Маркетинговые исследования рынка услуг

Источник: http://www.marketing.spb.ru/read/m17/5.htm

5. Прогнозирование рыночных тенденций

Приложением к данной главе является алгоритмический модуль forecast.zip (7Kb)

"Рынок" представляет собой крайне сложную кибернетическую модель с очень большим количеством внутренних и внешних факторов. Прогнозирование какого-либо фактора рыночной ситуации (например, объем продаж конкретной фирмы) невозможно только на основе тенденции самого фактора. Почему? Поведение отдельного рыночного фактора, позволю себе аналогию, подобно поведению бабочки в полете. Вспомните, как летит бабочка: ее полет выглядит с внешней стороны как "порхание" без определенной цели, хотя, очевидно, что она стремится к определенной цели - к цветку. Мы не обращаем внимания на внешние факторы, влияющие на бабочку: ветер, атмосферное давление, высота от земли, гравитация и т.п., и на внутренние: ее собственные силы, система ориентирования и т.п. Суть в том, что мы со стороны не можем предсказать, к какому цветку прилетит бабочку. Так же ведет себя и изучаемый отдельный рыночный показатель. Очевидно, что на объем продаж фирмы (как отдельный показатель) могут влиять продажи конкурентов, тенденции емкости сегмента, их объемы продажи, конъюнктура товаров-заменителей, сопутствующих товаров (услуг) и многие другие факторы. И такое влияние обусловливает поведение не только фактора объема продаж, но и любого внутрифирменного показателя. Тем не менее, такой прогноз необходим в рамках маркетинговых исследований. И поэтому давайте рассмотрим методику, которая, с одной стороны, не является чистым прогнозированием "показателя по показателю", с другой стороны учитывает взаимодействие показателя с другими рыночными факторами, не усложняя модели до ее не разрешимости.

Итак, давайте рассмотрим задачу, в которой коммерческому предприятию, не имеющему специального штата прогнозистов, необходимо спрогнозировать объем продаж по своему товару (услуге). При этом на рынке нет предприятий монополистов, поведение которых диктовало бы рыночную ситуацию - на рынке присутствует много мелких и средних предприятий. Требуется спрогнозировать объем продаж конкретной фирмы для планирования объема закупок (производства) услуги (услуг) и оценить риск принятия решения.

Этап I. Отбор факторов, вероятно определяющих количественное изменение объема продаж

Прогнозирование начнем с подбора факторов, которые "вероятно" определяют количественное изменение объема продаж. То есть мы создаем гипотезу в отношении возможных факторов, влияющих на поведение кривой продаж. Подбор факторов производится экспертным путем: эксперт по соответствующему рынку предполагает возможные параметры:

которые по мнению эксперта оказывают влияние на поведение продаж;

динамика которых, выраженная математически, известна на том же промежутке, что и объем продаж (то есть это количественный параметр или качественный, который можно преобразовать к количественной характеристике);

относящиеся как к внешним (факторы "внешней среды маркетинга" фирмы), так и внутренним (факторы "внутренней среды маркетинга" фирмы).

Число выбираемых факторов не ограничено, чем больше их будет на первом этапе, тем лучше, это определит более точный результат в прогнозировании. В данном примере (табл. 5.1) мы выбрали три абстрактных фактора, которые мы назвали F1, F2, F3.

Таблица 5.1 Подбор факторов (F1-F3), которые "вероятно" определяют количественное изменение объема продаж (Q)

Дата

Q

F1

F2

F3

мар.97

23

22

12

223

апр.97

34

34

2

456

май.97

55

45

3

556

июн.97

34

56

67

456

июл.97

22

77

34

567

авг.97

34

99

22

560

сен.97

44

102

33

334

окт.97

45

111

89

456

ноя.97

56

122

11

678

В случае затруднения в выборе факторов рекомендуется выбрать "макро" факторы внешней и внутренней среды для конкретного рынка и конкретной фирмы, например некоторые возможные из них:

"внешние факторы среды маркетинга фирмы"

курс валют;

емкость потребительского сегмента;

суммарные продажи на сегменте;

динамика численности конкурентов;

удовлетворенность сегмента товарами на рынке;

"внутренние факторы среды маркетинга фирмы"

наличие товарного запаса;

эффективность работы штата менеджмента фирмы;

затраты на рекламу или тип рекламного сообщения;

изменение способа позиционирования товара;

изменение количества дистрибьютеров товара.

Этап II. Выделение "факторов влияния"

Теперь необходимо разобраться: какие из выбранных факторов ("факторы влияния") действительно оказывают влияние на изменение объема продаж, а какие нужно просто "отбросить" из рассмотрения. Критерием такого соответствия, безусловно, можно считать коэффициент корреляции, который показывает, насколько близки тенденции двух факторов (в данном случае - насколько связано распределение во времени факторов F1-F3, см. рис. 5.1).

Рис. 5.1. Динамика исследуемых факторов

Рис. 5.1. Динамика исследуемых факторов

В табл. 5.2 показан расчет коэффициента корреляции между объемом продаж (Q) и факторами (F1, F2, F3). Коэффициент корреляции может быть рассчитан, например, с помощью программного пакета MS Excel, в котором подобный расчет реализуется функцией "CORREL". Из расчета видно, что по коэффициенту корреляции в данном примере "факторами влияния" будут F1 и F3, а фактор F2 можно отбросить из рассмотрения.

Таблица 5.2 Отбор "факторов влияния" по коэффициенту корреляции

 

 

CORR F1

CORR F2

CORR F3

 

 

0,462

-0,057

0,458

Дата

Q

F1

F2

F3

мар.97

23

22

12

223

апр.97

34

34

2

456

май.97

55

45

3

556

июн.97

34

56

67

456

июл.97

22

77

34

567

авг.97

34

99

22

560

сен.97

44

102

33

334

окт.97

45

111

89

456

ноя.97

56

122

11

678

Этап III. Линейное прогнозирование "факторов влияния"

Теперь в нашем примере мы имеем динамику "факторов влияния" и объема продаж на период с марта 1997 по ноябрь 1997. Соответственно, мы прогнозируем по времени поведение каждого из "факторов влияния" (линейная тенденция для факторов, рассматриваемых в примере представлена в табл. 5.3). В принципе, в таком предсказании более точный результат будет получен при аппроксимации тенденций факторов и оценки прогнозируемого фактора по аппроксимированной функции. Но и использование линейного предсказания, реализуемого функцией "FORECAST" в пакете MS Excel, также допустимо. Способ реализации функции "FORECAST" представлен в табл. 5.3.

Таблица 5.3 Реализация линейного прогнозирования на основе функции "FORECAST" в пакете MS Excel

 

А

В

1

Дата

F1

2

мар.97

22

3

апр.97

34

4

май.97

45

5

июн.97

56

6

июл.97

77

7

авг.97

99

8

сен.97

102

9

окт.97

111

10

ноя.97

122

11

дек.97

=FORECAST(A11;B2:B10;A2:A10)

В табл. 5.4 представлены спрогнозированные линейным образом значения "факторов влияния" для рассматриваемого примера "предсказания объема продаж в будущем периоде".

Таблица 5.4 Линейное прогнозирование "факторов влияния" (спрогнозированная линейная тенденция для факторов F1, F2 представлена выделенными курсивом цифрами)

Дата

F1

F3

мар.97

22

223

апр.97

34

456

май.97

45

556

июн.97

56

456

июл.97

77

567

авг.97

99

560

сен.97

102

334

окт.97

111

456

ноя.97

122

678

дек.97

140

599

янв.98

153

577

фев.98

166

584

мар.98

177

613

Этап IV. Прогнозирование продаж по прогнозу "факторов влияния"

Очевидно, что мы не можем прогнозировать продажи, используя только саму тенденцию продаж во времени, это как раз и рассматривалось бы как "прогнозирование фактора по самому фактору". Но у нас имеется тенденция "факторов влияния", которая по своей сущности определяет поведение тенденции продаж (это следует из рассчитанного нами коэффициента корреляции). И именно эта предсказанная тенденция позволяет нам спрогнозировать объем продаж в соответствии с со значениями каждого из факторов. Реализация такого алгоритма на основе функций MS Excel представлена в табл. 5.5.

Таблица 5.5 Реализация алгоритма предсказания объема продаж по тенденциям "факторов влияния" на основе функций MS Excel

 

A

B

C

D

E

F

1

Дата

Q

F1

Q1 TREND

F3

Q3 TREND

2

мар.97

23

22

 

223

 

:

:

:

:

 

:

 

10

ноя.97

56

122

 

678

 

11

дек.97

=(D11+F11)/2

139

=FORECAST(C11;B2:B10;C2:C10)

598

=FORECAST(E11;B2:B10;E2:E10)

Отметим, что предсказанное значение объема продаж получается как среднеарифметическое от суммы предсказанных значений на основе каждого из "факторов влияния". Это позволяет учесть каждый из "факторов влияния" в прогнозе. Результат прогнозирования для нашего примера представлен в табл. 5.6.

Таблица 5.6 Прогнозирование продаж по прогнозу "факторов влияния"

Дата

Q

Q TREND

F1

Q1 TREND

F3

Q3 TREND

мар.97

23

 

22

 

223

 

:

:

 

:

 

:

 

ноя.97

56

 

122

 

678

 

дек.97

 

46,3

140

48,9

599

43,7

янв.98

 

44,9

153

47,7

577

42,1

фев.98

 

45,2

166

47,7

584

42,7

мар.98

 

55,0

177

69,8

613

40,2

Этап V. Оценка риска прогнозирования

Необходимо учесть, что прогнозирование ведется с целым рядом допущений, которые могут сильно повлиять на наш прогноз:

в наше исследование может не попасть фактор, оказывающий серьезное влияние на продажи;

используем линейное прогнозирование, а тенденция может оказаться значительно сложнее;

производим расчет прогнозного значения, как среднеарифметическое от спрогнозированных по факторам значений (см. табл. 5.6) без учета уровня корреляции соответствующего фактора.

Эти факторы, безусловно, снижают точность прогнозирования. Более того, заметьте (см. табл. 5.6), что прогнозирование в нашем примере периодов последующих за декабрем 1997 года ведется на основе не проверенных временем значений, а значений также спрогнозированных математически. То есть, чем на более длительный период времени мы пытаемся сделать прогноз, тем более не точны прогнозируемые значения.

Указанные выше ограничения не влияют на использование метода (и тем более его не отменяют), а лишь указывают нам на необходимость расчета величины "риска прогнозирования". В случае нашей методики эту погрешность можно оценить как "риск прогнозирования" по соотношению между спрогнозированным значением тенденции продаж (Q TREND) и прогнозными значениями продаж от каждого "фактора влияния" (Q1 TREND и Q3 TREND). Реализация расчета "риска прогнозирования" (var) на основе пакета MS Excel представлена в табл. 5.7.

Таблица 5.7 Реализация расчета "риска прогнозирования" (var) на основе пакета MS Excel

 

A

B

C

D

E

F

G

H

1

Дата

Q

Q TREND

F1

Q1 TREND

F3

Q3 TREND

var

2

дек.97

 

46,3

140

48,9

599

43,7

=((ABS(C2-E2)+ABS(C2-G2))/2)/C2

Как видно из табл. 5.8 расчет "риска прогнозирования" построен на расчете отношения среднеарифметического отклонения прогнозных значений по отношению к среднеарифметическому значению тенденции продаж:

var =((ABS(QTREND - Q1TREND)+ABS(QTREND - Q3TREND))/2)/QTREND.

Оценка риска прогнозирования для нашего примера представлена в табл. 5.8. Необходимо отметить, что с увеличением срока прогнозирования растет и "риск прогнозирования": 6% для декабря 1997 года и 27% для марта 1997 года.

Таблица 5.8 Оценка риска прогнозирования

Дата

Q TREND

F1

Q1 TREND

F3

Q3 TREND

var

дек.97

46,3

140

48,9

599

43,7

6%

янв.98

44,9

153

47,7

577

42,1

6%

фев.98

45,2

166

47,7

584

42,7

6%

мар.98

55,0

177

69,8

613

40,2

27%

"Риск прогнозирования" может быть учтен в объемах закупки услуги или объеме подготовленной услуги (численность наемного штата специалистов) как прямая величина процента от объема продаж. То есть в нашем примере, рекомендуется запланировать на декабрь 1997 года продажи в объеме:

Q= QTREND* var=46,3*0.94=43.5

То есть рассчитанная величина риска снижает планируемый нами объем продаж.

Полная схема "факторного линейного прогнозирования" объема продаж представлена в табл. 5.9, это позволяет оценить или представить весь метод в комплексе: от отбора "факторов влияния" до расчета прогнозных значений объема продаж.

Таблица 5.9  Полная схема "факторного линейного прогнозирования" объема продаж

 

0,46

CORR F1

0,06

CORR F2

0,46

CORR F3

 

Дата

Q

Q TREND

F1

Q1 TREND

F2

Q2 TREND

F3

Q3 TREND

var

мар.97

23

 

22

 

12

 

223

 

 

апр.97

34

 

34

 

2

 

456

 

 

май.97

55

 

45

 

3

 

556

 

 

июн.97

34

 

56

 

67

 

456

 

 

июл.97

22

 

77

 

34

 

567

 

 

авг.97

34

 

99

 

22

 

560

 

 

сен.97

44

 

102

 

33

 

334

 

 

окт.97

45

 

111

 

89

 

456

 

 

ноя.97

56

 

122

 

11

 

678

 

 

дек.97

 

46,3

140

48,9

 

 

599

43,7

6%

янв.98

 

44,9

153

47,7

 

 

577

42,1

6%

фев.98

 

45,2

166

47,7

 

 

584

42,7

6%

мар.98

 

55,0

177

69,8

 

 

613

40,2

27%