The Anthology of the Finite State Machine Design Patterns

Paul Adamczyk

University of Illinois at Urbana-Champaign
Department of Computer Science
1304 W. Springfield Ave, Urbana, IL 61801

email: padamczy@uiuc.edu

ABSTRACT

No Finite State Machine (FSM) is an island. Every aspect of an FSM depends on its context,
limitations of the programming language, system requirements, and many other factors. In more
advanced systems, many independent FSMs cooperate together. The design describing their
relationships is not an archipelago either, but rather a tightly coupled structure of classes or class
hierarchies. This paper brings together many Object-Oriented FSM designs and compares them
from the perspective of added flexibility as well as the cost associated with it. The final product
is summary of the competitive advantages of different FSM designs in a specific set of conditions
(e.g. problem domain, user expectations). This paper is intended to assist software engineers
faced with the task of designing an optimal FSM implementation in a specific context. The
uniform format of pattern summaries is intended to allow the designers to compare different
patterns, based on their key characteristics — applicability, advantages, and disadvantages.

INTRODUCTION

Software designers have befriended finite state machines from the very dawn of
time. But with the advent of the Object-Oriented technology, this friendship grew colder,
because FSMs could not be easily implemented using objects. Many nominally Object-
Oriented FSM designs were in fact structural designs. As the designers grew more
accustomed to the Object-Oriented paradigm, they have developed several methods to
model FSM using this new methodology.

The most popular non-Object-Oriented implementations of FSMs are cascading if
statements [Pal97], nested switch statements [vGB99], state transition tables [Car92]
[Sam02], and generated code using goto statements. They are popular because they
provide fast execution, but at the cost of weaker readability and maintainability. Some of
the Object-Oriented designs described in this paper, motivated by the execution speed
rather than clear separation of design elements, borrow from these implementations. On
the other extreme, the pure Object-Oriented FSM designs require “complete reification”
i.e. making every element of the state machine an object [Ack95]. FSM design patterns
described in this paper occupy the entire spectrum of design decisions bound by these
two extremes.

This paper describes known finite state machine patterns as a progression of cost
vs. benefit design choices: speed vs. flexibility, readability vs. overhead, or ease of initial
development vs. extensibility. Each pattern is presented in the context that takes
advantage of its benefits and is not limited too much by its drawbacks. Patterns presented
here are not original, but rather come from well-known research. The contribution of this

paper is to combine them into a continuum of extensions that result in more involved
designs that are rooted firmly in the original ideas of the State DP' [GHIV95].

CATALOGUE OF PATTERNS

The patterns analyzed in this paper fall into three groups. The first group contains
the State DP and pattern languages that further describe consequences and
implementation alternatives presented in State DP. The second group lists patterns that
build on the State DP to create larger, more flexible designs. The third group consists of
object-oriented patterns that present alternative implementations of finite state machines.

State Table

Pattem, Optittial
Fau
IOL Alternatives
Mﬂ%ﬂm o Stae DP
. T T

Lrecorated
State ;
Fasic

| B
Exernp lars
Charrert ard = f—
P Crthogazal FiM *
gagmg J States Frarvunaor
P State

Subclaseing

i Herarciacal
I Exiensions ottt Statechat
of Stae DP
i Histony
; ! State
Dreperdeticies 3 Muotation:
Broodasting — statechart
patterts are showam o italics
— —extends
Froodsast-
mg A —altemutive
Figmre 1. Belationships Between Patterns

Figure 1, “Relationships Between Patterns” contains the complete listing and depicts
dependencies between all patterns described in this paper. The first type, Variations of
State pattern is enclosed in the State DP rectangle, because these patterns are not
providing any additional knowledge, just explain in more detail how the State pattern
works. Patterns that present alternative solutions (for a part of or the entire problem) are
connected with a double-headed arrow. All patterns classified as Alternatives to State DP

' The name “State DP” is as much a convenience (shorter than “Objects for States” and other names given
to this pattern) as a necessity to distinguish it from other State design patterns.

demonstrate that property. Patterns that build on other patterns use a single arrow to
point to the pattern they extend. Most Extensions to State DP extend its design directly,
but they are also related to other patterns. Since many patterns described here do not
have a name (or their original author did not even consider them patterns), some of them
are named by the author of this paper.

I. STATE DP AND ITS MANY ELABORATIONS

This section describes the major characteristics of State DP along with other patterns
(listed in Related Patterns) that further address specific aspects of State DP. These
patterns do not describe solutions different from State DP, but analyze specifically all
major decisions required to understand this pattern.

State DP [GHJV95, pp. 305]

Applicability

An object’s behavior depends on its state, and it must change its behavior at run-time
depending on that state.

Operations have large, multi-part conditional statements that depend on the object’s state.
This state is usually represented by one or more enumerated constants. Often, several
operations will contain this same conditional structure. The State DP puts each branch of
the conditional in a separate class. This lets you treat the object’s state as an object in its
own right that can vary independently from other objects [GHIV95, 306].

Solution

Each state is encapsulated in a separate class that implements the common State interface
and defined behavior to handle all external events. Context class is responsible for
maintaining the knowledge of the current state and other data. External entities
communicate with the system via the Context class that forwards requests to the current
state object.

Consequences

+ State-specific behavior is localized and partitioned between different states.

+ State transitions are performed explicitly in the code.

= If an object has many states, many classes need to be created, which may result in an
excessively large class hierarchy. The Decorated State [OS96] pattern described
below solves this specific problem.

= The Context class delegates all external events to corresponding methods in the
interface of the State class. It is responsible for providing the correct mapping. This
results in a tight coupling between the Context class and concrete events.

Related Patterns

Two pattern languages that address in detail many specific design and implementation
decisions raised by State DP are “State Patterns” [DA96] and “Finite State Machine
Patterns” [YA98b]. Neither pattern language describes patterns that are extensions to
State DP, but they provide a very detailed explanation of choices to be made for each
concrete implementation of State DP. “State Patterns” explain how to allocate state

members to the appropriate class (Context vs. State), list optimizations that can be done
to state classes without members, discuss methods of exposing state classes to the outside
world, discuss tradeoffs of allocating responsibilities for invoking state transitions, and
emphasize the importance of the initialization of state machine with a meaningful default
state. “Finite State Machine Patterns” explore in even more details the choice of state
machine types, structures, state transitions, tradeoffs of the exposure of state classes, and
the responsibility of state instantiation.

II. EXTENSIONS OF STATE DP

This section list various patterns that build upon State DP to provide larger, more general
or more specialized patterns. Each pattern is described in reference to State DP as well as
other FSM patterns related to it.

Three-Level FSM [Mar95]

Applicability

Applies in any context where behavior may be controlled by more than one finite state
machine and logic-independent behavior should be reusable across multiple FSMs.

When behavior needs to be overridden and/or extended through inheritance.

When State DP is too restrictive because it couples behavior directly with incoming
events.

Solution
Encapsulate FSM in three separate levels, summarized in Figure 2.

1: Declares the interface
of the behavior

2 Introduces events.
Each event 1z a method

3 Implements the event-dependent
kehavior

Figure 2. Lewels of abstraction in Three-Level FEM pattern

Level 1 provides the complete behavioral interface of the state machine. It also may
define an implementation of the portion of the interface that is event-independent, but
often it has only a default, empty implementation [see Mar02, pp. 192]. Level 2 contains
the concrete implementation of State DP where the Context class inherits from level 1.
Level 2 introduces concrete events (modeled as methods) and an appropriate handling of
them. Level 3 inherits from the Context class of level 2 and implements the behavior
declared in level 1 that is event-dependent (i.e. it depends on events defined in level 2).

Consequences
+ Clearly separates the behavior from concrete events.

Logic of level 2 (State DP) could be generated.

Use of virtual functions adds small run-time overhead.

Level 2 may consist of a lot of classes (if there are many states).

The Context class delegates all external events to corresponding methods in the
interface of the State class. It is responsible for providing the correct mapping. This
results in a tight coupling between the Context class and concrete events.

oo+

Related Patterns’

Three-Level FSM uses State DP to implement its level 2.

State with Exemplars provides a different model to abstract out events — each event is
encapsulated in its own class that knows how to handle that event. Similarly to Three-
Level FSM, the interface for the outside world is event-independent in State with
Exemplars.

Reflective State [FR98]

Applicability

When the number of states is relatively large.

When State DP is not flexible enough, because the large number of states dictates that
control aspects related to states and their transitions should be separated from the
functional aspect (i.e. behavior).

When separation of control from behavior is more important than abstracting
implementation-independent behavior from application specific one (as in the Three-
Level FSM).

Solution

Separate the application into two levels — the finite state machine (FSM) level and the
application level. The FSM level corresponds to the meta level of the Reflective
architecture, while the application level corresponds to the base level of the architecture.
Follow the Reflection architectural pattern [BMRSS96] to design the meta level. The
Context class and the State classes, similarly to State DP, implement the base level.

Consequences

+ State-specific behavior is localized and partitioned between concrete State classes.

+ Control aspects of a state machine are separated from functional aspects.

+ State and Context class hierarchies are independent and can be extended separately.
Consequently, there is no coupling between the Context class and the incoming
events.

= But even with this flexibility, it is not possible to subclass State classes as
Subclassing State Machines does.

* Martin lists the Strategy pattern as an alternative to State DP to implement the level 2 of the FSM. It may
seem plausible since Strategy and State have the same class structure. However, in Strategy, the Context
class selects an algorithm only once, at the beginning of processing, while in State DP, changes between
concrete State classes occur often. Use of Strategy, instead of State DP in level 2 would make state
changes impossible. Thus Strategy does not seem to be a good alternative to the State DP here.

Modifications at the meta level may produce negative results.

Increased number of components.

Lower efficiency — many levels of indirection.

Not all potential changes to the software are supported.

Not all programming languages support reflection.

Does not address the problem of communication between multiple FSMs.

(T TR TR T

Related Patterns

State DP and Reflection [BMRSS96] are combined to provide a very flexible reflexive
interface. State DP provides the implementation of the base level, the Reflection pattern
describes how to model the meta level.

In Three-Level FSM, behavior is logic-independent. Reflective State is even more
flexible as it decouples behavior completely from the FSM constructs.

FSM Framework [vGB99]

Applicability

Modeling complex FSMs.

When the design requires all FSM elements to be modeled as objects.
When FSM components should be configurable.

Solution

FSMContext class holds the current state and all state-specific data (in a repository).
State is represented by a single class and contains a set of transition-event pairs.
Transition class has a reference to the target state and the corresponding FSMAction
class. FSMAction class plays the role of Command class in the Command pattern.

FSM object receives the incoming events and responds to them by allocating a
FSMContext instance. FSMContext object forwards the request to the State object that
looks up the transition corresponding to the incoming event and executes it. The
Transition object knows which FSMAction to execute and resets the current state on the
FSMContext object.

Consequences

States and events are configurable.

Context can be a single component. There is no coupling between the Context class
and concrete events.

Actions can share behavior through inheritance.

Actions can delegate execution to other Actions; thus each event needs to be mapped
to a single Action only.

Mapping between FSM design and implementation is more direct, because states,
actions, events, and transitions are implemented as classes.

All FSM elements except for Actions can be configured with a configuration tool.
The use of the Context repository causes slower performance compared to direct
access to state-specific data.

I+ + ++ ++

= The Context repository does not provide any interface to update the state-specific data
so Action classes can make uncontrolled changes to the data.

Related Patterns

The FSM Framework extends State DP by modeling all FSM elements as classes.
Command [GHJV95, pp. 233] is used to implement a part of the design. FSMAction
classes are Commands, the Transition class is the Invoker, and the FSMContext class is
the Receiver.

State with Exemplars models events (but not actions or transitions) as classes.
Subclassing State Machines is similar to FSM Framework, but it displays tighter coupling
between the Context class and concrete events.

Basic Statechart also encapsulates the actions and events into a separate class, but it
combines all events in one class and all actions in another class.

State with Exemplars3 [Ack95]

Applicability

When State DP is not flexible enough, because the external interface should be
independent of the incoming events.

When the design requires events and FSM actions to be modifiable at run time.

When performance is not as critical as maintainability.

Solution

The Context class from State DP is replaced by two class hierarchies: Targets (containing
the state-independent data) and Events (defining the interface to respond to external
requests).

FSM container (un)registers concrete Events (exemplars) and Targets at run-time.

An externally generated event is encapsulated (as a struct/class) and forwarded by the
FSM container to a concrete Event class that is a wrapper for that event.

Consequences

+ The decision of which class should process the incoming event is encapsulated in the
event class hierarchy. FSM container just queries the instances registered with it.

+ Supports orthogonal states — FSM container will forward the event to the current state
object of each currently registered Target.

+ Loose coupling between State and Target. Use of the Event class hierarchy allows
Targets to be oblivious to all actions. A Concrete State class is responsible for
updating the data stored in the Target.

= The search of the concrete Event instance to handle the incoming event is slow
(linear).

3 Exemplars are objects used as models to construct other objects. Prototype [GHIV95] is a sample use of
exemplars. Coplien [Cope92] describes exemplars in C++ in much detail.

Related Patterns

State DP encapsulates states as classes. State with Exemplars encapsulates both states
and events as classes.

In Three-Level FSM, the external interface is also independent of events.

State Action Mapper also provides the dynamic registration of events, but can only
support one State-Dependent Object (i.e. Context) at a time.

FSM Framework also encapsulates Events as classes. It models all FSM entities as
classes.

Orthogonal Behavior and Orthogonal States — State with Exemplars supports the
orthogonality by allowing many Contexts to register with the FSM container.

State with Exemplars is similar to the Command [GHJIV9S, pp. 233] pattern. Event
classes play the role of Commands, State classes are Receivers, and the FSMContainer is
the Invoker.

Subclassing State Machines attempts to achieve similar flexibility of design by allowing
subclassing of State classes to override their handling of new events and actions.

Subclassing State Machines [SC95]

Applicability

Object-oriented design that permits a design of complex state machines by incrementally
modifying and combining other independently designed state machines.

When State DP does not apply, because we would like to subclass State hierarchy to
handle new events without affecting the existing code.

Solution

Subclass concrete State classes to add more specialized behavior/event handling. To
handle these new events, the Context class needs to be updated to dispatch them to the
current State object. The State superclass is also modified to provide an empty default
implementation of these events.

Instead of returning a programmed constant (or reference to an object), return the next
state indirectly, by looking it up in the table called StateMap.

Consequences

+ Can add State subclasses that handle more events (i.e. extend the public interface)
without affecting existing State classes, while reusing the default handling of the
existing events.

+ StateMap lookup is similar to a virtual table lookup and does not increase the run-
time overhead.

= The Context class delegates all external events to corresponding methods in the
interface of the State class. It is responsible for providing the correct mapping. This
results in a tight coupling between the Context class and concrete events.

Related Patterns
State DP does not support adding new events to new classes without modifying all
classes in the State hierarchy.

State Action Mapper also uses a table, but fails to provide the ability to extend the
behavior this pattern provides, because it focuses on limiting the number of classes and
uses only a single class to model the state.

State with Exemplars provides a flexible FSM design by dynamically registering Event
and Target objects. Subclassing State Machines provides flexibility in the form of new
State subclasses that override the default behavior and default transitions in the StateMap
class.

FSM Framework does not support the subclassing of State classes, but provides even
more flexibility by encapsulating all FSM elements as classes.

Real-Time State Pattern [Dou98, pp. 648]

Applicability

Real-Time system that requires fast performance.

When nested switch statement solution is not flexible enough.

When state machine consists of multiple levels of states. It has many light-weight child-
level state transitions, but few more expensive top-level state transitions.

When State DP needs to be extended to support nesting of state classes.

Solution

Context object is the container of concrete state objects. Each concrete state class may
have its own state machine for its child states. Each child state has its own algorithm to
perform state transitions.

Consequences

+ The separation of states into multiple levels makes each level less complex, which
makes transitions at each level less expensive to calculate.

+ If space is more critical than time, concrete state objects may be created when they
are transitioned to and deleted when exited. More commonly, they are created and
destroyed at the same time as the Context object is.

+ With nested switch statement implementation, if a subclass specializes the state
machine, the entire nested switch must be reimplemented. With Real-Time State
Pattern, only the modified state must be reimplemented.

= The Context class delegates all external events to corresponding methods in the
interface of the State class. It is responsible for providing the correct mapping. This
results in a tight coupling between the Context class and concrete events.

Related Patterns

In State DP, the Context class holds a reference to the current state and does not need to
manage other state objects. Real-Time State Pattern keeps one instance of each state in a
container so that state changes never result in a creation or deletion of objects.

The Context class acts like a Composite [GHIV95, pp. 163].

Composite State manages multiple active state objects (one per hierarchy), while Real-
Time State Pattern’s container holds many objects, but only one of them is active (i.e.
responds to events) at a given time.

The following is the list of state patterns compiled by Odrowski. All patterns described in
that listing are present here. In addition, they are described in relation to other patterns.
Each pattern’s Solution section specifies which patterns are combined to produce its
design.

Note: Since all of the patterns described in this collection are using State DP, they all
share the disadvantage that the Context class is tightly coupled with the concrete event
handlers.

Composite State [OS96]

Applicability
When multiple state objects should be treated uniformly so that it is possible to execute a
single command (group transition) that will cause all of them to change their state.

Solution: State DP + Composite

Use Composite pattern to store all state objects in a uniform structure that provides the
same interface to invoke the transition request on composite objects as well as an
individual one.

Consequences

+ Both a single state object and a collection of objects provide the same uniform
interface for the external entities.

+ When a component rejects the transition request due to an error, tolerate the fault and
continue processing.

Related Patterns

State DP and Composite [GHJV95, pp. 163] are combined to implement this pattern.
State DP provides the implementation of the state behavior of each object. The
Composite pattern provides the uniform interface to build collections of state objects and
to accommodate their group transitions with a single method invocation.

Collections for States and Collections of State also provide means of managing lists of
state objects, but Composite State can hold objects that are in different states.

If a failed transition request must result in a back out of all changes in all components,
use Restoring Previous State instead of this pattern.

Real-Time State Pattern also maintains many state objects at once, but only one of them
is active (i.e. responds to events) at a given time.

Hierarchical Statechart uses the Composite pattern to simplify the design. Composite
State uses it to support group transitions.

Managing State Dependencies [OS96]

Applicability

When the Composite State is used and there is a complex algorithm to pass an event to
multiple objects in the Composite structure.

When change of one object’s state can result in changes of other objects and the
algorithm to notify them is complex.

Solution: State DP + Observer

State classes communicate their events using a variant of the Observer pattern, Change
Manager. ChangeManager class encapsulates the algorithm for notifications between the
Context class and State subclasses. Context and State can be both Subjects and
Observers, but instead of communicating directly, they send all communication via the
ChangeManager object that is responsible for determining how to handle each
notification.

Consequences

+ Rules to resolve dependencies between State classes are encapsulated in one class,
ChangeManager.

+ ChangeManager class can be subclassed to provide variations on the notification
algorithm.

= Since the Context and State classes cannot invoke methods on each other directly,
each such invocation using the ChangeManager object requires an additional level of
indirection.

Related Patterns

Managing State Dependencies builds on the Composite State.

ChangeManager [GHJV95, pp. 299] is a variant of the Observer pattern [GHIV95, pp.
293] that decouples Subjects from Observers and allows a more complex update
algorithm to be encapsulated in the ChangeManager object.

Broadcasting pattern addresses a similar issue in the context of orthogonal state
hierarchies. It solves the problem of disseminating events generated in one state machine
hierarchy to another, unrelated hierarchy. Managing State Dependencies models
broadcasting of state changes in a single hierarchy where all Contents states collectively
can cause a change of their Container’s state, or the Container can cause all its Contents
to change their states.

As with the Composite State, when failure on state transition requires a complete back
out, the Restoring Previous State should be the preferred solution.

Current and Pending State also uses a single object (StateManager) to mediate between
the Context class and State subclasses. StateManager encapsulates the knowledge of the
current state. The ChangeManager encapsulates the algorithm for disseminating
notifications between the Context class and State subclasses.

Decorated State [OS96]

Applicability

When the implementation using State DP would result in a large number of possible state
classes, but many of these states differ only in the additional events that they need to
handle.

When the ability of a state to handle specific events is added and removed at run-time.

Solution: State DP + Decorator

Encapsulate these events in Decorator classes. At run-time, use Decorators to add and
remove events that should be handled at a given point of execution. The Decorator object
handles the decorated events and forwards all other events to the State object, which it
encapsulates.

Consequences
+ Reduces the number of state classes. Can decorate many classes with one Decorator.
= A decorator and its component are not identical (see [GHIJV95, p. 178]).

Related Patterns

State DP and Decorator [GHIV9S, pp. 175] are combined to produce the lowest number
of classes that model all states with State and Decorator classes.

Current and Pending State could use Decorated State to model pending states as
independent entities.

Orthogonal States [0S96]

Applicability

When State DP is not sufficient, because the state object exhibits several independent
behaviors and exercises them at the same time. Each behavior should be encapsulated as
a separate state hierarchy.

Solution: State DP"

Define a new state class that encapsulates all other states. Use State DP to implement
the outer state as well as all the states it encapsulates. State DP can be used recursively
for problems where state can vary within state.

Consequences

+ The uniform high-level design is easy to understand.

= Low-level design is more complex. There are many dependencies between state
classes not addressed in this pattern.

Related Patterns

State DP is used to model each individual orthogonal state.

Orthogonal Behavior presents an alternative implementation of the solution. It uses
Composite [GHIJVO9S, pp. 163] to represent each hierarchy of states.

State with Exemplars can also handles many states at once. It forwards each incoming
event to the current state object of all Targets registered with the FSM container.

Current and Pending State [OS96]

Applicability

When current object’s state is not the only indicator of the actual state (because the object
has also pending states).

When State DP needs to be extended to provide a list of states that may be entered in the
future (pending) and to log the list of states previously entered.

Solution: State DP + Mediator

Use a StateManager class as a mediator between the Context and the State hierarchy.
The Context still delegates all requests to the current State object, but indirectly, because
it knows only about the StateManager object. The StateManager object is responsible for
delegating the request to the appropriate state object.

Consequences

+ The current state can be a function of an arbitrarily large collection of states.

= Since the Context and State classes cannot invoke methods on each other directly,
each such invocation using the StateManager object requires an additional level of
indirection.

Related Patterns

State DP provides the generic Context and State hierarchy framework.

Mediator [GHIV9S5, pp. 273] pattern is the basis for the State Manager class.

Collections of State and Collection for States focus on all objects in a specific state. In
contrast, the Current and Pending State focuses on all (past, current, and pending) states
of an object.

Alternatively, pending states could be modeled as independent entities that generate an
event to the current state at the time of their “maturity.” This would force potentially all
states to be able to handle these events. Use the Decorated State pattern to solve this
problem.

Restoring Previous State provides the ability to back out state transitions, rather than just
store them.

Managing State Dependencies also uses a single object (ChangeManager) to mediate
between the Context class and State subclasses. The ChangeManager encapsulates the
algorithm for disseminating notifications between the Context class and State subclasses.
StateManager encapsulates the knowledge of the current state.

Collections of State [0S96]

Applicability

When State DP is not applicable, because it cannot provide the location information
about all objects in a specific state.

When the design relies on collections of objects in a specific state and the states of
individual objects are of lesser importance.

When state objects maintain additional object-dependent data.

Solution

Collect all objects that have the same state in a single container class. Provide a separate
container for each state. When an object changes its state, it also moves to the container
for the new state.

Consequences

+ Itis easy to find all objects in a specific state.

+ All objects still retain the entire interface provided by State DP.

+ Containers for specific states can be created dynamically when an object enters a
specific state. They can be destroyed when the last object exits that state.

+ Requests to find all objects in multiple states require the concatenation of multiple

containers.

Deletion rules must be enforced so that an object that is deleted (or changes its state)

informs the container of the change.

]

Related Patterns

State DP provides the generic state functionality that is augmented in this pattern by the
ability to hold collections of objects in the same state.

If objects in the collection share common transitions, not common states, use Composite
State to facilitate group transitions.

If objects do not contain any object-dependent data (i.e. pure states), Collections for
States is a better alternative. The overhead of State DP (additional classes and
indirection) is avoided in this case.

Use Observer [GHIV9S, pp. 293] to enforce correct propagation of deletion information.

Restoring Previous State [OS96]

Applicability
When it is necessary to support the ability to revert to previous state (i.e. undo), which is
not a part of the State DP.

Solution: State DP + Memento
On each state change, store current state and (optionally) state-specific data in a separate
object. To perform an undo operation, revert to the old data stored in that object.

Consequences

+ Provides backup and back out capabilities for state transitions.

= Storing backup copies creates a memory overhead, especially if large amount of
object-specific data needs to be stored on each transition.

Related Patterns

Builds on Composite State and serves as its better alternative to handle complete back out
of a failed group transition.

State DP and Memento [GHJIV9S5, pp. 283] are combined to allow revertible state
changes. The Memento pattern is applied to basic State DP objects (called Originators in
the context of Memento pattern).

History State provides a means of remembering the previous state on subsequent
entrances to it, but does not provide undo capabilities.

Current and Pending State provides a simpler alternative in cases when previous states
are to be logged rather than undoable.

The following is the list of statechart patterns compiled by Yacoub. His work is based on
the concept of statecharts developed by Harel [Har87]. All patterns described in
Yacoub’s pattern language are present here. They are also described in relation to other
patterns.

Note: The Interface class (i.e. the Context) delegates all external events to corresponding
methods in the interface of the AState class. It is responsible for providing the correct
mapping. This results in a tight coupling between the Interface class and concrete
events. The benefit of this approach is that the external entities need to be only aware of
the Context class while other classes are completely separated from the outside world.

Basic Statechart [YA89b]

Applicability
When State DP needs to be extended to model statechart elements, e.g. exit and entry
events, guards.

Solution

Encapsulate Events and Actions in separate classes. They are superclasses of the AState
interface. Methods inherited from Events class are virtual and can be overridden as
needed, while methods in the Actions class are static. They define interfaces for events
and actions and provide default handling of events. Concrete State subclasses may
override the default event and action handling.

Consequences
+ Statechart elements are modeled explicitly to simplify the maintenance and increase
the readability of the design.

Related Patterns
State DP does not implement all FSM elements explicitly.

FSM Framework implements all FSM elements as classes, which makes it more flexible
then the Basic Statechart.

Hierarchical Statechart [YAS89b]

Applicability
Large applications that use the Basic Statechart and their states have a hierarchical class
structure.

Solution

Differentiate between high-level states (TopSuperState class hierarchy), intermediate
states (IntermediateSuperState class hierarchy), and leaf staes (Leaf class hierarchy).
Have all hierarchies contain references to all states they need to be aware of (e.g. their
immediate superstate). Classify all state classes into these three hierarchies.

Consequences

+ Improves understanding and readability of the design. Hierarchies of states are
shown explicitly.

+ State classes that do not display a hierarchical relationship with other classes remain
subclasses of AState and need not be forced into this design.

Related Patterns

Basic Statechart is extended to support hierarchical structure of relationships between
states.

SuperState classes are Composites [GHIJV9S5, pp. 163].

Composite State uses the Composite pattern to support group transitions. Hierarchical
Statechart uses it to simplify the design.

Orthogonal Behavior [YA89b]

Applicability
Entity modeled by the Hierarchical Statechart that exhibits several independent behaviors
and exercises them at the same time.

Solution
Define a VirtualSuperstate class that is a composite of all superstate states that model a
specific behavior. VirtualSuperstate will dispatch events to all the components it holds.

Consequences

+ Separate state diagrams model each independent behavior.

+ Dispatching the event to all independent states can be implemented either
sequentially or concurrently, depending on the operating system and platform
support.

= The design separates orthogonal behaviors, but in reality they model one entity and
may need to communicate. Broadcasting pattern solves this specific problem.

Related Patterns

Virtual Superstate is a Composite [GHIV9S5, pp. 163].

Hierarchical Statechart uses the same technique (Composite pattern) to model state
hierarchies. Orthogonal Behavior builds on class hierarchies created using Hierarchical
Statechart and combines them (using the Composite pattern) to provide concurrency (i.e.
many active states, one in each hierarchy).

Orthogonal States uses State DP instead of Composite to implement hierarchies of states.
In both cases, two respective patterns are applied twice. Orthogonal States uses State DP
to model the hierarchy of the container state (called VirtualSuperstate in Orthogonal
Behavior). It also uses State DP to model hierarchies of concurrent (i.e. orthogonal)
states. Orthogonal Behavior uses the Composite pattern to model both steps.

State with Exemplars can also handles many states at once. It forwards each incoming
event to the current state object of all Targets registered with the FSM container.

Broadcasting [YA89Db]

Applicability

Design uses the Hierarchical Statechart with Orthogonal Behavior where events
occurring in one state trigger other events in orthogonal superstates.

When orthogonal behaviors of an entity, modeled as separate hierarchies, need to
communicate.

Solution

To process any event, invoke it on the entity Interface (i.e. the Context class). The
interface forwards the event to the VirtualSuperstate, which forwards it to the concrete
SuperStates.

Consequences
+ Internal and external events are handled uniformly.
= Inefficient; multiple indirections are required to handle an event.

Related Patterns

Broadcasting solves the main drawback of Orthogonal Behavior — lack of communication
between orthogonal states.

Managing State Dependencies encapsulates relationships between FSMs in a single
object (ChangeManager). Broadcasting distributes the generation of events causing other
classes to respond among multiple classes. The solution in Managing State
Dependencies is more extensible. Consider for example class A that generates event E;
upon the reception of event E,. If another class B expects that event as E3, one of these
two classes needs to be changed to solve the problem. In Managing State Dependencies,
the responsibility to change event E; to E; before forwarding it to class B is encapsulated
in the ChangeManager class.

History State [YAS89b]

Applicability

When the Hierarchical Chart is used and subsequent re-entries into a state should not
result in resetting of the inner state to the default state.

When a superstate should have a memory of which active state it was in last just before
exiting the whole superstate.

Solution

Initialize the current state reference of a Superstate class once on creation and do not
reinitialize it on each invocation of the entry() method. This will keep the value of the
Superstate class the same as it was on the last execution of the exit() method.

Consequences
+ Preserves the knowledge of the innermost current state prior to a global transition.
= Loses the flexibility of re-initializing data on state entry.

Related Patterns

Current and Pending State and Restoring Previous State are somewhat similar to History
State. Current and Pending State provides means of logging previous states, but without
the ability to undo them. Restoring Previous State provides a design that allows a back
out of state transitions.

III. ALTERNATIVES TO STATE DP

This section describes patterns that produce FSM designs different from State DP. Some
of them are applicable to small designs, many apply to specific domains (such as real-
time systems), but this fact does not make them less important than other FSM designs
described above. Each pattern is also compared to other patterns that address its main
concern(s) using different solutions, in the Related Patterns section.

Collections for States [Hen00]

Applicability

When State DP results in too much overhead, because Pure State objects need to be
managed as collections of objects (that share the same state), rather than as individual
objects.

Solution

Represent each state by a separate collection that knows about all objects in that state.
The Manager object holds all the state collections and is responsible for managing the
lifecycle (i.e. state changes) of the objects. When an object changes its state, the manager
moves it from the collection of objects in the source state to the collection of objects in
the target state.

Consequences

+ Less time required to access all objects that meet specific criteria with each criterion
modeled as a state.

+ The size of each object is decreased by not storing its current state explicitly in the

object, but rather implicitly in the collection.

The Manager object is the only design element that requires changes when the

behavior changes.

Can support many collections concurrently.

Orthogonal state models can be modeled with multiple managers and no updates of

state objects are required).

= Cannot easily manipulate other state-independent data in state objects.

Not feasible when state changes occur frequently.

++ 0+

]

Related Patterns

The Collections for States is an alternative to the State DP in the cases when Pure State
objects are analyzed or processed as groups.

When objects can initiate state changes, use the Observer pattern [GHIV95, pp. 293] to
keep the Manager up to date.

When objects contain state-independent data, they cannot be stored using Collections for
States. Use Collections of State instead. Note that Collections of State uses all the
features of State DP and consequently its implementation incurs a similar overhead.

To hold collections of objects that are in different states, use Composite State.

Methods for States [Hen03]

Applicability
When the solution using State DP is too complex to model a simple object with few states
that could otherwise be implemented with few conditional checks and few methods.

Solution [Hen03]

Encode method calls in a table within the class. Have appropriate interface methods
invoke the methods in the table. Upon each state change, set the next entry in the table to
be the method that represents to the new state.

Consequences

+ Implementation is much simpler than State DP.
+ Requires less code and only one class.

= This design is not extensible.

Related Patterns

State DP becomes a viable alternative again when it becomes necessary to add more
states to the object implemented using Methods for States.

State Action Mapper also uses a transition table, but it provides a run-time registration
and deregistration of events/actions in the table.

Optimal FSM also models states as methods and its design is more applicable to larger
systems.

State Table Pattern [Dou98, pp. 650]

Applicability

When state machine contains a large number of states and transitions with minimal state-
independent data.

When State DP does not apply, because its storage overhead cannot be tolerated in real-
time and other embedded systems that have a limited amount of memory.

Safety-critical and other systems that define state transitions in a tabular form.

Solution

States and Transitions are modeled as classes. Context contains a State Table instance
that provides references/callbacks to concrete State and Transition objects. State Table
encapsulates the transition table of size num_states + num_transitions that can be
accessed in constant time.

The Context object sends an external event, encapsulated as a constant, to the Transition
class that returns the resulting state. Next, the Context delegates the processing of the
event to that state object.

Consequences

+ Good performance, O(c).

= State table is expensive to construct and difficult to maintain.

= High initialization overhead (need to initialize a large table). This problem can be
avoided by using compile-time constructs (e.g. structs in C++) as elements of the
table.

Related Patterns
State DP provides a similar solution, but is not concerned with minimizing the memory
usage or optimizing performance (since it uses virtual functions).

Optimal FSM [Sam02, pp. 69]

Applicability
When State DP implementation is too slow, because of its use of indirections.
Embedded real-time systems.

Solution

Encapsulate states as methods. Have the Context class store the current state as the
pointer to the state method. Subclass the Context class to provide the concrete
implementation of the state methods.

Consequences

+ Itis simple to implement.

+ State specific behavior is encapsulated in specific state methods.

+ Since state methods are implemented in subclasses of the Context class, there is no
encapsulation problem. State methods have direct access to all data in the Context
class.

Small memory footprint — only one function pointer is required to implement the state
machine.

Promotes code reuse (can subclass Context further, but without virtual functions).
Makes state transitions efficient — one assignment of state pointer.

Good performance — O(log n), where n is the number of cases in the switch statement.
However, the switch can be replaced by look-up table in selected (critical) state
handlers to provide even faster performance.

The design is scalable and flexible during the original development, but not during
maintenance.

= The code is not easy to follow, because it is located in one large class.

++4+ 0+

]

Related Patterns
State DP models states as classes rather than methods.
Methods for States also uses a pointer to state methods, but they are private methods.

State Action Mapper [Pal97]

Applicability

When creating a class per state is too expensive (e.g. many small and similar states).
When flexibility to manage (add/remove) events and their corresponding actions at run-
time is more important than modeling states as independent classes.

Solution

Instead of a hierarchy of State classes, use one concrete State Mapper class that maintains
a current event-action table and delegates the execution of the concrete behavior to the
State-Dependent Object (i.e. the Context class). On a state change, replace the state
object reference to another pre-allocated instance of a State Mapper object that contains
the transition table for that state.

Consequences

+ An instance of State Mapper object can be shared by multiple State-Dependent
Objects.

+ Code sharing — since State Mapper class contains the mapping algorithm it is a good

candidate to implement other general policies.

Maintains encapsulation of the State-Dependent Object.

Avoids multiple if and switch statements.

Behavior of a given state can be easily modified.

Increased complexity and an additional level of indirection — State Mapper class

delegates requests to the State-Dependent Object.

I+ ++

Related Patterns

There are three differences between State Action Mapper and State DP. First, the State
Mapper class allows the dynamic registration of event/action pairs during run-time. State
DP does not describe that option, but it would be possible to add it. Second, the State
Action Mapper pattern uses one State Mapper class as opposed to the State class
hierarchy in State DP. Third, the State Mapper class delegates the execution, and the
implementation, back to the State-Dependent Object (i.e. the Context class).

State Action Mapper pattern extends the State Table pattern, which contains a state
transition table that cannot be modified at run-time.

Methods for States also uses a transition table, but it is not modifiable at run-time.

State with Exemplars also provides dynamic registration of events. In addition, it
supports dynamic registration of Targets, which allows it to support multiple objects with
states at the same time.

Subclassing State Machines encodes the transition table in the StateMap class hierarchy.
It also allows the modification of behavior by implementing a parallel hierarchy of State
classes. Since State Action Mapper has only one state class, it cannot provide this
flexibility.

RELATED WORK

One well-known work on Object-Oriented state machines not included in the
catalogue above is MOODS [Ran95], which presents an alternative technique of selecting
the most optimal design among different state machine patterns, using DDT (design
decision tree). The MOODS paper focuses primarily on generic problems (e.g. complex
object behavior, events cause state changes) that are prerequisites of State DP. Thus only
a small subset of MOODS could be applicable to this paper.

Other related work is analyzed in this paper. To date, only Yacoub [YA98a,
Y A98b] has attempted to combine multiple state machine design patterns into a cohesive
unit. This work is a further extension of these efforts.

CONCLUSION / FUTURE WORK

Design patterns summarized in this paper represent a wide range of known FSM
designs. Each one is an optimal solution in a specific design context. Collectively, they
address a wide range of problems, but no pattern can solve all the problems. In addition
to their applicability and consequences of their use, all patterns are analyzed specifically
with regard to the coupling between the class that handles requests from the outside
world (e.g. the Context class in State DP) and the entity that provides the concrete
response (e.g. event-handling methods in State DP). Patterns that implement loose
coupling between these two elements are more complex and require more levels of
indirection than their less extensible alternatives, but they produce a cleaner and more
flexible design. Patterns described in this paper can be grouped in three types of
solutions:

1. Modeling FSM elements as classes.

2. Modeling interactions between different FSM classes.

3. Reusing and extending FSM behavior by subclassing.

FSM Framework [vGB99] is the most extensible example of the first type. It
models all FSM elements as classes. But it does not provide a good model to handle
multiple FSMs. The Reflective State Pattern [FR98] provides a flexibility of changing
FSM structure at run-time using reflection, but it does not address the inter-FSM
communication either. State with Exemplars [Ack95], which gives lesser flexibility in
FSM design (only events and states are classes) does provide an effective means of
communication between FSMs.

Two patterns that describe the most effective design of communication between
multiple, different, and possibly nested FSMs are Managing State Dependencies [OS96]
and Broadcasting [YH99b]. Neither is as flexible in modeling FSM elements as patterns
that encapsulate FSM elements as classes, but their communication model is very good.

The third type, represented by Subclassing State Machines [SC95], provides a
method of adding new State subclasses without changing the existing code. In this
respect, this pattern is unique among all patterns described in this paper. It remains to be
seen to what extent these three types of solutions can be combined into a single design.

This paper shows how different design patterns solve different problems given a
specific context and a set of expectations (e.g. flexibility of design, loose coupling
between elements, performance, etc). The uniform format of presentation aims to help
software designers select the FSM most appropriate for their needs.

Although the listing described here is significantly more comprehensive than the
individual papers is draws upon, it does not provide a complete comparison. Diagram
“Relationships Between Patterns” shows very clearly that relationships between state
patterns other than State DP have not been explored sufficiently yet. Except for “The
Pattern Language of Statecharts” [YA98a], design patterns show at most two levels of
dependencies. The author’s future goal is to perform a complete comparison of all design
patterns described here using a single set of terminology, modeling technique,
programming language, and a common example. The example should evolve from a
simple single-class design into a fully extensible design.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Ralph Johnson for his guidance during the
creation of this paper. Many thanks go also to Sherif Yacoub for his review of the initial
version.

A big ‘Thank you’ that requires a separate paragraph goes to my shepherd, Joel
Jones, for his timely and precise feedback that was on target in both big and small
matters.

BIBLIOGRAPHY

[Ack95] Ackroyd, M., "Object-oriented design of a finite state machine," Journal of
Object-Oriented Programming, pp. 50, June 1995.

[BMRSS96] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
“Pattern-Oriented Software Architecture: A System of Patterns,” John Wiley and Sons,
1996.

[Car92] Cargill, T., “C++ Programming Style,” Addison Wesley, 1992.

[Cope92] Coplien, J., “Advanced C++, Programming Styles and Idioms,” Addison
Wesley, 1992.

[DA96] Dyson, P. and B. Anderson, "State patterns," PLoPD3. Also available at:
http://www.cs.wustl.edu/~schmidt/europlop-96/papers/paper29.ps.

[Dou98] Douglas, B. P., "Doing Hard Time: Developing Real-Time Systems with
UML, Objects, Frameworks and Patterns," Addison Wesley, 1998.

[FRO8] Ferreira, L. and C. M. F. Rubira, "The Reflective State Pattern,"
Proceedings of Third Conference on Pattern Languages of Programming, PLoP 1998.
Available at: jerry.cs.uiuc.edu/~plop/plop98/ final submissions/P42.pdf.

[GHIV95] Gamma E., R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements
of Object-Oriented Software,” Addison Wesley, 1995.

[Har87] Harel, D. “Statecharts: a Visual Formalism for Complex Systems,”
Science of Computer Programming, Vol. 8, pp. 231-274, 1987.

[Hen00] Henney, K., “Collections for States,” Java Report, August 2000. Also
available at: http://www.two-sdg.demon.co.uk/curbralan/papers/CollectionsForStates.pdf.

[Hen03] Henney. K., “Methods for States,” VikingPLoP 2002, updated March,
2003. Also available at: http://www.two-
sdg.demon.co.uk/curbralan/papers/MethodsForStates.pdf.

[Mar95] Martin, R., "Three Level FSM," PLoPD, 1995. Also available at:
http://cpptips.hyperformix.com/cpptips/fsmS5.

[Mar(2] Martin, R., “UML for Java Programmers,” Prentice Hall 2002. Also
available at: http://www.objectmentor.com/UMLFJP/UMLFJP.

[OS96] Odrowski, J., and P. Sogaard, "Pattern Integration - Variations of State,"
Proceedings of PLoP96. Also available at: www.cs.wustl.edu/~schmidt/PLoP-
96/odrowski.ps.gz.

[Pal97] Palfinger, G., "State Action Mapper,” PLoP 1997, Writer’s Workshop.
Also available at: jerry.cs.uiuc.edu/~plop/plop97/Proceedings.ps/palfinger.ps.

[Ran95] Ran, A., "MOQODS, Models for Object-Oriented Design of State," PLoPD,
1995. Also available at: http://www.soberit.hut.fi/tik-76.278/alex/plop95.htm.

[Sam02] Samek, M., “Practical Statecharts in C/C++,” CMP Books, 2002.

[SCI5] Sane, A. and R. Campbell, "Object-Oriented State Machines: Subclassing,
Composition, Delegation, and Genericity," OOPSLA ’95. Also available at:
http://choices.cs.uiuc.edu/sane/home.html.

[VGB99] van Gurp, J. and J. Bosch, “On the Implementation of Finite State
Machines,” Proceedings of the IASTED International Conference, 1999. Also available
at: http://www.xs4all.nl/~jegurp/homepage/publications/fsm-sea99.pdf.

[YA98a] Yacoub, S. and H. Ammar, "A Pattern Language of Statecharts,"
Proceedings of Third Conference on Pattern Languages of Programming, PLoP 1998.
Also available at: http://citeseer.nj.nec.com/yacoub98pattern.html.

[YA98b] Yacoub, S. and H. Ammar, "Finite State Machine Patterns," EuroPLoP

1998. Also available at:
http://www.coldewey.com/europlop98/Program/Papers/Yacoub.ps.

