Цифровая обработка сигналов.
Лайонс Р.
Преобразование Фурье
Преобразование Фурье (Fourier transform) является инструментом спектрального анализа непериодических сигналов. Впрочем, чуть позже мы увидим, что его можно применять и к сигналам периодическим, но это потребует использования аппарата обобщенных функций.
Для наглядной иллюстрации перехода от ряда Фурье к преобразованию Фурье часто используется не вполне строгий математически, но зато понятный подход. Представим себе периодическую последовательность импульсов произвольного вида и сформируем ряд Фурье для нее. Затем, не меняя формы одиночных импульсов, увеличим период их повторения (заполнив промежутки нулевым значением) и снова рассчитаем коэффициенты ряда Фурье. Формула (1.9) для расчета коэффициентов ряда показывает, что нам придется вычислить тот же самый интеграл, но для более тесно расположенных частот iok = kw{. Изменение пределов интегрирования не играет роли — ведь на добавившемся между импульсами пространстве сигнал имеет нулевое значение. Единственное дополнительное изменение будет состоять в уменьшении общего уровня гармоник из-за деления результата интегрирования на увеличившийся период Т.