруг пазовой частоты, останется неизменным.

Наиболее сложным для диагностики будет спектр при наличии магнитных дефектов на роторе и статоре одновременно, причем дефектов множественных. На спектре будут зубцовые частоты ротора и статора, будут частоты их биения, будут множественные “зеркальные” пики и т. д.

“Положительным” при этом будет то, что при таком дефекте обычно сильно падает тяговое усилие, возрастает потребляемый ток и двигатель очень быстро выходит из строя, обычно раньше, чем персоналу удается записать спектры и выявить множественный магнитный дефект методами вибродиагностики.

4.8.9. Заключение

В данной главе были достаточно кратко рассмотрены наиболее часто встречающиеся в практике дефекты электрических машин переменного тока. В литературе встречаются сообщения о возможности диагностики и нескольких других дефектов, тоже электромагнитной природы. Здесь не приведены примеры таких диагнозов и их описание по нескольким причинам:

  1. Как правило все эти дополнительно диагностируемые дефекты определяются уже не при помощи вибродатчиков, а при помощи различных токовых пробников, регистрирующих токи в обмотках электрической машины. Получаемые сигналы далее диагностируются спектральными методами, но все равно это уже не спектральная вибродиагностика
  2. Диагнозы по этим дефектам приводятся как частные случаи. Причины особенностей спектральной картины описывается по внешним признакам, без связи с внутренними физическими процессами в электрических машинах. Это тоже явилось препятствием для включения описания этих дефектов в данной главе
  3. Мы считаем, что если наши читатели сумеют достаточно хорошо разобраться с описанными здесь “стандартными” дефектами электрических машин, то у них, вероятно, не возникнет проблем с диагностикой и других причин повышенной вибрации электрических машин, которые не описаны здесь
  4. Успешное применение описанных диагностических правил принесет пользователям не только практическую пользу, но и позволит, в дальнейшем, разрабатывать свои диагностические правила для анализа дефектов состояния электрических машин по вибропараметрам
  5. Диагностика состояния машин постоянного тока хотя и не вошла в этот раздел, также может проводиться с использованием ряда вышеописанных диагностических правил. При этом только нужно сделать коррекцию на несколько иные принципы действия таких двигателей и генераторов