Введение
        Вы, наверное, уже обратили внимание, что при решении большинства задач, с которыми сталкиваетесь повседневно, возникает необходимость приближенного задания условий и, соответственно, получаются столь же приближенные ответы. В самых разных сферах деятельности: управление инвестиционными портфелями, планирование финансовой деятельности предприятия, оптимизация товарооборота, оптимизация финансовых потоков, оптимизация информационных потоков, оценка эффективности рекламной компании, оценка влияния политических и социальных событий на поведение рынка, а также многих, многих прочих задачах требуются такие инструменты, которые могут подобные вычисления проводить, причем достаточно быстро и с приемлемой точностью.
        Речь далее пойдет об инструментах, использующих принципы нечеткой логики (fuzzy logic). Встречается также другой термин - нечеткое представление(fuzzy thinking).
        Постановка задачи
        … Когда Вы управляете автомобилем, двигаясь в плотном городском потоке, Вы заняты разгоном, торможением, маневрированием, соблюдением правил движения и т.д. Если Вас спросить в этот момент, что вы думаете о температуре Ваших тормозов или как Вам смотрится давление масла в гидроусилителе, Вы вряд ли ответите что-то определенное. Вы заняты процессом движения. Все агрегаты автомобиля интересуют Вас постольку, поскольку они способствуют этому процессу. Или не способствуют. У вас просто нет ни времени, ни возможности отвлекаться на детали.
        Иными словами, рассматривая Вашу поездку с точки зрения системы, можно сказать, что Вас в большей степени волнуют принципы действия этой системы, то есть насколько способен Ваш автомобиль доставить Вас из точки А в точку Б за заданное время и при заданных известных условиях. И в меньшей степени волнует конструкция этой системы, то есть то, каким способом автомобиль решает эту задачу.
        При более детальном изучении вопроса Вы можете заметить, что в подавляющем большинстве задач, которые Вы решаете, входные условия и критерии оценок непрерывно изменяются.
        Если уж вернуться к примеру автомобиля, то когда Вы прикидываете расход топлива при езде по городу (целевая функция), Вы строите утверждения примерно так:
                        # обычно я двигаюсь по городу из точки А в точку Б со скоростью 60 км/час”, подразумевая при этом, что в некоторых местах скорость выше, а в других – близка к нулевой
                        # “при этом обороты двигателя примерно 2500 об/мин”, понимая, что на светофорах это холостой ход, а при разгоне – близки к максимальным
                        # “движение обычно происходит на третьей передаче”, хотя знаете, что к вечеру у Вас затекает рука от непрерывных переключений.
        В результате вы замеряете средний расход топлива в литрах на 100 км и обнаруживаете, что он существенно отличается от паспортных значений. Вас это отличие не устраивает, но как решить эту проблему ?
        Вы допускаете, что Вам в принципе не нужен ответ с точностью до миллилитра. Вам важно просто минимизировать целевую функцию. Иными словами Вы можете для себя определить некоторую степень точности решения задачи, соблюдение которой Вас устроит.
        Если Вы зададитесь целью свести значение целевой функции (расхода топлива) к минимуму, причем сделать это, не прибегая к созданию системы, по цене сравнимой со стоимостью автомобиля, Вам понадобится инструмент, который может решать такую задачу при непрерывно меняющихся входных значениях и который может легко подстраиваться под изменение оценочных критериев (например, движение в городе/на трассе). Причем инструмент должен быть прост в управлении и понятен Вам без долгого изучения специальных дисциплин.
Fuzzy thinking. Системы, основанные на принципах.
        Прежде, чем приступить к описанию конкретных пакетов, необходимо иметь в виду следующее обстоятельство: пути решения каждой конкретной задачи могут быть весьма разнообразны. Современный математический аппарат предоставляет целый спектр методов, приемов и инструментов для решения практически любой задачи. Все они воплощены в виде алгоритмов в разнообразных программных продуктах.
        Приступая к решению очередной задачи и выбирая для нее подходящий “молоток”, Вы беспокоитесь не только о самом факте существования решения, но и о эффективности собственно “молотка”, то есть о том, за какое время и с какими затратами задача будет решаться.
        Существующие подходы к эффективному решению задач таковы:
                        1. Если Вы знаете правила, по которым действует объект Вашего внимания, вы можете их обобщить и свести в некоторую систему, действующую и генерирующую выводы по схеме “если – то – иначе”. Такой подход “на правилах” реализован, например, в техническом анализе и успешно применяется достаточно давно.
                        2. Если Вы правил поведения объекта не знаете, но подразумеваете их присутствие, то вы создаете систему, которая вначале обучается на некотором множестве примеров (представленных в виде “набор входных значений – критерии оценки – правильные выводы”), а затем адекватно строит выводы на новых входных данных. Такой подход “на примерах” реализован в применении нейросетей и показывает высокие результаты точности оценок и прогнозов.
                        3. Если Вы не знаете ни правил поведения объекта, ни того, известны ли они вообще и могут ли быть получены, вы пытаетесь смоделировать объект, применяя известные Вам правила и зависимости, что называется, “по аналогии”, а затем делаете выводы о том, насколько объект соответствует модели. Такой подход “на моделях” реализован в современной “теории хаоса” и позволяет оценивать события, качественно изменяющиеся за малые промежутки времени.
                        4. Если правил, примеров и моделей достаточно много, возникают принципы действия объекта – “правила взаимодействия правил (примеров, моделей и т.д.)”. То есть Вы можете оценивать и управлять объектом не только на микро-уровне (правила), но и на макро-уровне (принципы). Эти принципы также можно обобщать и сводить к некоторым системам. Этот подход “на принципах” реализован с помощью применения fuzzy-математики в разнообразных инструментальных пакетах: от несложных электронных таблиц до совершенных экспертных систем.
Решение конкретной задачи предполагает комбинации перечисленных подходов.
Коротко перечислим отличительные преимущества fuzzy-систем по сравнению с прочими :
                        * возможность оперировать входными данными, заданными нечетко: например, непрерывно изменяющиеся во времени значения (динамические задачи), значения, которые невозможно задать однозначно (результаты статистических опросов, рекламные компании и т.д.)
                        * возможность нечеткой формализации критериев оценки и сравнения: оперирование критериями “большинство”, “возможно”, предпочтительно” и т.д.
                        * возможность проведения качественных оценок как входных данных, так и выводимых результатов: вы оперируете не только собственно значениями данных, но их степенью достоверности (не путать с вероятностью!) и ее распределением
                        * возможность проведения быстрого моделирования сложных динамических систем и их сравнительный анализ с заданной степенью точности: оперируя принципами поведения системы, описанными fuzzy-методами, вы во-первых, не тратите много времени на выяснение точных значений переменных и составление уравнений, которые их описывают, во-вторых, можете оценить разные варианты выходных значений.
        Математический аппарат, предоставляющий такие возможности, детально описан в специальной литературе как комбинация множественных и вероятностных приемов.