Функциональная керамикаЦТС

Хасанов О. Л., Бикбаева З. Г

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ


Источник: http://www.library.donntu.ru/chemistry/H_119.pdf


 

Функциональными называют материалы, характеризующиеся ярко выраженным свойством и предназначенные для создания специализированных изделий и устройств. Это могут быть материалы с особыми физическими свойствами, например, электрическими, магнитными, тепловыми, оптическими, пьезоэлектрическими и другими свойствами. К функциональным материалам относятся аккумуляторы энергии, накопители водорода, катализаторы, сенсорные материалы – преобразователи того или иного внешнего воздействия в электрические сигналы или изменяющие свои размеры, фотоэлектрические, пьезоэлектрические и другие. Как функциональные материалы керамики применяют, например, в качестве резисторов – NbC, SiC; фильтров (пористых изделий) – ZrO2, ZrC, SiC, Al2O3, TiB2, Si3N4, термоэлементов ZrB2, TiC, электродов SiC, LaB6, Y2O3 и др. [1].

Из многочисленного ряда функциональных материалов широкое применение находит пьезосегнетоэлектрическая керамика.

 Широко используемая в радиоэлектронике, гидроакустике и бытовой технике сегнето- и пьезоэлектрическая керамика, благодаря своей уникальной способности реагировать на любое физическое воздействие, является особым классом специальных керамических материалов, для изготовления которых применяют различные технологические процессы.

Исходным сырьём для получения пьезокерамики служат искусственно синтезированные химические соединения, являющиеся сегнетоэлектриками. Наиболее распространены в настоящее время типы сегнетоэлектрической керамики — однофазные керамические материалы на основе отдельных соединений (титанат бария), двойных или тройных твёрдых растворов (цирконаттитанат свинца). Склонность к образованию твёрдых растворов с неограниченной растворимостью, используют для корректировки параметров сегнетокерамических материалов. При введении малого количества модифицирующих добавок структура керамики на основе твёрдых растворов изменяется незначительно, в то время как электрофизические характеристики изменяются существенно (в некоторых случаях на порядок). Этим объясняется множество разработанных составов для различных практических применений.

Существует взаимосвязь состава, структуры, условий получения кислородсодержащих соединений (твердых растворов) с электрофизическими свойствами пьезокерамики.

В керамическом материале вследствие особенностей технологии его изготовления всегда существуют внутренние и внешние дефекты в виде пор, включений, микротрещин. Поры являются одним из факторов, оказывающих существенное влияние на процесс разрушения керамики. Влияние пор неоднозначно и зависит от их количества, формы, размеров и пространственной ориентации. Как правило, поры локализуются на границах зёрен в особенности на участках стыковки нескольких зёрен. Даже в материалах обладающих высокой плотностью (более 99 %) наблюдаются остаточные микропоры, расположенные преимущественно по границам зёрен. Поры есть концентраторы напряжений и могут вызывать изменение траектории трещины, которая распространяется в наиболее слабых местах, какими служат границы зёрен. Источником разрушения могут быть микропоры внутри зёрен. Размер пор, инициирующих разрушение в керамических материалах, составляет 20–200 мкм .

Зависимость диэлектрической проницаемости от морфологии пор и размера зерна, для керамики на основе титаната бария исследована в работе. Установлено, что с ростом относительной пористости от 0 до 0,05 величина диэлектрической проницаемости уменьшается линейно с незначительным наклоном. При увеличении относительной пористости от 0,1 до 0,2 наклон кривой уменьшения диэлектрической проницаемости увеличивается. Наличие протяженных (сквозных) пор также приводит к уменьшению диэлектрической проницаемости.

Определяющую роль в получении керамики с высокими показателями диэлектрической проницаемости играет минимизация её остаточной пористости. Высокие значения диэлектрической проницаемости наблюдаются даже для крупнозернистой керамики (размерами зёрен от 1,2 до 60 мкм), при условии достижения 99 % плотности от теоретической. В то же время при снижении плотности керамики до ~82% диэлектрическая проницаемость образцов со средним размером зёрен менее 1 мкм снижается значительно.

Мелкозернистая керамика имеет ряд особенностей, ярко проявляющихся в области фазового перехода. Например, с уменьшением размера кристаллитов (областей когерентного рассеяния) возрастают микродеформации, которые могут служить причиной подавления сегнетоэлектрических свойств. То есть диэлектрическая проницаемость и величина зерна неоднозначно связаны: возможно, что диэлектрические свойства подавляются при малом зерне. Подтверждением этого служит исследование, в котором экспериментально показано, что диэлектрическая проницаемость титанат-бариевой керамики уменьшается при снижении размеров её зёрен. При температуре 70 °C на частоте 10 кГц, для керамического BaTiO3 диэлектрическая проницаемость уменьшается от ?=2520 до ?=780 для образцов со средней величиной зерна соответственно d=1200 нм и d=50 нм.

Также большое влияние на электрофизические параметры имеет однородность микроструктуры. При экспериментальном рассмотрении формирования петли гистерезиса в керамике на основе цирконата-титаната свинца (ЦТС) показано, что, чем меньше дисперсия распределения зерен по размерам, тем больше вероятность того, что процессы переполяризации пройдут с меньшими механическими напряжениями.

Плотность керамики ?, относительная диэлектрическая проницаемость ? Т 33/?0, тангенс угла диэлектрических потерь tg?, механическая добротность Qm, размер и дисперсия распределения зёрен по размерам, размер и дисперсия распределения пор по размерам являются критическими характеристиками при получении пьезокерамики.

Несмотря на значительные достижения предшествующих многочисленных разработок, прогресс в совершенствовании указанных материалов в последние годы снизился. Это объясняется тем, что возможности улучшения электрофизических свойств пьезокерамики путём изменения химического состава практически исчерпаны. Вследствие этого на первый план выступает задача поиска новых приёмов совершенствования структуры и морфологии уже существующих материалов, которая может решаться, в частности, за счет применения различных физических воздействий, как при приготовлении исходных порошков, так и в процессе изготовления керамики. Такими приёмами могут быть, в частности, методы компактирования сухих НП, обеспечивающие равномерное распределение плотности в прессовках сложной формы без применения каких-либо пластификаторов, являющихся потенциальными источниками примесей и дополнительной пористости в спекаемых изделиях, минимизацию внутренних напряжений и макродефектов (расслоения, трещин).

Большинство пьезокерамических порошков также отличаются плохой формуемостью, высокой жёсткостью и низкой прочностью прессовок, что заставляет использовать для производства изделий из них энергоёмкие и специфические способы формования, или традиционные методы формования порошков с большим содержанием пластификаторов, оказывающих негативное влияние на их эксплуатационные свойства.

 

Литература:

 

1.                 Белая книга по нанотехнологиям: Исследования в области наночастиц, наноструктур и нанокомпозитов в Российской Федерации.– М.: Издательство ЛКИ, 2008.– 344с