П.В. Казаков, В.А. Шкаберин
ОСНОВЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА



1. ВВЕДЕНИЕ В ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ

Искусственный интеллект (ИИ) является одним из приоритетных направлений в современной информатике, связанным с созданием следующей ступени ее развития – новых информационных технологий. Их цель – свести к минимуму участие человека как программиста при создании информационных систем, но привлекать его в качестве учителя, партнера человеко-машинной системы. Однако нельзя понимать термин «искусственный интеллект» буквально. Правильнее его воспринимать как некоторое метафорическое наименование совокупности методов, реализация которых на компьютере по- зволяет получать результаты близкие к порождаемым человеческим мышлением.

   1.1. Некоторые понятия искусственного интеллекта

Идея создания искусственного интеллекта связана с постоянным стремлением человека переложить решение сложных задач на механического, затем электронного помощника. Единственный способ реализовать это заключается в моделировании с помощью различных средств интеллектуальных способностей человека.

Здесь под интеллектом следует понимать способность мозга решать задачи путем приобретения, запоминания и целенаправленного преобразования знаний в процессе обучения на опыте и адаптации к разнообразным условиям [6].

Искусственный интеллект (Artificial Intelligence, AI) как научное направление существует с 1956 года, когда британский математик Алан Тьюринг опубликовал свою статью «Can the Machine Think ?» («Может ли машина мыслить ?»). Также он предложил тест проверки программы на интеллектуальность. Он состоял в следующем: организовывалось «общение» между человеком и компьютерной программой, которые размещались в разных комнатах, и до тех пор, пока исследователь не определял, кто за стеной – человек или программа, поведение последней считалось интеллектуальным [1]. Исходя из этого, Тьюринг предложил следующий критерий интеллектуальности программы: «Если поведение вычислительной машины, отвечающей на вопросы, невозможно отличить от поведения человека, отвечающего на аналогичные вопросы, то она обладает интеллектом».

В настоящее время существует три основные точки зрения на цели и задачи исследований в области искусственного интеллекта [1,6]. Согласно первой, исследования в этой области относятся к фундаментальным, в процессе которых разрабатываются новые модели и методы решения задач, традиционно считавшихся интеллектуальными и не поддававшихся ранее формализации с помощью классических алгоритмических методов, а также автоматизации. Интеллект и мышление непосредственно связаны с решением таких задач, как доказательство теорем, логический анализ, распознавание ситуаций, планирование поведения, управление в условиях неопределенности и т.п. Характерными чертами интеллекта, проявляющимися в процессе решения подобных задач, являются способность к обучению, обобщению, накоплению опыта и адаптации к изменяющимся условиям в процессе решения задач. Из-за этих качеств интеллекта мозг может решать разнообразные задачи, а также легко перестраиваться с решения одной задачи на другую. Таким образом, мозг, наделенный интеллектом, является универсальным средством решения широкого круга задач (в том числе плохо формализованных), для которых нет стандартных, заранее известных методов решения. Согласно второй точке зрения, это направление связано с новыми идеями решения задач на ЭВМ, с разработкой новых технологий программирования и с переходом к компьютерам с отличной от фон-неймановской архитектурой. Так, в качестве основы для таких систем предлагаются различные подходы на основе искусственный нейронных сетей, моделирующих наиболее общие принципы работы головного мозга [5]. Для таких моделей характерны легкое распараллеливание алгоритмов и связанная с эти высокая производительность, а также возможность работать даже при условии неполной информации об окружающей среде. Третья точка зрения основана на том, что в результате исследований, проводимых в области ИИ, появляется множество прикладных систем, способных решать задачи, для которых ранее создаваемые системы были непригодны.

Обобщая изложенное, будем определять искусственный интеллект как научное направление, задачи которого связаны с разработкой методов моделирования отдельных функций интеллекта человека с помощью программно-аппаратных средств ЭВМ.

Исторически сложились три основных подхода к проведению исследований в области искусственного интеллекта.

Первый подход (машинный интеллект) в качестве объекта исследования рассматривает именно искусственный интеллект и состоит в моделировании внешних проявлений интеллектуальной деятельности человека с помощью средств ЭВМ. В основе его лежит тезис о том, что машина Тьюринга является теоретической моделью мозга, поэтому главное направление работ связано с созданием алгоритмического и программного обеспечения ЭВМ, позволяющих решать интеллектуальные задачи не хуже человека. Примером может служить шахматная программа, проявление интеллектуальности которой состоит в поиске игровой тактики, близкой к человеческой. Однако достигается это исключительно путем высокой скорости вычислений, в то время как у человека - благодаря высокоэффективному мышлению.

Как известно, человеческий мозг оперирует непрерывной информацией, где каждая мысль существует только внутри своего контекста. Знания хранятся в форме образов, которые часто трудно выразить словами. При этом сами образы характеризуются нечеткостью и размытостью, а обработка информации - небольшой глубиной и высоким параллелизмом. Все это свидетельствует о существенном различии с принципами машины Тьюринга и как следствие требует другого некомпьютерного подхода к моделированию интеллектуальных процессов.

Второй подход (искусственный разум) рассматривает данные о нейрофизиологических и психологических механизмах интеллектуальной деятельности и разумного поведения человека. Он стремится воспроизвести эти механизмы с помощью программно-аппаратных средств. Развитие этого направления тесно связано с успехами наук о человеке, в первую очередь нейронаук (нейробиологии, генетики и т.п.).

Третий подход ориентирован на создание смешанных человекомашинных интеллектуальных систем как симбиоз возможностей естественного и искусственного интеллекта. Важнейшими проблемами в этих исследованиях являются оптимальное распределение функций между естественным и искусственным интеллектом, организация диалога между человека и машиной.

Каждое из отмеченных направлений включает целый ряд разделов, к основным из которых можно отнести разработку систем, основанных на знаниях, анализ естественного языка и общения с ЭВМ, распознавание образом, анализ речи, создание адаптивных систем, игры и машинное творчество и др. [1]. В свою очередь, реализация подобных систем может быть выполнена на основе таких технологий ИИ, как представление и обработка знаний, эвристическое программирование, искусственные нейронные сети, эволюционные алгоритмы, нечеткие множества и др.

К настоящему времени разработано целое множество программный систем, в которых реализованы те или иные технологии ИИ. Такие системы принято называть интеллектуальными системами. К первой из подобных систем относят программу «Логик-Теоретик» (А. Ньюэлл, А. Тьюринг и др.), предназначенную для доказательства теорем исчисления высказываний.

Под интеллектуальной системой будем понимать адаптивную систему, позволяющую строить программы целенаправленной деятельности по решению поставленных перед ними задач на основании конкретной ситуации, складывающейся на данный момент в окружающей их среде [9]. В свою очередь, адаптивная система может быть охарактеризована как система, которая сохраняет работоспособность при непредвиденных изменениях свойств управляемого объекта, целей управления или окружающей среды путем смены алгоритма функционирования, программы поведения или поиска оптимальных, в некоторых случаях просто эффективных, решений и состояний. Традиционно, по способу адаптации различают самонастраивающиеся, самообучающиеся и самоорганизующиеся системы. К сфере решаемых интеллектуальными системами задач относятся задачи, обладающие, как правило, следующими особенностями:

Разработка интеллектуальных систем, как правило, ведется в рамках одного или нескольких направлений ИИ, которых в настоящее время существует целое множество. Ниже кратко рассматриваются основные из них [1].

1.2. Основные направления исследований в области искусственного интеллекта

Разработка систем, основанных на знаниях. Является одним из главных направлений в искусственном интеллекте. Основной целью создания таких систем является выявление, исследование и применение знаний специалистов для решения различных практических задач. Обычно такие знания формализуются в виде некоторой системы правил. В этой области исследований осуществляется разработка моделей извлечения, представления и структуризации знаний с учетом их компьютеризации в виде базы знаний. Примеры практических разработок подобных систем обычно ассоциируются с экспертными системами.

Разработка систем общения на естественном языке и машинного перевода. Является наиболее важной с точки зрения перехода на новый качественный уровень взаимодействия с компьютером. Попытки создания подобных систем предпринимались с 1950-х годов 20 в. Основу систем машинного перевода составляет классификация грамматических правил и приемов использования словаря. Однако для обработки сложного разговорного текста необходимы алгоритмы анализа его смысла, создание которых очень трудоемкая и пока нерешенная задача. Поэтому в настоящее время дос- тупны системы, обеспечивающие диалог между человеком и компьютером на упрощенном, урезанном естественном языке, программы электронного перевода эффективные преимущественно при работе с односложным текстом, а также функции ассоциативного контекстного поиска в электронных словарях.

Разработка интеллектуальных систем на основе принципов обучения, самоорганизации и эволюции. Моделирование этих принципов ориентировано на исследование возможностей решения задач с помощью законов функционирования наиболее свойственных биологическим системам. Процесс обучения связан со способностью системы накапливать информацию и рационально корректировать в соответствии с ней свое поведение. Самоорганизация подразумевает способность системы обобщать накопленную информацию, например для поиска в ней закономерностей. Использование принципов эволюции позволяет системе приобретать новые качества и свойства для наиболее оптимального функционирования.

Распознавание образов. Является одним из ранних направлений искусственного интеллекта. Оно связано с моделированием особенностей восприятия внешнего мира, узнавания объектов. В основе этого лежит тот факт, что все объекты могут быть проклассифицированы по определенным признакам и, следовательно, умение различать их проявление и позволяет идентифицировать соответствующий объект.

Игры и машинное творчество. Машинное творчество охватывает сочинение компьютерной музыки, стихов, автоматизацию изобретения новых объектов. Компьютерные игры являются той сферой искусственного интеллекта, которая наиболее знакома большинству пользователей. Уровень реализации ИИ в игре во многом определяет ее интересность, поэтому разработчики компьютерных игр постоянно совершенствуют их интеллектуальную составляющую.

Программное обеспечение систем искусственного интеллекта. Инструментальные средства для разработки интеллектуальных систем включают специальные языки программирования, представления знаний, среды создания систем ИИ, а также оболочки экспертных систем.

Интеллектуальные роботы. Их создание связано с объединением технологий искусственного интеллекта и методов кибернетики, робототехники. В настоящее время их производство ограничивается манипуляторами с жесткой схемой управления, а также роботами развлекательного и бытового назначения с узкой областью применения и ограниченными функциями. Сдерживающим фактором при разработке более совершенных кибернетических систем являются нерешенные проблемы в области машинного зрения, адаптивного поведения, накопления и обработки трехмерной визуальной информации.

Уровень теоретических исследований по искусственному интеллекту в России не уступает мировому. Началом становления этого научного направления в нашей стране следует считать 1954 г., когда в МГУ начал свою работу семинар «Автоматы и мышление» под руководством академика Ляпунова А.А. Впоследствии стали активно развиваться направления, связанные с представлением и обработкой знаний, ситуационным управлением, моделированием рассуждений, распознаванием образов, обработкой естественного языка [3].

Развитие искусственного интеллекта в современной России связано с образованием в 1988 г. Ассоциации искусственного интеллекта, объединившей научные школы, исследователей по различным направлениям ИИ. Под ее эгидой проводятся различные исследования, организуются семинары для специалистов, устраиваются конференции, издается научный журнал.

В то же время проведение прикладных исследований, внедрение их результатов в коммерческие разработки происходит гораздо медленнее, чем за рубежом. Во многом это объясняется консервативностью потенциальных потребителей новых информационных технологий, а также настороженным отношением к возможностям искусственного интеллекта.