Глава 8
Технологии ATM
По прочтении этой главы и после выполнения практических заданий вы сможете:
· перечислить основные характеристики ATM;
· объяснить многоуровневые коммуникации ATM;
· описать структуру ячейки ATM;
· рассказать о том, как работают сети ATM;
· обсудить вопросы проектирования сетей ATM;
· рассказать об использовании ATM в локальных и глобальных сетях;
· обсудить виртуальные локальные сети и их связь с ATM;
· обсудить вопросы-управления локальными и глобальными ATM-сетями.
Технология ATM (Asynchronous Transfer Mode – асинхронный режим передачи) была создана на базе принципов работы широкополосных ISDN-сетей (B-ISDN), поскольку первоначально рассматривалась в качестве основного средства быстрой передачи данных при организации коммуникаций в сетях B-ISDN. По мере развития эта сетевая технология заняла свою нишу в локальных и глобальных сетях, не считая сетей B-ISDN. Операторы дальней связи и региональные телефонные компании предлагают ATM для реализации глобальных коммуникаций, и зачастую эти услуги идут в одном пакете с возможностями SONET, frame relay и другими услугами глобальной связи.
Технология ATM имеет множество достоинств. Она легко масштабируется, поэтому скорость передачи данных в локальных или глобальных сетях может увеличиваться по мере их роста или при перерастании локальной сети в глобальную. С ее помощью можно решать проблемы перегруженности сети, сегментировать сети и даже обеспечивать высокоскоростное подключение настольных систем. Крупные банки и университеты используют ATM для организации глобальных коммуникаций между удаленными площадками, правительственные организации применяют ATM для связи отделений в пределах одного города, а в кинематографической промышленности технологии ATM используются для передачи фильмов.
Несмотря на достаточно широкое распространение, в настоящее время технологии ATM во многих локальных сетях начинают уступать свои позиций технологиям Gigabit Ethernet и 10 Gigabit Ethernet, которые зачастую проще в реализации и обходятся дешевле. В региональных сетях технологии АТM также сталкиваются с конкуренцией со стороны Optical Ethernet. Однако в глобальных сетях они имеют сильные позиции, поскольку совместимы с сетями SONET и frame relay.
В этой главе технология ATM рассматривается подробно. Вы узнаете о характеристиках ATM-сетей, многоуровневых коммуникациях ATM, а также о том, как в ATM-сетях вместо пакетов используются ячейки и как эти сети работают. После знакомства с основами ATM вы узнаете о компонентах ATM-сети и о том, как технология ATM применяется для организации локальных и глобальных сетей. В заключение будет рассказано о связях между ATM и виртуальными локальными сетями, а также об основных принципам управления ATM-сетями.
Введение в ATM
ATM – это метод высокоскоростной передачи информации (включая данные, речь, видео и мультимедиа) по сети. Основу технологии ATM составляют интерфейс и протокол, с помощью которого по обычному коммуникационному каналу можно коммутировать трафик, имеющий как постоянную так и переменную скорость. Также в состав ATM входят оборудованные программы и передающая среда, отвечающие стандартам протокола АТМ. ATM представляет собой интегрированный метод сетевого доступа, который многие производители межсетевого оборудования предлагают для реализации в локальных сетях, а региональные телефонные компании – для организации глобальных сетей. При этом достигаются высокие скорости передачи данных, а стоимость предоставляемых услуг зависит от скорости. На основе ATM реализуется масштабируемая магистральная инфраструктура, которая может взаимодействовать с сетями, имеющими разные размеры скорости и методы адресации.
Разработка технологии ATM началась в конце 1960-х годов и велась компанией Bell Labs, в которой инженеры экспериментировали с высокоскоростной коммутацией ячеек, выступающей в качестве альтернативы коммутаций пакетов. Их задачей являлось объединение коммутации с использованием меток (что является основой для построения сетей с коммутацией пакетов), и временное уплотнение, или мультиплексирование с разделением времен» (time-division multiplexing, TDM) (которое также называется множественным доступом с уплотнением каналов – time division multiple access, TDMA).
Как и в некоторых других технологиях глобальных сетей (например, frame relay), в ATM-сетях используются виртуальные цепи (virtual circuit), называемые каналами (channel). Скорость каналов ATM может составлять 10 Гбит/с, а на момент написания книги уже почти достигнута скорость 40 Гбит/с. Информация передается в виде ячеек, а не в виде пакетов. В отличие от пакетов, ячейки (cell) имеют полезную нагрузку фиксированной длины (ячейки ATM будут рассматриваться подробнее в разд. "Структура ячейки ATM" данной главы). Пакеты же обычно передают данные переменной длины.
Передача информации по каналам ATM осуществляется при помощи коммутации ячеек (cell switching), при которой во всех ячейках в начало каждого временного интервала (окна) TDM помещается короткий признак (или идентификатор виртуального канала). Это позволяет устройствам асинхронно передавать двоичные данные в коммуникационный канал ATM, что делает операции по передаче информации предсказуемыми и постоянными во времени, обеспечивая заранее установленное качество обслуживания (Quality of Service, QoS) для трафика, не терпящего задержки в передаче (например, при передаче речи и видео).
Концепция QoS (см. главу 3) применима к технологии ATM, в которой QoS представляет собой механизм обеспечения гарантированного уровня пропускной способности сети и использования ресурсов. Применительно к ATM это означает, что на основе некоторых признаков, указываемых в заголовке ATM-ячейки для различных типов передаваемой информации (например, данных или файлов мультимедиа), задается определенный уровень производительности и использования ресурсов. QoS-средства ATM имеют два важных достоинства: во-первых, они гарантируют, что для успешной передачи данных для определенной задачи выделены соответствующие сетевые ресурсы; во-вторых, они уменьшают вероятность того, что ценные сетевые ресурсы будут использоваться недостаточно теми задачами, которым они не требуются и которые укладываются в отведенные лимиты.
Поскольку концепция ATM изначально разрабатывалась параллельно с сетями B-ISDN, технология коммутации ячеек первоначально называлась Asynchronous Time Division Multiplexing (ATOM) (асинхронное мультиплексирование с разделением времени). Несколькими годами позже союз ITU-T выбрал эту технологию в качестве основного транспортного механизма для сетей B-ISDN и переименовал ее в Asynchronous Transfer Mode (ATM).
В самом начале основные концепции ATM определялись сетями B-ISDN, например:
· ATM-ячейка содержит 48-байтную полезную нагрузку и 5-байтный заголовок;
· Физический уровень определяет способ передачи двоичных разрядов по проводу на передающем узле и способ их интерпретации на принимающем узле;
· Уровень ATM управляет мультиплексированием ячеек и различными служебными операциями;
· Адаптационный уровень ATM (AAL) определяет протоколы подуровнем которые используются для организации различного высокоуровневой трафика с помощью 53-байтных ячеек.
· ATM Forum был основной организацией, продвигающей реализации ATM на рынке локальных и глобальных сетей. ATM Forum был организован в 1991 году и представляет собой консорциум производителей аппаратных средств поставщиков телекоммуникационных услуг и пользователей, задача которая состояла в совместной с союзом ITU-T разработке спецификаций на глобальные сети ATM, а в настоящее время – и на локальные ATM-сети. Основателями форума являются компании Northern Telecom (Nortel Network Sprint, Sun Microsystems и Digital Equipment Corporation (DEC).
Совет
Вы можете посетить веб-сайт Форума ATM, имеющий адреса www.atmforum.cdH или www.atmforum.org.
По мере увеличения количества реализованных ATM-сетей продолжался разработка стандартов, способствующих широкому использованию АТМ в прикладных службах и внедрению технологий, связанных с передачей видео, мультимедиа и данных. Хотя технология ATM первоначально предназначалась для глобальных сетей, в настоящее время она с успехом применяется и в локальных сетях. Как только ATM превратилась в широко используемую технологию, ее стали поддерживать несколько организаций АТМ стандартизации, включая ANSI, IETF, European Telecommunications Standards Institute (ETSI) и ITU-T. Помимо организаций по стандартизации разработке стандартов ATM принимают участие независимые группы производителей, пользователей и промышленных экспертов. Среди них можно отметить следующие организации:
· ATM Forum, который принимал участие в создании таких спецификаций, как открытые и частные сетевые интерфейсы, User-Network Intelface (UNI) (интерфейс "пользователь-сеть"), Data Exchange Interfa (DXI) (интерфейс обмена данными), Broadband-Intercarrier Interfael (BICI) (интерфейс широкополосной связи частных региональных сетей и Multiprotocol over ATM (MPOA) (многопротокольные коммуникации поверх ATM);
· Internet Engineering Task Force (IETF) (Проблемная группа проектирования Интернета), которая занимается проблемами полной совместимости стандартов ATM с транспортом IP (разработала, например, IETF RFC для спецификации Classical IP over ATM);
· Frame Relay Forum, обеспечивающий совместимость функций ATM с сетями frame relay;
· Switched Multimegabit Data Service Special Interest Group (SMDS SIG) (Специальная группа SMDS), работающая над тем, чтобы службы SMDS могли работать поверх сетей ATM.
В настоящее время технология ATM совместима со следующими технологиями:
· B-ISDN;
· DSL;
· FDDI;
· Frame relay;
· Gigabit Ethernet и Gigabit Ethernet;
· SONET и SDH;
· SMDS;
· беспроводные сети.
Характеристики сетей ATM
Сети ATM могут с высокой скоростью передавать информацию различного типа, для чего данные делятся на ячейки равной длины, к которым прикрепляется заголовок, гарантирующий, что каждая ячейка будет доставлена в указанный узел. Формат ATM-ячейки одинаково пригоден для передачи речи, видео и данных.
Поскольку ATM представляет собой технологию с использованием методов коммутации, она легко масштабируется. По мере увеличения трафика или роста сети можно просто добавлять в сеть новые ATM-коммутаторы. В качестве физических каналов ATM можно использовать разнообразные типы кабеля (с соответствующими скоростями передачи для каждого типа), в том числе: кабель на основе неэкранированной витой пары (UTP) Категории 3, 4 и 5; кабель на основе экранированной витой пары (STP); коаксиальный кабель; многомодовый и одномодовый оптоволоконные кабели. Скорость передачи информации в ATM-сети может составлять 1,544 Мбит/с, 2 Мбит/с (для беспроводных сетей), 2,048 Мбит/с, 6,312 Мбит/с, 34,368 Мбит/с, 44,736 Мбит/с, 25,6 Мбит/с, 51,84 Мбит/с, 100 Мбит/с, 155,52 Мбит/с, 622,08 Мбит/с, 1,2 Гбит/с, 2,048 Гбит/с и 10 Гбит/с (почти реализована скорость 40 Гбит/с). Более низкие скорости (менее 622,08 Мбит/с) характерны для локальных ATM-сетей, а более высокие скорости (свыше 622,08 Мбит/с) используются в глобальных сетях. Производители оборудования стремились к этому, ATM-технологии можно использовать для создания международно-глобальных сетей.
Примечание
Кабель Категории 3 обеспечивает минимальную работоспособность ATM-сети на скорости 25,6 Мбит/с и недостаточно надежен для большинства конфигураций.
Многоуровневые коммуникации ATMI
Архитектура ATM, называемая эталонной моделью протокола ATM (ATM Рrotocol Reference Model), имеет четыре уровня, которые позволяют множеству устройств одновременно работать в пределах единой сети. Технологию ATM отличает от других методов транспортировки данных то, как ее функции реализованы на коммуникационном уровне, соответствующем МАС-подуровне Канального уровня модели OSI. Тот уровень ATM, который соответствует МАС-подуровню, работает независимо от более высоких уровней, благодаря чему он свободен от задач маршрутизации, связанных с сетевым уровней (поскольку все операции по маршрутизации переданы верхним уровням. В ATM-ячейку можно поместить данные практически любого протокола высокого уровня. Четыре уровня ATM представлены в табл. 8.1. Два из этих уровней (Уровень ATM и Адаптационный уровень ATM, AAL) представляет собой уровни, которые реализуют функции, специфичные для ATM.
Таблица 8.1. Уровни АТМ
Уровень |
Функция |
Физический уровень ATM (ATM Physical layer) (содержит два подуровня: Transmission Convergence, ТС, и Physical Medium Dependent, PMD) |
Преобразует ячейки в двоичные разряды, пере даваемые по физическому носителю, а также содержит электрический и физический интерфейсы для ATM (приблизительно эквивалентен Физическому уровню модели OSI) |
Уровень ATM (ATM layer) |
Создает ATM-ячейки, управляет маршрутизацией и обнаружением ошибок (приблизительно эквивалентен Канальному уровню модели OSI) |
Адаптационный уровень ATM (ATM Adaptation layer, AAL) (содержит два подуровня: Convergence и Segmentation and Reassembly, SAR) |
Сегментирует данные, подготавливая процесс создания ATM-ячеек, и управляет обменом ин формацией (т. е. передачей и приемом) с более высокими уровнями (приблизительно эквивалентен Канальному уровню модели OSI) |
Уровень служб и приложений ATM (ATM Services and Application layer) |
Устанавливает связь между узлом, передающим данные, и Адаптационным уровнем ATM согласно запросам различных уровней обслуживания (нет эквивалентов в эталонной модели OSI) |
Физический уровень ATM
физический уровень ATM (ATM Physical layer) преобразует поток ячеек в передаваемые двоичные разряды и управляет работой физического носителя (кабеля). На этом уровне определены параметры электрического и физического интерфейсов, скорости передачи в линии, а также функции управления передачей. Важнейшей задачей рабочей группы ATM были вопросы стандартизации ATM для самых различных типов кабелей.
Физический уровень делится на два подуровня: Transmission Convergence (TC) sublayer (Конвергентный подуровень передачи данных1) и Physical Medium Dependent (PDM) sublayer (Подуровень, зависящий от физической среды передачи данных). Эти подуровни служат для того, чтобы отделить специфические ATM-коммуникации от физического интерфейса, который определяет возможность передачи ATM-ячеек через различные интерфейсы и коммуникационные среды. ТС-подуровень выполняет две функции. Во-первых, на принимающем узле он обрабатывает ячейки, поступающие в виде потока двоичных данных от PDM-подуровня. Во-вторых, ТС-подуровень управляет изменениями скорости передачи данных через физический интерфейс и Уровень ATM, для чего в поток двоичных данных вставляются пустые ячейки. Это может понадобиться потому, что Уровень ATM в коммутаторе может обрабатывать ячейки быстрее, чем требуется для обеспечения допустимой скорости передачи канала.
PDM-подуровень отвечает за адаптацию коммуникаций к передающей среде и связанным с ней скоростям различных интерфейсов. Физический ATM-интерфейс обеспечивает передачу данных в виде электрических или оптических сигналов. Поскольку поначалу технология ATM рассматривалась как средство построения глобальных сетей, первые ATM-сети работали по оптоволоконному кабелю с использованием SONET. В настоящее время ATM-сети реализованы для различных транспортных методов и передающих сред, в числе которых можно назвать следующие:
Его можно было бы также назвать "подуровнем согласования параметров передачи данных". – Прим. пер.
· DS-З со скоростью 44,736 Мбит/с;
· Е-1 со скоростью 2,048 Мбит/с;
· Е-3 со скоростью 34,368 Мбит/с;
· Universal Mobile Telecommunication Systems (беспроводные сети) со скоростью 2 Мбит/с (для протокола IP).
Уровень ATM
Уровень ATM (ATM layer) отвечает за создание ATM-ячеек. Он определив структуру ячеек, их маршрут и методы обнаружения ошибок, а также обеспечивает качество обслуживания (QoS) для некоторой виртуальной сети или канала. Функции этого уровня выполняются многими устройствам ATM-сети. Существуют две основных разновидности ATM-оборудован ATM-коммутатор и подключенное устройство ATM. АТМ-коммутатор (ATM switch) попросту передает по сети ATM-трафик, а также обеспечивая качество обслуживания (QoS) для каждого виртуального канала. QoS-марка в заголовке ячейки позволяет ATM-сети идентифицировать тип трафика Для каждого типа трафика имеются свои допустимые параметры, определяющие время задержки, точность и пропускную способность, а QoS-Maркер определяет уровень качества обслуживания (QoS), необходимый для того типа данных, которые содержатся в ячейке. Например, при передаче мультимедийных потоков информации допускаются меньшие задержки, чем при пересылке двоичных данных, а передача данных требует более высокой точности. Если для передачи данных определенного типа нельзя обеспечить качество обслуживания (QoS), запрос на получение доступа к некоторому виртуальному каналу ATM (ATM virtual circuit) отклоняется. Примеры режимов использования службы QoS перечислены в табл. 8.2. Подключенное устройство АТМ/(АТМ attached device) преобразует поток данных в поток АТМ ячеек, передаваемых по ATM-сети, а также выполняет обратное преобразование. Подключенные устройства ATM представляют собой рабочие станции или серверы, имеющие ATM-интерфейс.
л Таблица 8.2. Режимы использования службы QoS в АТМ-сети
Режим использования службы |
Задержка |
Точность |
Производите-льность |
Передача файлов |
Допускаются большие задержки |
Точность важна, при потере ячейки требуется повторная передача, что снижает пропускную способность сети |
Данные передаются пакетами ("взрывообразный" трафик), между которыми имеются периоды ожидания (паузы) |
Интерактивный торговый терминал |
Допускаются маленькие задержки (интервалы между посылками должны составлять 100 мс и меньше) |
Потери ячеек не допускаются |
Низкая скорость передачи, отсутствуют всплески трафика, низкая нагрузка на сеть |
Интерактивное неподвижное изображение |
Допускаются маленькие задержки (интервалы между посылками должны составлять 100 мс и меньше) |
Точность важна, при потере ячейки требуется повторная передача, что снижает пропускную способность сети |
Средняя скорость передачи и большие периоды ожидания |
Видео в реальном масштабе времени |
Допускаются очень маленькие задержки |
Потери ячеек не до пускаются |
Постоянная скорость передачи, всплески трафика и периоды ожидания |
Передача речи |
Допускаются средние задержки |
Допускаются большие потери ячеек (до 1%) только после ухудшение качества становится заметным |
Короткие всплески трафика периодами этого ожидания предсказуемой длительности |
Некоторые реализации службы QoS в ATM-сети (например, для передачи мультимедиа) требуют, чтобы Уровень ATM задавал уровень обслуживания в процессе согласования условий передачи между передающим узлом и АТМ-коммутатором. Служба управления подключением к сети устанавливает согласованную скорость передачи и пропускную способность виртуального канала.
Основная задача ATM-коммутаторов – обеспечить передачу ячеек в заданный принимающий узел, сохранив их очередность. Если обнаруживается потеря некоторой ячейки, передающему узлу посылается запрос на повторную передачу. Когда некоторая ячейка поступает во входной интерфейс ATM-коммутатора, Уровень ATM добавляет в нее идентификатор виртуального пути/идентификатор виртуального канала (virtual path identifier/virtual channel identifier (VPI/VCI)). Эти идентификаторы позволяют ячейке выбрать нужный выходной интерфейс, они действуют только локально (т. е. могут анализироваться и интерпретироваться только тем коммутатором, которому они предназначаются), и одни и те же идентификаторы VPI/VCI могут повторно назначаться в каждом ATM-коммутаторе. После того как определен нужный выходной интерфейс, ячейка передается Физическому уровню ATM для передачи в следующий канал. ATM-коммутаторы могут также использоваться для установки флагов перегрузки сети, а также для буферизации и временного хранения ячеек в тех случаях, когда возникает перегруженность сети или имеются конфликты при выборе порта коммутатора.
Адаптационный уровень ATM (AAL)
Адаптационный уровень ATM (ATM Adaptation layer, AAL) в первую очередь отвечает за сегментацию и сборку/разборку данных при создании/анализе ATM-ячеек, а также назначает соответствующий уровень QoS трафику различного типа (например, в процессе передачи речи, видео и двоичных данных). Кроме того, этот уровень обеспечивает четыре класса (типа) обслуживания, что отражено в табл. 8.3.
Таблица 8.3. Классы обслуживания для Адаптационного уровня
Класс обслуживания AAL (тип AAL) |
Описание |
AAL Type 1 |
Изохронная (равномерная во времени) служба с постоянной скоростью передачи (CBR) для приложений с установлением соединения (connection-oriented), предназначенных для пересылки речи и видео; обычно используется коммуникационными службами Т-1 (обратите внимание на то, что линия DS-1 определяет уровень передачи цифрового сигнала) |
AAL Type 2 |
Изохронная служба с переменной скоростью передачи (VBR) для приложений с установлением соединения (например, для передачи сжатого видео, что включает в себя пакетную передачу речи и непосредственно видеосигналов) |
AAL Type 3/4 |
Служба с переменной скоростью передачи для пакетной передачи данных локальных сетей, одновременно реализует коммуникации как с установлением, так и без установления соединения (connectionless) (изначально предназначалась для совместимости со службой SMDS) |
AAL Type 5 |
Пониженный вариант класса AAL Type 3/4, определяющий службу с переменной скоростью передачи, которая обеспечивает передачу двоичных данных (как с установлением, так и без установления соединения) и совместима с ATM-коммутацией, передачей IP-пакетов, сетями Х.25 и frame relay |
Адаптационный уровень ATM делится на два подуровня: Convergence sublayer (конвергентный подуровень) и Segmentation and Reassembly (SAR) sublayer (подуровень сегментации и сборки). Каждый из этих подуровней решает; свои задачи. Сначала конвергентный подуровень получает пакеты от более высоких уровней, назначает класс обслуживания для информации различного типа (речь, видео или двоичные данные) и создает модули данных протокола (PDU), передаваемые SAR-подуровню. SAR-подуровень, в свою очередь, преобразует PDU-модули в 48-байтную полезную нагрузку ячеек и пересылает ячейки Уровню ATM. На принимающем узле информация преобразовывается из ячеек в пакеты, которые затем обрабатываются более высокими уровнями принимающего узла.
Именно на Адаптационном уровне реализованы все специфические особенности технологии ATM и именно на этом уровне функционирует QoS-служба ATM-сети, а также обеспечивается надежность ATM-коммуникаций.
Уровень служб и приложений ATM
Уровень служб и приложений ATM (ATM Services and Application layer) определяет класс обслуживания, необходимый для передачи информации, и устанавливает связь между узлом, генерирующим поток данных, и Адаптационным уровнем ATM. Классы обслуживания ATM-сетей зависят от потребностей приложений, при этом используются следующие критерии: способ передачи потока данных, необходимая полоса пропускания и объем передаваемой информации. Определены четыре класса обслуживания, каждый из которых связан с некоторым типом службы Адаптационного уровня (табл. 8.4).
Таблица 8.4. Классы обслуживания для Уровня служб и приложений ATM
Служба Класса А |
Служба Класса В |
Служба Класса С |
Служба Класса D |
|
Тип службы |
Передача речи и видео в реальном масштабе времени |
Пакетное видео |
Локальный АТМ-трафик |
SMDS-трафик |
Тактирование |
Постоянно е |
Постоянное |
Отсутствует |
Отсутствует |
Скорость передачи |
CBR |
VBR |
VBR |
UBR и ABR |
Тип коммуникаций |
С установлением соединения |
С установлением соединения |
С установлением и без установления соединения |
С установлением и без установления соединения |
Связь с типом AAL |
Туре1 |
Туре 2 |
Туре 3/4 или 5 |
Туре 3/4 или 5 |
Классы обслуживания можно также рассматривать по типу передачи данных
· служба с постоянной скоростью передачи (constant bit-rate, CBR) – виртуальный коммуникационный канал с фиксированной полосой проникания, названный службой Класса А;
· служба с переменной скоростью передачи (variable bit-rate, VBR) – виртуальный канал с изменяющейся полосой пропускания, делится на 4 класса: аббревиатура VBR-RT обозначает службу реального времени Класса В, а для службы Класса С, не работающей в реальном времени используется обозначение VBR-NRT;
· служба с неуказанной скоростью передачи (unspecified bit-rate, UBR) виртуальный канал, использующий имеющуюся полосу пропусканий не гарантирующий доставку данных в течение некоторого времени также не обеспечивающий отсутствие потерь данных; называется службой Класса D;
· служба с доступной скоростью передачи (available bit-rate, ABR) – также виртуальный канал, как и UBR-канал, за исключением того, что гарантирует целостность данных; называется службой Класса D.
Структура ячейки ATM
ATM-ячейка очень проста по сравнению со структурами других MOflyjaB данных. Структура ячейки определяется Уровнем ATM, длина ячейка равна 53 байтам. Каждая ячейка имеет 5-байтный заголовок для хранения служебной информации и 48 байтов полезной нагрузки (данных).
Размер ATM-ячейки (рис. 8.1), равный 53 байтам, выбран не сразу, поскольку интересы основных участников Форума ATM различались и предъявляли разные требования к спецификациям. Например, для задач передачи больше подходила ячейка длиной 37 байт, которая соответствовала стандартной 37-байтной ячейке для передачи голоса. Длина в 53 байта была выбрана как компромисс, позволяющий пересылать речь, а также видео данные.
Основная функция заголовка ATM-ячейки (рис. 8.2) – снабдить каждую ячейку информацией о канале и пути. ATM-коммутатор, получив ячейки определяет, по какому виртуальному соединению эта ячейка должна передаваться. Заголовок ячейки содержит следующие поля:
· Базовое управление передачей (Generic Flow Control, GFC) – только для функций локального управления; значение этого поля не передается между конечными узлами;
· Идентификатор виртуального пути (Virtual Path Identifier, VPI) – содержит первую часть адреса ATM-маршрутизации, определяющую виртуальный путь между пользователями или между пользователем и ATM-сетью;
· Идентификатор виртуального канала (Virtual Channel Identifier, VCI) – содержит вторую часть адреса ATM-маршрутизации, определяющую виртуальный канал между пользователями или между пользователем и ATM-сетью;
· Признак типа полезной нагрузки (Payload Type Indicator, PTI) – определяет тип данных в поле полезной нагрузки, а также может содержать пользовательскую, сетевую или управляющую информацию;
· Приоритет потери ячейки (Cell Loss Priority, CLP) – это поле определяет, может ли ячейка быть выброшена или нет (значение, равное нулю, указывает на то, что ячейка имеет высший приоритет и не может быть удалена);
· Управление ошибками заголовка (Header Error Control, НЕС) – используется для обнаружения ошибок и исправления однобитных ошибок.
Принципы работы сетей ATM
Коммутируемой называется такая сеть, в которой передающий узел находит некоторый путь к принимающему узлу для каждого сеанса передачи данных. При этом во внимание принимаются несколько параметров, в том числе доступность каналов, скорость линии, стоимость канала и надежность доставки. В зависимости от типа передаваемой информации, два устройства могут в разных сеансах связи использовать различные пути. Например, если после речевых коммуникаций осуществляется передача мультимедиа, то для каждого типа коммуникаций требуются разные характеристики времени Доставки и надежности.
Примечание
Процедура определения пути связана с типом используемого канала. В случай коммутируемого виртуального канала путь выбирается при создании канала, по окончании сеанса для следующего сеанса может быть определен другом путь. Для постоянного виртуального канала путь не меняется от одного сеанса связи к другому (виртуальные каналы ATM рассматриваются в следующей разделе).
ATM-коммутатор получает входящую ячейку и намечает для нее маршрут я указанному интерфейсу ATM-коммутатора, чтобы эта ячейка смогла достичь пункта назначения. В зависимости от архитектуры сети, ячейка может пересекать один или несколько ATM-коммутаторов перед тем, как она достигнет последнего коммутатора на своем пути и будет преобразована в пакет, который будет получен принимающим узлом. Пунктом назначения ячейки может быть другой коммутатор или – в случае групповых пересылок – несколько коммутаторов. Эта информация извлекается из заголовка ячейки В тех сетях, в которых имеется множество путей, необходимо применять специальные протоколы ATM-маршрутизации, например, Private Network-to-Network Interface (PNNI) (частный межсетевой интерфейс). С помощью этих протоколов коммутаторы обмениваются таблицами соединений. Эти таблицы содержат сведения о различных путях, что позволяет каждому коммутатор выбирать наиболее подходящий путь для каждого сеанса связи.
Виртуальные каналы ATM
В ATM-сетях для создания информационных магистралей между передающим и принимающим узлами используются виртуальные каналы (виртуальные цепи). Виртуальный канал представляет собой некую магистраль между двумя узлами коммутируемой сети, которая выглядит как выделенное двух точечное соединение и "прозрачна" для пользователя. В ATM-сетях существуют три типа виртуальных каналов: постоянные, коммутируемые и интеллектуальные постоянные виртуальные каналы.
Постоянный виртуальный канал (PVC)
Постоянный виртуальный канал ATM (ATM permanent virtual circuit, PVC представляет собой выделенную цепь с заранее определенным путем, которая может иметь фиксированную полосу пропускания между двумя конечными точками. Канал этого типа всегда работоспособен и активен с момент та своего создания, что исключает задержки, вызванные установлением. И разрывом канала. Примером постоянного виртуального канала может служить связь между двумя ATM-совместимыми коммутаторами в сети со смешанной (свободной) коммутацией. Такой канал должен всегда быть активны для каждого коммутатора, т. к. это упрощает коммуникации и обновление информации о маршрутизации, которой обмениваются маршрутизаторы. Постоянные виртуальные каналы вручную устанавливаются поставщиком услуг или сетевым администратором. Если вы получаете PVC-канал от поставщика услуг, то вам нужно сообщить адрес пункта назначения, среднюю полосу пропускания или согласованную скорость передачи информации (committed information rate, CIR), а также расписание работы канала (когда вы запрашиваете PVC-канал в частной сети, администратору локальной сети известны эти параметры). При этом вы сможете оплачивать услуги ежемесячно. Поставщик PVC-канала или сетевой администратор могут создать канал с помощью удаленного терминала, задавая полосу пропускания канала и выполняя любые другие настройки по его конфигурированию. Одним из недостатков PVC-каналов является то, что их нужно создавать и конфигурировать вручную.
Коммутируемый виртуальный канал (SVC)
Коммутируемый виртуальный канал ATM (ATM switched virtual circuit, SVC) создается и разрывается по мере необходимости. Он представляет собой временное соединение, которое создается по запросу от средств передачи информации и которое активно только в течение того времени, пока устройства обмениваются данными. По завершении коммуникаций канал разрывается, и все его ресурсы возвращаются в пул ресурсов. SVC-канал динамически создается служебными программными средствами с учетом параметров, задаваемых оконечными устройствами, коммуникационным оборудованием и средствами ATM-сети, при этом ручное вмешательство не требуется. Процесс создания SVC-каналов выглядит так:
1. ATM-коммутатор получает от передающего устройства запрос на соединение. Коммутатор проверяет, какую полосу пропускания запросило это устройство, и если требуемая полоса пропускания недоступна, то запрос отвергается. Если полоса пропускания не указана, коммутатор выделяет такую полосу, которая задана по умолчанию.
2. Запрос на соединение пересылается принимающему устройству, и как только это устройство обнаружено, коммутатор(ы) передает(ют) обратно идентификатор виртуального пути (VPI), который указывает, к какому виртуальному каналу необходимо подключить передающее устройство.
3. После того как передающее устройство получит идентификатор виртуального пути, коммутатор заканчивает операцию, назначая некоторый идентификатор виртуального канала (VCI).
Преимущество SVC-каналов состоит в том, что они незаметны для пользователя с точки зрения операций по их созданию и удалению. Эти каналы не требуют ручного конфигурирования, поэтому не создают работы для сетевого администратора. Недостатком каналов этого типа являются задержки, вызванные операциями установления и разрыва канала (хотя, если сеть разработана правильно, эти задержки незаметны для пользователей).
Интеллектуальный постоянный виртуальный канал (SPVC)
Интеллектуальный постоянный виртуальный канал ATM (ATM smart permanent virtual circuit, SPVC) объединяет в себе свойства постоянного и коммутируемого виртуального канала. Такой канал, как и PVC-канал, требует ручного конфигурирования (хотя только на оконечных устройствах). Как и SVC-канале, для каждого сеанса связи с использованием SPVC-канала указывается индивидуальный путь к коммутатору или к тем коммутаторам, через которые данные должны передаваться. Кроме того, как и для PVС каналов, операции создания и удаления SPVC-канала не вызывают задержек, поскольку этот канал сконфигурирован заранее. Подобно SVC-каналам, SPVC-канал отказоустойчив благодаря наличию альтернативных маршрутов. Еще одним достоинством SPVC-канала является то, что он обеспечивает заданную полосу пропускания. Однако, как и в случае PVC-каналом эта полоса пропускания используется не полностью в моменты отсутствия коммуникаций или при низкой нагрузке на сеть. Недостаток SPVC-Kaнала состоит в том, что для их создания требуется время, а сетевому администратору нужно учиться их использовать.
Характеристики ATM-коммуникаций
ATM представляет собой технологию, предусматривающую создание логических соединений, поскольку ATM-ячейки "привязаны" к конкретному виртуальному каналу и могут передаваться только по нему. Такая особенности делает технологию ATM более эффективной, чем сети Ethernet и ТоRing, в которых все подключенные устройства могут видеть весь сетевой трафик.
Виртуальные каналы (виртуальные цепи, virtual circuit) определяют логические каналы, по которым осуществляются ATM-коммуникации. Эти каналы образуются двумя компонентами:
· виртуальными каналами (virtual channel, VC), которые являются логическими соединениями между устройствами;
· виртуальными путями (virtual path, VP), каждый из которых представляет собой некоторый набор виртуальных каналов.
Заголовок ATM-ячейки содержит идентификатор виртуального пути (VPI) который является той частью адреса маршрутизации, которая идентифицирует линию связи, организованную с помощью некоторого виртуального пути. Этот идентификатор можно рассматривать как эквивалент порта (например на коммутаторе) или интерфейса, связанного с некоторой подсетью. Идентификатор виртуального канала (VCI), также присутствующий в заголовке ATM-ячейки, определяет виртуальный канал внутри виртуального пути. Каналы внутри некоторого пути, определенного идентификатором виртуального пути (VPI), представляют собой отдельные составляющие всего виртуального пути. Соединения с использованием виртуальных каналов ATM осуществляются подобно тому, как по коммуникационному коробу в здании проходит множество отдельных электрических или телефонных проводов.
Достоинство архитектуры ATM-сетей состоит в том, что ячейки, поступающие во входящий порт ATM-коммутатора, легко можно направить на нужный исходящий порт. Для соединений, которые группируются в некотором общем виртуальном пути, требуется лишь один набор административных служб (т. е. для каждого соединения не нужны отдельные службы). Кроме того, легко создавать новые виртуальные каналы, поскольку начальная конфигурация пути уже определена. Еще одно преимущество заключается в том, что если какой-нибудь путь становится недоступным (из-за перегрузки или отказа сети), все каналы, проходящие по этому пути, автоматически перестраиваются и проблема устраняется.
Вопросы проектирования сетей ATM
На конфигурацию ATM-сети влияют следующие факторы:
В последующих разделах будет рассматриваться каждый из перечисленных факторов.
Компоненты сетей ATM
Службы ATM-сети реализуются с помощью адаптеров (или сетевых плат) ATM, установленных в устройства, взаимодействующие по сети, а также ATM-коммутаторов. Эти устройства (рис. 8.3) функционируют на самых нижних трех уровнях эталонной модели ATM.
Интерфейс "пользователь-сеть" (User-Network Interface, UNI) и Межсетевой интерфейс (Network Node Interface, NNI) ATM-сетей рассматриваются в этой главе далее.
ATM-коммутаторы
ATM-коммутатор осуществляет соединение между двумя оконечными устройствами. По сути, он передает ATM-ячейки от передающего узла к принимающему. Соединение между двумя ATM-коммутаторами используется совместно в пределах возможностей одной коммуникационной среды, которая делится на множество виртуальных каналов, пересылающих ячейки (рис. 8.4). В отличие от локальных сетей с общей передающей средой, конечные узлы ATM-сети не используют полосу пропускания совместно, поскольку каждый из них имеет выделенную полосу пропускания и выделенную линию связи – виртуальный канал. Наличие выделенной линии связи делает возможным осуществление одновременных коммуникаций без перегрузки сети (их число ограничено лишь количеством портов коммутатора);
Использование идентификаторов VPI/VCI упрощает процесс коммутации что делает ATM-коммутаторы очень эффективными. Когда входящая ячейка поступает на интерфейс коммутатора, анализируется адресная информации о маршрутизации и ячейка направляется в соответствующий исходящий интерфейс. ATM-коммутатор, начиная процесс коммутации, не ждет, пока ячейка будет обработана целиком. Это значительно ускоряет процесс передачи ячейки. Коммутатор считывает целевой адрес ячейки и перенаправляет ее в соответствующий исходящий интерфейс. Кроме того, он выполняя лишь некоторые операции по обнаружению ошибок, в силу чего не возникают задержки, которые могли бы появиться при наличии сложного механизма поиска ошибок. ATM-сети подобны сетям frame relay в том смысле, что большинство функций по обнаружению ошибок переданы протоколу, передаваемому по ATM-сети (например, протоколу IP).