УСТРОЙСТВО ДЛЯ СЧЕТА ИОНОВ

Патент Российской Федерации №2066897, заявитель - Казанский государственный технический университет им.А.Н.Туполева

Источник: Электронный ресурс - База патентов на изобретения РФ

http://ru-patent.info/20/65-69/2066897.html

Казанский государственный технический университет им.А.Н.Туполева
Маковеев В.М.; Кондратов С.В.

 

      Устройство относится к приборам для измерения концентрации аэроионов.
      Известно устройство для счета ионов, содержащее аспирационную камеру, соединенную с источником питания и электрометрическим усилителем и блоком регистрации результатов измерения (Х.Ф. Таммет "Аспирационный метод измерения спектра аэроионов", Ученые записки ТГУ, вып. 195, 1967). Недостатком этого устройства является сложность съема и обработки сигнала аспирационной камеры, а также отсутствие проверки правильности показаний в процессе работы.
      Наиболее близким к предлагаемому является устройство для счета ионов, содержащее аспирационную камеру, подключенную к источнику питания и ключу, управляющий вход которого соединен с первым выходом блока управления, амплитудно-временной преобразователь, соединенный с первыми входами элемента И, генератор импульсов, связанный со вторым входом первого элемента И, выход которого соединен с первым входом счетчика импульсов, и триггер, выход которого подключен к третьему входу первого элемента И и ко второму входу второго элемента И, а входы связаны соответственно с выходом второго элемента И и со вторым выходом блока управления, который соединен и со вторым входом счетчика.
      Недостаток прототипа заключается в отсутствии возможности проверки правильности его показаний в процессе эксплуатации.
      Изобретение решает задачу создания встроенного контроля устройства для счета ионов в процессе его работы.
       Поставленная задача достигается тем, что в устройство, содержащее аспирационную камеру, подключенную к источнику питания и ключу, управляющий вход которого соединен с первым выходом блока управления, амплитудно-временной преобразователь, соединенный с первыми входами элементов И, генератор импульсов, связанный со вторым входом первого элемента И, выход которого соединен с первым входом счетчика импульсов, и триггер, выход которого подключен к третьему входу первого элемента И и ко второму входу второго элемента И, а входы связаны с выходом второго элемента И и со вторым выходом блока управления, который соединен и со вторым входом счетчика, дополнительно введены источник опорного напряжения, аналоговый ключ, формирователь сигнала проверки и измерительный усилитель, первый вход которого соединен с ключом, выход со входом амплитудно-временного преобразователя, и второй вход с выходом аналогового ключа, первый вход которого соединен с общей шиной, второй с выходом источника опорного напряжения, а управляющий вход связан с выходом формирователя сигнала проверки, первый вход которого соединен с третьим выходом блока управления, а второй с шиной режима работы устройства.
      В момент времени t0 с первого выхода блока управления 4 поступает сигнал и ключ 3 размыкается. В результате за счет оседания ионов на собирающий электрод камеры 1 его емкость начинает заряжаться. Заряд этой емкости в любой момент времени пропорционален количеству осевших ионов и, следовательно, их концентрации.
      В момент времени t'1 со второго выхода блока управления 4 поступает короткий импульс сброса (см. фиг. 2) на счетчик 11 и триггер 9, который обнуляет счетчик, а триггер переводит в такое состояние, что его сигнал открывает схемы И 7, 8 по связанным с ним входам. Затем с некоторым запаздыванием t1 t'1 оканчивается сигнал на первом выходе блока управления, и ключ 3 замыкается. Время t1 t'1 должно быть таким, чтобы его хватило для установки узлов 9 и 11 в исходное состояние.
      В результате замыкания ключа 3 собирающий электрод камеры 1 соединяется с инвертирующим входом усилителя 5 и накопленный на нем заряд стекает через входное сопротивление усилителя. За счет этого на его выходе формируется импульс с амплитудой:



где


Q - заряд, накопленный на собирающем электроде камеры к моменту;

С1 - емкость собирающего электрода камеры.

Так как величина Q пропорциональна ? объемной плотности заряда аэроинов, то и амплитуда импульса Um будет пропорциональна r.
      В момент времени t3 ключ 3 размыкается, а затем в момент оканчивается импульс и на выходе формирователя сигнала проверки 14. Аналоговый ключ 12 вновь соединяет неинвертирующий вход усилителя 5 с общей шиной, и напряжение на выходе усилителя 5 вернется к исходному значению. В результате аспирационная камера 1 после момента t3 окажется заряженной до напряжения источника опорного напряжения 13.
       Изменение напряжения на выходе усилителя 5 за время t4 t'3 не повлияет на состояние счетчика 11, так как импульс сброса еще не прошел и схемы И 7, 8 закрыты выходным сигналом триггера 9.
      При хорошей изоляции собирающего электрода аспирационной камеры сообщенный ему за время t3 -t'3 заряд сохранится до момента следующего замыкания контактов ключа 3. В момент t'5 со второго выхода блока управления поступит сигнал сброса и сигнал на замыкание ключа 3. Импульс сброса изменит состояние триггера 9, и схемы И 7, 8 откроются. Замыкание ключа 3 в момент t5 приведет к разряду емкости аспирационной камеры и появлению на выходе усилителя 5 импульса, амплитуда которого пропорциональна заряду на аспирационной камере к моменту t5. О результате измерения амплитуды этого импульса с помощью амплитудно-временного преобразователя 6 и других элементов устройства можно судить как о качестве изоляции аспирационной камеры, так и об исправности измерительного тракта.
      Таким образом предложенное устройство для счета ионов обладает возможностью проведения проверки правильности его показаний в процессе работы благодаря наличию встроенного контроля. Это позволяет значительно повысить достоверность результатов измерений.