Факультет экологии и химической технологии
Специальность: Экология химических производств
      В настоящее время проблема обеззараживания воды является очень актуальной, поэтому в качестве индивидульного задания была выбрана именно эта тема. Также на выбор темы индивидуального задания повлияло ее непосредственное отношение к теме моей магистерской работы.
     Обеззараживание воды – мероприятия, в ходе которых происходит уничтожение микроорганизмов и вирусов, вызывающих инфекционные заболевания.
     По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на термические (кипячение); олигодинамические (обработка ионами благородных металлов); физические (обеззараживание ультрафиолетовыми лучами, ультразвуком и т. д.); химические (обработка окислителями: хлором и его соединениями, озоном, перманганатом калия и т. п.) [1, 2].
     Кипячение является исключительно бытовым методом обеззараживания, однако он не дает полной гарантии гибели бактерий или их спор. Кроме того, при кипячении происходит удаление из воды растворенных в ней газов (кислорода, углекислого газа), что снижает ее вкусовые свойства.
     При кипячении происходит частичное смягчение воды из-за того, что в осадок выпадает часть солей кальция и магния, которые из растворимых гидрокарбонатных солей переходят в нерастворимые карбонатные [1].
     Обработка воды, в которой содержится 0,05 - 0,2 мг / дм3 серебра, втечение 30 - 60 мин дaет возможность достичь санитарных норм. Для растворения серебра в воде используют методы контактирования воды с развитой поверхностью металла, растворением солей серебра или электролитическим растворением металлического серебра. Наибольшее распространение получил последний метод, основанный на анодном растворении серебра.
     Однако серебро, как и другие тяжелые металлы, способно накапливаться в организме и вызывать заболевания (аргироз – отравление серебром). Кроме того, для бактерицидного действия серебра на бактерии требуются достаточно большие концентрации, а в допустимых количествах (около 50 мкг/л) оно способно оказывать лишь бактериостатическое действие, т.е. останавливать рост бактерий, не убивая их. А некоторые виды бактерий вообще практически не чувствительны к серебру.
     Все эти свойства ограничивают применение серебра. Оно может быть уместно только в целях сохранения исходно чистой воды для длительного хранения [2, 3].
     Данный метод основан на способности ультрафиолетового излучения с определенной длиной волны губительно действовать на ферментные системы бактерий. Ультрафиолетовые лучи уничтожают не только вегетативные, но и споровые формы бактерий, и не изменяют органолептических свойств воды. Важно отметить, что поскольку при УФ-облучении не образуются токсичные продукты, то не существует верхнего порога дозы. Увеличением дозы УФ-излучения почти всегда можно добиться желаемого уровня обеззараживания. В качестве источника излучения используются ртутные лампы, изготовленные из кварцевого песка.
     Метод не требует сложного оборудования и легко может применяться в бытовых комплексах водоподготовки в частных домах.
     Фактором, снижающим эффективность работы установок УФ-обез¬зараживания при длительной эксплуатации, является загрязнение кварцевых чехлов ламп отложениями органического и минерального состава. Крупные установки снабжаются автоматической системой очистки, осуществляющей промывку путем циркуляции через установку воды с добавлением пищевых кислот. В остальных случаях применяется механическая очистка.
     Основным недостатком метода является полное отсутствие последействия [4].
     Обеззараживание воды ультразвуком основано на способности его вызывать так называемую кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Бактерицидное действие ультразвука разной частоты весьма значительно и зависит от интенсивности звуковых колебаний.
     В настоящее время этот способ еще не нашел достаточного применения в системах очистки воды, хотя в медицине он широко используется для дезинфекции инструментария и т.п. в так называемых ультразвуковых мойках [2].
     Озонирование воды основано на свойстве озона разлагаться в воде с образованием атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Количество озона, необходимое для обеззараживания воды, зависит от степени загрязнения воды и составляет 1–6 мг/дм3 при контакте в 8–15 мин; количество остаточного озона должно составлять не более 0,3–0,5 мг/дм3, т. к. более высокая доза придает воде специфический запах и вызывает коррозию водопроводных труб. Однако молекула озона неустойчива, поэтому его остаточные количества быстро разлагаются в воде. С гигиенической точки зрения озонирование воды – один из лучших способов обеззараживания питьевой воды. При высокой степени обеззараживания воды оно обеспечивает ее наилучшие органолептические показатели и отсутствие высокотоксичных и канцерогенных продуктов в очищенной воде.
     Однако в связи с большим расходом электроэнергии, использованием сложной аппаратуры и необходимостью высококвалифицированного обслуживания, озонирование нашло применение для обеззараживания питьевой воды только при централизованном водоснабжении.
     Метод озонирования воды технически сложен и наиболее дорогостоящ. Технологический процесс включает последовательные стадии очистки воздуха, его охлаждения и осушки, синтеза озона, смешения озоновоздушной смеси с обрабатываемой водой, отвода и деструкции остаточной озоновоздушной смеси, вывода ее в атмосферу. Все это требует также дополнительного вспомогательного оборудования (озонаторы, компрессоры, установки осушки воздуха, холодильные агрегаты и т. д.), объемных строительно-монтажных работ.
     Озон токсичен. Предельно допустимое содержание этого газа в воздухе производственных помещений 0,1 г/м3. К тому же существует опасность взрыва озоновоздушной смеси [1, 2].
     Наиболее распространенным методом обеззараживания воды был и остается метод хлорирования. Это объясняется высокой эффективностью, простотой используемого технологического оборудования, дешевизной применяемого реагента – жидкого или газообразного хлора – и относительной простотой обслуживания.
     Очень важным и ценным качеством метода хлорирования является его последействие. Если количество хлора взято с некоторым расчетным избытком, так чтобы после прохождения очистных сооружений в воде содержалось 0,3–0,5 мг/л остаточного хлора, то не происходит вторичного роста микроорганизмов в воде.
     Хлор является сильнодействующим токсическим веществом, требующим соблюдения специальных мер по обеспечению безопасности при его транспортировке, хранении и использовании; мер по предупреждению катастрофических последствий в чрезвычайных аварийных ситуациях. Поэтому ведется постоянный поиск реагентов, сочетающих положительные качества хлора и не имеющих его недостатков.
     Предлагается применение диоксида хлора, который обладает рядом преимуществ, таких как: более высокое бактерицидное и дезодорирующее действие, отсутствие в продуктах обработки хлорорганических соединений, улучшение органолептических качеств воды, отсутствие необходимости перевозки жидкого хлора. Однако диоксид хлора дорог, должен производиться на месте по достаточно сложной технологии. Его применение имеет перспективу для установок относительно небольшой производительности.
     Применение для обеззараживания воды хлорсодержащих реагентов (хлорной извести, гипохлоритов натрия и кальция) менее опасно в обслуживании и не требует сложных технологических решений. Однако используемое при этом реагентное хозяйство более громоздко, что связано с необходимостью хранения больших количеств препаратов (в 3–5 раз больше, чем при использовании хлора). Во столько же раз увеличивается объем перевозок. При хранении происходит частичное разложение реагентов с уменьшением содержания хлора. Остается необходимость устройства системы притяжно-вытяжной вентиляции и соблюдения мер безопасности для обслуживающего персонала. Растворы хлорсодержащих реагентов коррозионно-активны и требуют оборудования и трубопроводов из нержавеющих материалов или с антикоррозийным покрытием [5].
1. Технологии обеззараживания воды / Arista, - http://www.arista.com.ua/inform/189/191/
2. Обзор методов очистки воды: обеззараживание воды / Очистные сооружения, -
http://www.1os.ru/content/subs/doc24
3. Гордиенко Н. В. Серебрение воды как метод обеззараживания / Likar Info, -
http://www.likar.info/coolhealth/articles/45.html
4. Волков С. В., Костюченко С. В., Зайцева С. Г., НПО «ЛИТ»; Гильбух А. Я., Гречухин А. И., Петрова Н. Р., АО «АвтоВАЗ»; Кудрявцев Н. Н., МФТИ; Смирнов А. Д., ГНЦ РФ НИИ ВОДГЕО; Стрелков А. К., Самарская арх. - строит. академия; Малаханова Т. Б., Царева С. Б., Главгосэкспертиза России. Эффективный метод обеззараживания воды – ультрафиолетовое излучение / Журнал «Инновации. Технологии. Решения», -
http://www.sibai.ru/content/view/760/890/
5. Хлорирование воды / Нова Терра, - http://www.superfilter.ru/index.php?Page=hlor_water