Сайт ДонНТУ Портал Магистров ДонНТУ Русский Українська English e-mail:samora_2004@yahoo.com
Автобиография
Библиотека
Ссылки
Отчёт о поиске
Индивидуальное задание
Магистр ДонНТУ Аль-кумаим Самир Рашид

Аль-кумаим Самир Рашид

Факультет компьютерных информационных технологий и автоматики

Кафедра автоматики и телекоммуникаций

Специальность: Телекоммуникационные системы и сети

Тема магистерской работы:

«Влияние окружающей среды на сети мобильной связи»

Научный руководитель:
к.т.н. профессор Хорхордин Александр Владимирович

ВСТУПЛЕНИЕ

В магистерской работе предлагается анализ основных особенностей распространения радиоволн в системе мобильной святи стандарта GSM и моделей, используемые для расчета радиотрасс. Проводится моделирование распространения сигнала с применением различных моделей и сравнение полученых данных.

АКТУАЛЬНОСТЬ

Система сотовой связи GSM900/1800 является наиболее распространенной в мире и универсальной в использовании, имея перспективы эксплуатации и развития на ближайшие 5-10 лет. Поэтому выбор системы GSM900/1800 для исследования в данной работе является актуальным в сфере телекоммуникаций.

ПОСТАНОВКА ЗАДАЧ

В работе необходимо провести анализ существующих проблем, возникающих при передаче сигналов в сети GSM.

Предложить основные способы борьбы с искажениями сигналов.

Рассмотреть критерии и уровни качетва услуг сети GSM.

Провести моделирование сегментов сети сотовой связи и проанализировать существующме модели по параметру эффективности.














Влияние внешних факторов на распространение сигналов в сети мобильной связи

При распространении радиоволн в свободном пространстве амплитудное значение напряженности электрического поля сигнала Етсв на расстоянии r от передающей антенны базовой станции определяется по формуле [4]:

где P - излучаемая мощность передающей антенны; Dпрд – коэффициент направленного действия передающей антенны; F- характеристика направленности антенны в горизонтальной и вертикальной плоскостях.

Формула показывает, что напряженность поля сигнала в месте приема уменьшается пропорционально расстоянию r вследствие "потерь передачи" в свободном пространстве. При распространении радиоволн в тропосфере потери напряженности поля будут определяться тангенсом угла потерь:

где сигма, эпсилон – соответственно удельная проводимость и диэлектрическая проницаемость тропосферы, а лямбда-длина волны.

Дисперсионные свойства приземного пласта тропосферы определяются ее газовым составом, температурой, давлением и влажностью.

Рисунок 1 - Влияние неоднородности среды на распространение радиоволн














"Нормальная тропосфера" с параметрами Т=288 К, р=0,1013 кПа и влажностью 60% для диапазона УКВ является диэлектриком, в котором радиоволны распространяются практически без потерь. Однако, реальная тропосфера не является однородной по своему составу. В приземном пласте тропосферы есть водные пары (туман, дождь) или взвешенные частицы (дым, пыль). Это обусловлюет уменьшение напряженности поля через тепловые потери на движение молекул газа. Величина поглощения оценивается коэффициентом потерь в зоне неоднородности:

где эпсилон – коэффициент ослабления напряженности поля сигнала в зоне неоднородности; альфа – постоянная затухания напряженности поля; r - длина зоны неоднородности.

С увеличением длины зоны неоднородности rзн поглощение энергии радиосигнала увеличивается. Особенно ощутимы потери для спектров УВЧ (на которых работает мобильная связь). Влияние тропосферы на распространение радиоволн оказывается не основным. Более важное влияние оказывает подстилающая поверхность, трасы радиосвязи. Грунт земли включает сухой грунт и водные растворы солей, которые определяют важные расхождения дисперсионных параметров: диэлектрической проницаемости и удельной проводимости земли. Вследствие этого на трассе радиосвязи могут появляться эффекты отражения и поглощения радиоволн. Условия распространения радиоволн определяются тангенсом угла потерь в земле. При низкоподнятых антеннах базовых станций (до 20м) поглощения энергии электромагнитного поля в земле увеличивается. Коэффициент тепловых потерь в земле определяется коэффициентом Ван дер Поля [4]:

где

При высокоподнятых антеннах потери в земле оцениваются коэффициентом А. Б. Введенського:

где

С учетом влияния неоднородной среды распространения радиоволн и подстилающей поверхности, выражение амплитудного значения напряженности поля сигнала в месте приема принимает вид:















Из-за влияния коэффициентов эпсилон напряженность поля сигналов в месте приема радиоволн существенным образом снижается. Реальные трассы радиосвязи мобильных систем имеют участки подстилающей поверхности с разными значениями эпсилон, сигма. Однако, вследствие сравнительно небольших расстояний между БС и МС значения параметров могут браться усредненными. Обычно берутся значение сигма, эпсилон такие, которые отвечают параметрам "влажного грунта сигма=0.1..0,011), эпсилон=(15...30). Таким образом, подстилающая поверхность на трассах мобильной радиосвязи для диапазона СВЧ является полупроводником. Причинами потерь напряженности поля радиосигналов в месте приема является также рельеф местности. Поскольку антенны базовых станций находятся в непосредственной близости от земли, то на трасах радиосвязи появляются крупномасштабные объекты, которые экранируют приемные антенны от передающих. Чем больше пересеченность местности, тем большее влияние она оказывает на условия прямой видимости станций. Ослабление поля сигнала при этом зависит не только от величины просвета трассы радиосвязи, но и от расстояния до объекта, который экранирует (рис. 2, а). Параметры трассы радиосвязи H, ra, rb, а также длина волны лямбда определяют значение обобщенного параметра потерь d:

Обобщенный параметр d определяет размеры той части пространства между БС и МС, в которой распространяется основная часть энергии электромагнитного поля [4]. Если величина экрана не будет превышать радиус R первой зоны Френеля (рис. 2, б), то напряженность поля сигнала в месте приема будет практически отвечать напряженности поля при открытой трассе. Если же величина экрана будет больше радиуса первой зоны Френеля, то несмотря на формально закрытую трассу, ослабление напряженности поля сигнала будет определяться в зависимости от дифракционного параметра d.

Рисунок 2- Экранирование MS на трассе радиосвязи

Статистические исследования трасс мобильной радиосвязи в диапазонах УКВ показывают, что объектами, которые отражают, могут быть отдельные участки земли, а также отдельные объекты для которых выполняется условие tg(сигма)>1. Объекты, которые отражают, сыграют роль вторичных (пассивных) излучателей (рис. 3).



















Отраженные лучи при этом будут иметь разные разности хода, так как расстояния от вторичных излучателей к приемной радиостанции будут разными. Таким образом, на входе радиоприемника даже при экранировании регулярного луча появится радиосигнал, образованный путем интерференционного добавления отраженных сигналов. Поскольку в процессе функционирования системы MS постоянно перемещаются, то изменяется и количество объектов, которые отражают, с разной эффективностью отражения и разностью хода лучей. Вследствие этого, отраженный сигнал на входе приемника MS будет постоянно колебаться (флуктуировать).

Рисунок 3 – Отражание радиоволн на трассе радиосвязи от объектов городской застройки

Выводы

При определении зоны покрытия должны учитываться все особенности пересеченной местности с целью максимального исключения теневых участков возможных трасс радиосвязи, затухания в осадках, отражение, интерференция, влияние неоднородностей. В зоне покрытия радиосвязь должен обеспечиваться практически для любой точки нахождения MS. Это достигается не только координатным размещением BS, но и выбором высот поднятия их антенн, которые преобладают для данной местности и учитывают основные направления трасс радиосвязи.

Использование антенн направленного действия, диаграммы направленности которых частично перекрываются, дает возможность формировать круговую диаграмму направленности BS. Кроме того, предполагается возможность изменения излучаемой мощности и ее автоматическое регулирование в каждому отдельному субканале.

Наиболее оптимальной для исследования сети сотовой связи является модель Окамура-Хата как наиболее универсальная для всех типов местности и условий распространения сигналов.

Литература

1. Крук Б.И., Попатонопуло В.Н. Телекоммуникационные системы и сети: Учебное пособие. В 3 томах. Том 1 – Современные технологии – М.: Горячая линия-Телеком, 2003. – 647 с.

2. Громаков Ю.А. Стандарты и системы подвижной радиосвязи. 5-е изд. - М.: Эко-Трендз, 1998

3. Кловский Д.Д. Теория передачи сигналов. – М.: Связь, 1973.

4. А.А. Зеленский, В.Ф. Солодовник. Системы радиосвязи – Учеб.пособие. Ч.3.-Харьков: Нац. аэрокосм. ун-т "Харьк. авиац. ин-т", 2003.–90с.

Вернуться к началу страницы   ДонНТУ   Портал Магистров ДонНТУ
Библиотека Биография Ссылки Отчёт о поиске Индивидуальное задание
© ДонНТУ 2009, Аль-кумаим Самир Рашид