Вейвлет-преобразование и анализ временных рядов


Авторы: П.В. Козлов - канд. физ.-мат. наук, Б.Б. Чен - докт. физ.-мат. наук


Аппарат Фурье-преобразований дает достаточно простые для расчетов формулы и прозрачную интерпретацию результатов, но не лишен и некоторых недостатков. Преобразование, например, не отличает сигнал, являющийся суммой двух синусоид, от ситуации последовательного включения синусоид, не дает информации о преимущественном распределении частот во времени, может дать неверные результаты для сигналов с участками резкого изменения. Исследуемые ряды также далеко не всегда удовлетворяют требованию периодичности и более того, как правило, заданы на ограниченном отрезке времени.

Основы вейвлет-анализа были разработаны в середине 80-х годов Гроссманом и Морле как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. В отличие от преобразования Фурье, локализующего частоты, но не дающего временного разрешения процесса, и от аппарата d-функций, локализующего моменты времени, но не имеющего частотного разрешения, вейвлет-преобразование, обладающее самонастраивающимся подвижным частотно-временным окном, одинаково хорошо выявляет как низко-частотные, так и высокочастотные характеристики сигнала на разных временных масштабах. По этой причине вейвлет-анализ часто сравнивают с "математическим микроскопом", вскрывающим внутреннюю структуру существенно неоднородных объектов.

Указанная универсальность обеспечила вейвлет-анализу широкое использование в самых различных областях знаний. Семейства анализирующих функций, называемых вейвлетами, применяются при анализе изображений различной природы, для изучения структуры турбулентных полей, для сжатия больших объемов информации, в задачах распознавания образов, при обработке и синтезе сигналов, например, речевых, для определения характеристик фрактальных объектов.

Подобно тому, как в основе аппарата преобразований Фурье лежит единственная функция w(t)=exp(it), порождающая ортонормированный базис пространства L2(0,2p) путем масштабного преобразования, так и вейвлет-преобразование строится на основе единственной базисной функции y(t), имеющей солитоноподобный характер и принадлежащей пространству L2(R), т.е. всей числовой оси.

В западной литературе за этой функцией закрепилось название "вейвлет", что означает "маленькая волна", в отечественной иногда ее называют "всплеском", отражая в этом названии и локализацию, и осцилляционный характер поведения.

Первоисточник статьи:

http://www.krsu.edu.kg/vestnik/2002/v2/a15.html