ENG     RUS     UKR                                                                                                                                      DonNTU          Master's portal
Vitaly Berkovsky    Vitaly Berkovsky

         Faculty: Physico-metallurgical 

         Speciality: Industrial heating technology's

         Subject of master's work: Development of the thermal mode of the impulsive heating

                                                     well with one overhead gas-ring on the basis of the 

                                                     complex zonal attended model.

        Scientific adviser: Ph.D. Yu. Kurbatov

            E-mail: bervit07@rambler.ru


The biography          Master's work          Library          Links

Master's work

           In rental production of black metallurgy for heating of steel purveyances before treatment by pressure the fuel stoves of periodic action are used, thus some of them thanks to the compactness of location in a workshop are had by the high group indexes of productivity being on a 1 m2 area of workshop. Such indexes turned out possible due to the assimetrichnogo location of torch and teploispolzuyushih devices (recuperators), that in same queue defined the substantial failing - considerable unevenness of distributing of temperature on a volume working chamber. For example, in some chamber stoves for heating of steel bars which in metallurgy are accepted to name nagrevatelnimi wells with heating by one overhead gasring (NK OVG), the most high temperature is observed in overhead part of well vblizi a frontal wall, where usually produce measuring of temperature by termoparoy of the system of adjusting, (t9, the pic. 1), and the most cold region is disposed in lower part of the working chamber NK OVG – vblizi dimootvodyashego channel (t18, pic.1). The overfall of temperatures between these points arrives at 300ºС (at the level of the temperatures 1250 - 1350ºС) in the initial period of heating, that results in the uneven heating of bars in sadke consisting of 16 – 20 bars, to the increase of duration of heating of all sadki, and, consequently, and rise of specific expense of fuel.

       For the of many years period of the industrial use NK OVG the row of methods of decline of unevenness of the temperature field is offered: application of swinging gasrings; application of the swinging torch declined by the visokoskorostnoy stream of the compressed air; setting of protective wall before a dimootvodyashim channel; setting of additional ploskoplamennih gas-rings in the lateral walls of working chamber and dr. The offered methods partly decided a task, but turned out either enough difficult in exploitation, or resulted in worsening of the use of useful area of stove, or resulted in the loss of the above all NK OVG dignity – compactness of location in a workshop.

       One of the known methods of decline of unevenness of the temperature field in NK OVG is the impulsive heating which consists in the continuous serve of fuel in the period of self-control of metal in the set interval of temperatures. Switching from the minimum expense of fuel (Bmin) to maximal (Bmax) one is carried out at the overfall of temperatures in working space of stove between hot and cold points, equal ∆tк = ∆tн*k, and switching from the maximal value (Bmax) to minimum (Bmin) one – under reaching the set temperature in the hot point of working space of stove, where  ∆tн - overfall of temperatures in hot (t9) and cold (t18) points in the moment of switching with Bmax on Bmin; ∆tк - overfall of temperatures in hot and cold points in the moment of switching with Bmin on   Bmax; k - coefficient of smoothing. Switching are produced with forestalling allowing to eliminate sharp skachki of pressure in a working chamber. Dignity of the impulsive heating NK OVG consists in absence of necessity of some changes in construction of stove for the receipt of the even heating, and the poperemennoe heating of sadki by «long and «short» torches» is instrumental in smoothing of temperature in a working chamber. Depending on quality of management by the impulsive heating it is possible increase of productivity and specific cost cutting of fuel on 6 – 10%.

       Complication in realization of the impulsive heating is insufficiency of information about the temperature field of stove and heated metal, necessary for determination of moment of the timely switching of fuel. It is possible for the receipt of complete information to apply the mathematical attended zonal model of burning of fuel and heat exchange, which consists of joint decision of tasks of the unstationary temperature fields of metal and obmurovki (laying), thermal zonal balance and function of burning down of fuel. A model foresees the division of working chamber on by a volume computation areas (the pic. 1): on a vertical line – on overhead and lower, on a horizontal line – on the number of bars which are located in one row, for example, for NK OVG with sadkoy 100 t and mass of bar a 5, 56 t common number of areas equally 18.

      1
Picture 1 – Chart of the NK OVG breaking up on areas

       In accordance with the chart of breaking up of well on areas (pic.1) can be selected on three types of equalizations of thermal balance for overhead and lower areas:

                   For extreme, fellow creature to the gasring, the areas 1:

3

                   for areas 2 – 8:

                                         4]               

                 for the extreme distant area 9:

5

                 for the area 10:

6

               for the areas 11-17:

7

               for the area 18:

8

       where a - coefficient of burning down of fuel in an area; В - expense of fuel; Qнр  - warmth of combustion of fuel; Vг, сг - output of products of combustion (gases) on unit of fuel and heat capacity of gases; tг - temperature of gas; Lд, св - actual expense of air on unit of fuel and heat capacity of air; tв - temperature of air; Q - power of radiation from an area in an area; м - is a metal; г - gas; к - laying (obmurovka); u - number of area.

       At the decision of task the period of heating is broken up on steps at times, the values of which are determined by the decision of internal task. From equalization of thermal balance on every step the temperature of gas (mixtures of products of combustion and air) in every area of tru, which is used further as a border condition for the decision of unstationary task for a bar and obmurovki of stove, is determined at times.

       In a model the function of burning down of fuel on length of stove is taken into account, difficult radiation heat exchange between the products of combustion, internal surface of the heat-resistant laying and surface of metal. The function of burning down of fuel is adopted on the basis of experimental data and can be corrected at their accumulation. For example, function of burning down for the long torch (at Bmax aumax  and for short (at Bminaumin   are resulted on the pic. 1. Except for it, in a model a heat exchange is taken into account between neighbouring areas and pereizluchenie from overhead areas in lower, and also heat exchange between the element of surface of the heated bar and elements of surface of neighbouring bars, internal surface of obmurovki, gas volumes of lower and overhead areas.

  The temperature field of metal is determined by the decision of three-dimensional task of heat conductivity:

10

with the scope terms of III family:

11

where λ - coefficient of heat conductivity of metal, ρ - closeness of metal, c - heat capacity of metal,  aлуч - coefficient of heat emission by the radiation,  aконв - coefficient of heat emission by convection, tпеч - temperature of stove, which the temperature of conditional absolutely black emitter giving a thermal stream on the heated metal as a sum of thermal streams from gases and laying is, and, which is usually measured by termoparoy or radiation pyrometer and is used in the systems of adjusting:

                                                   12

where εгкм – the resulted degree of blackness in the system «gas – laying ‑  metal» εпеч м   the resulted degree of blackness in the system to be «stove ‑  metal», Тг – temperature of gas, Тм – temperature of metal.

       At the decision of three-dimensional task of heat conductivity the sixpoint eventual non-obvious raznostnaya chart of variable directions is used, for the decision which the method of breaking (method of fractional steps)up, which consists that an intricate multidimensional problem in the process of raznostnogo decision is replaced by the great number of more simple odnomernih tasks, was used to. A bar is broken up on n steps on a co-ordinate, for NK OVG the heated bar was broken-down, for example, on six segments on three axes of co-ordinates. In the case of three-dimensional task of heat conductivity the method of breaking up results in the following odnomernoy chart:

                                                  13

        In each of raznostnih equalizations members approximating second derivative on the two from co-ordinates can be dropped, thus at the decision of the system of equalizations advancement in time takes place on 1/3 temporal step. Approximating expressions adopt the following kind:

                                                                                 14

         For determination of the unstationary temperature field of bar   a co-ordinate the line of which settles accounts on the given step at times (∆τ)comes forward as the active co-ordinate Ктек , as auxiliary – two co-ordinates which remained (Квсп1, Квсп2), which moving is done on:

                 Квсп1 = Квсп1 + ∆Квсп1;   Квсп2 = Квсп2 + ∆Квсп2 ,

where Квсп1, Квсп2 – step on a co-ordinate;  ∆Квсп1, ∆Квсп2 – increase on a co-ordinate.

       The temperature of current active co-ordinate settles accounts on the method of progonki. As a current co-ordinate (Ктек) on the first step the co-ordinate  of  comes forward at times (τ=1/3*∆τ) x, y and z – auxiliary (Квсп1 и Квсп2 accordingly). Sizes and quantity of knots of bar are adopted according to co-ordinates. On the second step comes (Ктек = у) forward an at times (τ=2/3*∆τ) current co-ordinate, and auxiliary – Квсп1 = х and Квсп2 = z. On the third step at times (τ=∆τ)  Ктек = z, Квсп1 = x, Квсп2 = y. Presentation of temperatures of bar is carried out as a three-dimensional array.

       The temperature field of obmurovki (laying) was determined by the decision of odnomernoy task of unstationary heat conductivity for a mnogosloynoy wall with the scope terms of III family on internal and external surfaces on the standard method of eventual differences.

       Thus, in work the principles of construction of mathematical teplofizicheskoy model of fuel chamber stove of periodic action are resulted. A model is attended, in which jointly decides the external and internal tasks of heat exchange, bound by thermal balance, and scope terms on motion of process of heating are formed. A model is zonal (mnogosloynoy), that allows to define distributing of parameters of warming environment on a volume working chamber. In a model the function of burning down of fuel, allowing to set the stake of fuel burning in every area at the diffusive (I.e. most difficult at the design) burning, is entered. A model is the teplofizicheskoy basis of the mathematical providing of the system of automatic control, for example at the impulsive heating of stove.

Books:   

1. Губинский В.И. Усовершенствование нагрева слитков в колодцах // Металлургическая и горнорудная промышленность, 1975. - № 1. - С. 41-43.

2. Еринов А.Е., Сезоненко Б.Д., Троценко Л.Н., Яковенко А.Т. Повышение эффективности работы нагревательных колодцев с одной верхней горелкой // Экотехнологии и ресурсосбережение, 2000. - №1. - с.65-67.

3. Колобов П.И., Боодин П.Э., Дарманян А.Г. и др. Опыт работы рекуперативных нагревательных колодцев с одной верхней горелкой // Сталь. - 1962. - с.566-572.

4. Производство блюмов, слюбов и заготовок из углеродистых и легированных марок стали в обжимном цехе // Технологическая инструкция ТИ 234-П.03.01-2002. - с.20-30.

5. Шаламов Ю.Н. Исследование работы и совершенствование конструкции, способа отопления и тепловых режимов нагревательных колодцев с верхней горелкой: Дис. канд.тех.наук: 05.16.02., - Жданов, 1980. - 258с.

6. Губинский В.И., Сацкий В.А., Гладуш В.Д. и др. Работа нагревательного колодца с качающейся горелкой // Сталь, 1976. - № 9. - С. 862-869.

7. Капустин Е.А., Шмачков П.Л., Кривенко П.Г. и др. Работа нагревательных \колодцев усовершенствованной конструкции // Сталь. - 1983. - №8. - с.88-90.

8. Hasegava H., Shoda H. Energy saving soaking pits // Iron and Steel Eng. - 1981.- Vol. 58, №9. - P. 42-47.

9. Кривенко П.Т., Шаламов Ю.Н., Кулаков А.М. и др. Улучшение тепловой работы нагревательных колодцев с одной верхней горелкой // Металлург. и горноруд. пром-сть. - 1978. - №24. - с. 44-46.

10. Котляревский Е.М., Баженов А.В., Заварова И.С. и др. Интенсификация процессов нагрева в колодцах с верхней горелкой // Сталь - 1978. - №6. - с.566- 568.

11. Казанцев Е.И. Промышленные печи. М., "Металлургия", 1975. - с.312.

12. Ключников А.Д., Иванцов Г.П. Теплопередача излучением в огнетехнических установках. М., "Энергия", 1970.- с.88-113.

13. Тайц Н.Ю. и др. Расчёты нагревательных печей. Киев, "Техника", -1969.-с.355-374.

14. Леонтьев А.И. Теория тепломассообмена. М.: Высшая школа, 1979. - с.92-102

16. Удосконалення системи опалення нагрівальних колодязів: Звіт про НДР / Донецьк. політех. ін-т. (ДПІ); Керівник Ю.Л. Курбатов. - Інв.№ Б730069. - М., 1980. - 75 с.: іл.

17. Дубровский В.С., Дубровская Ю.А. Методи повышения продуктивности рекуперативних нагревательных колодцев // Сб. статей Доннии ЧМ, 1968. - № 5. - С. 178-181.

18. Корочкин Е. И., Колюбакина Г.С. Поліпшення работи нагревательных колодцев с одной верхней горелкой // Черметинформация, 1972. - Т.13, № 3. - С.12.

19. А.с.1351963 СССР, МКИ С 27Д 1/36 Способи отопления термических печей / Ю.И. Розенгарт, Э.М. Гольдфарб, В.Л. Полєтаєв и др.(СССР). - № 153927; Заявлено 12.09.61., Опубл. 07.02.63. Бюл. № 83 - 3с.

20. Миткалинный В.И., Утенков А.Ф., Барбаев В.И. и др. Исследование закрученного потока относительно к нагревательному колодцу с центральной горелкой // Ведомости вузов. Чорная металлургия, 1979. - № 5. - С. 119- 122.

21. Спивак Э. И. Нагревательные колодцы с отоплением одной верхней горелкой // Сб. работ. Стальпроэкт, 1968. - вып.7. - С. 23-34.

22. Губинский В. И., Пашин И. К., Радченко Ю. Н. Металевий радиационно-конвективный рекуператор для нагрева воздуха в нагревательных колодцах // Теория и практ. Металлургии, 1998, № 4. - С. 37-39.

23. Вулис Л.Н., Ершин Ш.А., Ярин Л.П. Основи теории газового факела. - М.: Енергія, 1968. - 203 с.

24. Dormire John C., Benefits of applying regenerative burner technology to continuous reheat furnace // AISE Technol. - 2000. - № 4. - С. 55-57.

25. Кавадеров А.В. Тепловая работа пламенных печей. - М.: Металлургиздат, 1956. - 367 с.

26. Мантуров В.В., Хлопонин В.Н., Талмазан В.А. і ін. Влияние условий нагрева слитков в колодцах на параметри проката и концевую обрезь слябов // Сталь. - 1991. - № 7. - С. 41-45.

27. Лисиенко В.Г., Фетисов В.А., Хухарев М.І. і ін. Розробка і випробування непрямо-імпульсного опалення// Тези доповідей Республіканської конференції "Проблеми теплової роботи металургійних печей". - Дніпропетровськ, 1976. - 157 с.

28. Казяев М.Д., Кисельов Е.В., Лошкарев Н.Б. и др. Усовершенствование конструкции и тепловои работи нагревательного колодца с применением физического моделирования // Сталь, 2002. - № 5.- С. 61-64.


          DonNTU          Master's portal                                                                  The biography          Master's work          Library          Links