
Fuzzy Logic in Agent-Based Game Design
Yifan Li, Petr Musilek and Loren Wyard-Scott

Department of Electrical and Computer Engineering
University of Alberta

Edmonton, AB T6G 2V4, Canada
yifan, musilek, wyard@ece.ualberta.ca

Abstract – The underlying artificial intelligence of computer

games is constantly in need of improvement to meet the ever-
increasing demands of game players. This paper discusses how
intelligent agents and fuzzy logic can help increase the quality
and amount of a computer game’s most important element:
interaction. The applications of fuzzy logic in behavior design are
illustrated in detail through implementation of an arcade-style
game.

Keywords – Agent, BDI, Fuzzy Control, Combs, Game

I. INTRODUCTION

What is a computer game? In his influential book, The
Art of Computer Game Design [1], Crawford identifies four
fundamental elements of computer games: representation,
interaction, conflict, and safety. A Game presents a virtual
reality in which players enjoy interacting with the virtual
beings and taking challenges presented by the environment
without facing any physical risk. Of the four elements,
interaction is considered the most important. The advent of
computers has brought forward an unprecedented interactive
capability, making computer games truly different from
conventional games.

Intelligent agents [2] and fuzzy logic [3] are two
techniques that can help increase the quality of interaction in
games. Agents provide a new architecture of game design that
leads to more flexible interaction, and fuzzy control affords a
practical method for generating subtle behavior.

As defined in [2], an agent is an autonomous software
entity that has its own goals, sensory inputs, reasoning,
reaction, and social ties. In the agent-oriented approach to
game design, the game creatures are modeled as purposeful
‘living’ entities. This approach bears multiple benefits: 1) the
distributed nature of the architecture facilitates the creation of
complex system behaviors; 2) agents interact with each other
through high-level communication languages instead of rigid
low-level interfaces, making it simpler to manage large
number of interactive behaviors; and, 3) when immersed in
the virtual environment, players tend to perceive the virtual
creatures as intelligent individuals; modeling them as such
from the beginning helps to meet that expectation during later
development stages.

In the domain of games, fuzzy control is not just another
control method: it is a quality behavior generator. Creatures
with subtle behaviors enhance the perceived complexity,
enjoyableness and credibility of a virtual environment. While

classical rule-based systems often fail to attain subtlety, fuzzy
rule-based systems allow the nuances among inputs to be
captured and further reflected in the decisions at relatively low
computational cost. Compared to some other intelligent
techniques, fuzzy rule-based systems are easy to design and
implement as well – they are very similar to the crisp rule-
based systems, differing only in the approach used to partition
the input space. As a natural extension of classical set logic,
fuzzy logic is playing an increasingly important role in games.

This paper provides an anatomy of how agent technology,
incorporated with fuzzy logic, can be applied to game design.
A brief introduction to the Belief-Desire-Intention (BDI)
agent theory and an overview of the BDI.net agent framework
is provided in Section II. Section III closely examines
BattleCity.net, a re-implementation of an old arcade game.
Section IV outlines the extended framework and describes
how fuzzy rule-based computing can be used to improve the
perceived quality of computer games. Finally, Section V
summarizes the conclusions and indicates the direction of
future work.

II. BACKGROUND

A. Software Agents

An agent theory defines the internals of agents. Among
the many theories surveyed in [2], the BDI model [4][5][6] is
the most popular and influential.

During the past decade, the BDI model has been well-
studied and formalizations have been developed [7][8]. The
strong theoretical basis is supplemented by a number of
successful industrial applications ranging from early NASA
projects [9] to more recent air-traffic management [10] and air
combat simulation [11].

The BDI model is rooted in the philosophical work of
Bratman [12], which studies intention and its relation to other
mental attitudes. As its name implies, BDI features three
major mental attitudes as its building blocks - belief, desire,
and intention:
• Belief is the agent’s knowledge about its environment and

itself.
• Desire describes the agent’s goal: a system state that the

agent wants to achieve.
• Intention is the course of action that the agent has chosen

to achieve that goal.

0-7803-8376-1/04/$20.00 Copyright 2004 IEEE.

Plan is another important element of the BDI model. A
plan is a recipe of action for achieving a certain goal and is
used to guide the deliberation process of the agents so they
need not search through the entire space of possible solutions
[13].

B. BDI.net

BDI.net [14] is a Microsoft Visual C# [15]
implementation of the AgentSpeak [16] BDI model. It is
designed to be a lightweight framework for easy BDI
implementation by casual programmers. This design
philosophy leads to some favorable characteristics in
comparison to the other existing BDI implementations, such
as UM-PRS [17], JACK [18], JAM [19], dMARS [7], and
ZEUS [20]. In particular, BDI.net offers the following
advantages:
• Mainstream support and portability: BDI.net is written

using a popular programming language and work
seamlessly with all programming languages that support
the .NET framework;

• Better alignment with standard programming knowledge:
models can be described using common programming
syntax rather than specialized symbolic logic;

• Testability: BDI.net is designed with testability in mind,
providing special facilities and considerations to aid the
debugging process;

• Explicit communication support: facilities for agent
communication are built-in; and

• Tool library: apart from basic infrastructure, the
framework implements many intelligent algorithms
(including fuzzy inference) ready for use by the
application programmers.
A BDI.net agent operates through iterations of its

execution cycle as depicted in Fig. 1.

 Desire A

Plan Instance
A1

Plan Recipe
Library

Plan Instance A1

Intention Stack
Perceive

Desires aroused

Find plan recipes that
match the desire

Create Intention Stack

Plan A2

Plan A1

Applicable Plans

The matching plans
are called Applicable Plans

The best of the applicable
plans is selected and

instantiated

Plan Instance X11

Plan Instance X1

Intention
Library

Add Intention Stack to Intention Library

Select the best
intention for execution

Execute the
plan on

top of the
stack

Fig. 1 BDI.net main execution cycle

At the beginning of each cycle, the agent senses its
environment and updates its belief. Consequently, desires may
arouse in response to the newly received stimulations. The
agent then matches its stock plans against the desires to find
out the best applicable plan for each desire (based on the
plans’ fitness values) and initiates new intentions of execution.
Upon the end of the cycle, the intention that serves the most
urgent desire is chosen from the intention library to be

actually carried out. During execution, one plan may
occasionally need to achieve a certain sub-goal that is beyond
its capabilities to obtain. In such scenarios, the plan can
stimulate a new desire which the agent will try to fulfill in a
fashion similar to that described earlier. For the originating
plan, the call is synchronous – it waits until the sub-goal is
achieved or believed unobtainable before devising further
actions.

Communication is of paramount importance in any
serious agent application: without communication, it is almost
impossible to exercise control over a multi-agent system, let
alone collaborative problem-solving. Agent Communication
Language (ACL) [21], along with content language and
ontology specifications, is an enabling technology of agent
communication. BDI.net implements the Foundation for
Intelligent Physical Agents (FIPA) [22] agent communication
language standards for message encoding, semantics and
pragmatics. FIPA ACL is chosen over the equally popular
Knowledge Query and Manipulation Language (KQML) [23]
due to its formal semantics, support for XML (which is
relatively easy to parse), and other benefits such as
specifications of interaction protocols.

C. Fuzzy Rule-based Systems

Fuzzy rule-based computing is the most widely used form
of fuzzy logic. A fuzzy rule-based systems is generally
composed of four components: 1) the fuzzifier converts the
crisp inputs into fuzzy sets; 2) the rule base holds the relations
between the inputs and the desired output, expressed as a
collection of IF-THEN rules; 3) the reasoning unit applies the
inputs to the rules; 4) the defuzzifier converts the result of
reasoning back to crisp output values.

In the case of multiple inputs, the antecedents of a fuzzy
rule are usually connected with the logical AND connective,
and the rule base should cover every possible combination of
all linguistic terms defined on each input variable. This
requirement of completeness leads to a combinatorial
explosion of the rules: for a system of n inputs with m terms
each, a total of mn rules are needed. Combinatorial rule
explosion poses a severe problem for applying fuzzy control
in game design as it complicates the design process and taxes
precious CPU resources.

Combs has proposed the Union Rule Configuration (URC)
[24][25] to alleviate the rule explosion problem. A typical
URC is expressed as follows:

 IF X1 IS A11 THEN Y IS B1
OR IF X1 IS A12 THEN Y IS B2
OR IF X2 IS A21 THEN Y IS B2 (1)
OR …
OR IF Xi IS Aij THEN Y IS Bk
Where Xi denotes the input variables, Y denotes the

output variable, and Aij and Bk denote the linguistic terms
defined on the fuzzy variables. Instead of presenting the

relationship between the connected antecedents and the
consequent, the URC relates each input variable directly to the
output variable, thus reducing the total number of rules
required to m⋅n.

Although the theoretical foundations of URC are still
under debate [26][27], there is evidence of its applicability in
a relatively large number of situations. It can serve as a
practical and economic alternative to other approaches (such
as clustering and hierarchical systems) to solve the rule
explosion problem.

III. THE GAME

BattleCity is an old Nintendo Entertainment System (NES)
game released by Namco group in 1985. Like most early
video games it employs a simple plot (cf. Fig. 2): 1 or 2
players control their tanks and strive to protect their own base
(presented as an eagle at the bottom of the map) and destroy
all enemy tanks, then move on to the next stage. The game
provides different terrain elements – rivers, bricks, stones, and
trees, each featuring unique properties. The enemies have
various shapes, colors, speeds, and armor strengths. However,
all enemies share the same stochastic behavior, making them
relatively easy targets. During game play, the human
contenders are to devise a terrain-relative strategy to
effectively clear the hostile tanks while remaining out of
harm’s way.

Fig. 2 Original BattleCity Game (single player)

BattleCity.net [28] is a remake of the original BattleCity
game using the BDI.net framework and fuzzy logic. The rules
and graphic elements are transplanted as is, but for the
convenience of research the new game changes the plot to a
computer vs. computer battle. While the enemy tanks remain
stochastic, the player tanks are managed by intelligent agents
in order to eliminate the need for human intervention.

A. Design

In an agent-oriented approach the target system is
decomposed into autonomous entities and inanimate objects.

The first step is to decompose the system properly and
identify the agents. The nine types of entities are four terrain
elements, three different enemy tanks, the base, and the
player’s tanks. In theory, all entities can be agents, but that
would result in a waste of computing resources. As with many
other design issues there is no straightforward answer as to
which entities should be designed as agents. However a
simple rule of thumb is applied: if an entity is to perform
actions that change the environment, and the motivation for
performing these actions originates from the environment, it is
a candidate to be made an agent.

In BattleCity.net, the player-tank entity and the base
entity are designed as agents, leaving the rest as plain objects.
To generate a more realistic behavior, the player-tank agents
have limited sight, which in turn demands that the base (also
with limited sight) monitor its own vicinity and alert the
player-tank agents when enemies draw close. Additionally,
the base constantly evaluates its own situation and limits the
player tank’s distance to a level commensurate with the
currently perceived threat. This strategy is to avoid a situation
where the player tanks are too far away to rescue a threatened
base.

GameObject

MobileObject StaticObject

Robot Bullet

Tank Enemy1

FlatGame

Enemy2

Enemy3

Stone

Grass

Brick

WaterH

WaterV

Home

Player Player1

Player2 BattleCityGame

BDIAgent Plan

PlayerAgent HomeAgent

ChaseEnemyPlan

DestroyEnemyPlan

AvoidTeammatePlan

BDI

BattleCity

Game

FollowRoutePlan

Fig. 3 BattleCity.net Design (Selected Components)

From a design perspective, an agent-oriented solution is a
natural extension of object-oriented programming. Agent-
based games can still take advantage of existing game

development frameworks. BattleCity.net makes use of a 2D
grid game development framework that provides rendering,
sound, collision detection, and basic object prototypes. BDI
agents are embedded into the game objects to control their
behaviors, but the actual actions are still performed by the
objects, cf. Fig. 3.

B. Implementation

The game framework provides a control loop driven by
an external timer to handle animations and collisions, and to
give the other game entities an opportunity to perform their
own processing. The enemy tanks use this time slice to make
random moves and occasionally open fire, while the player
tanks and the base pass the control to their ‘brains’, i.e. the
agents. The terrain elements are not active entities and
therefore do not require processing time.

While the agent framework covers the mental operations
of an agent, plans have to be set up to inform the agent what
can be done and how to do it. There are six major tasks for the
player agent: to avoid bullets, to protect the base, to destroy
enemies that can be fired at, to track the enemies down, to
avoid collision with team-mates, and when no other task is
pressing, explore the battlefield. Each of these situations has
to be completely handled by at least one plan. Taken that the
game is not complicated, one plan is conceived for each
respective task. Similarly, for the base agent, only two plans
are needed - calling for help and restricting the roaming range
of the player tanks.

Aside from the main control loop described earlier, each
BDI agent runs its own execution cycle in a separate thread.
These loops are synchronized with the main control loop in
order to avoid undesirable results. In other words, considering
each timer event as one step, the agents should only be able to
perform one set of actions at any step. BDI.net provides
support for synchronization at two levels, both through
semaphores: the agent execution cycle and the plans. At the
agent execution cycle level, agents can be configured to wait
for a ready-to-go signal at the beginning of each cycle. The
plans can be interrupted and resumed at an execution cycle in
the future. This is useful when a plan, such as chasing the
enemy, takes multiple steps to finish. Special care has to be
taken when implementing such plans by closely monitoring
the agent’s status to ensure that the plans are still valid under
the current circumstances. This need arises since new
situations may develop while a plan is temporarily suspended
and other plans of higher importance are executed, potentially
invalidating the original conditions.

Without centralized control, the game agents coordinate
strategies among themselves. Calling for help is one situation
that requires such coordination. As illustrated below in Fig. 4,
when the base senses enemy tanks around, it sets up a
contract net conversation with both player-tank agents by
broadcasting a Call for Proposal (CFP) message that indicates
the enemy’s position and the deadline of proposal submission.
If a player agent is not too busy it will reply with the cost of

performing the rescue (the time it takes to reach the enemy’s
location). The base agent then chooses a winner from the
submitted proposals. Once a contract is awarded to the player
agent, it initiates a subscribe conversation message with the
base agent so that it will be kept informed with up-to-date
information about the threat.

Fig. 4 Call for Help Contract Net Conversation

At the current stage the rule-based approach (in which a
set of if-then-else statements define the stimuli and the
corresponding reactions) is used to generate the behaviors of
the agents, and the standard A* search algorithm [29] is
responsible for path finding. The same configuration would be
used without problem in a game that does not employ the
agent-based design. However, since all the agents are
planning their own paths locally, there is a possibility that the
player-tank agents may run into each other and, in the worst
case, result in a deadlock. A solution to this problem is to
have the agents negotiate with each-other in case of collision,
but a simpler approach is taken here: both parties in collision
will stop and wait for a random period of time before re-
evaluating their situation. In this way, the first agent to
recover from the deadlock will have to find a new path.

IV. FUZZY LOGIC IN GAME AGENTS

As stated earlier, the base imposes dynamic constraints on
the player tanks’ radius of roaming in accordance with its
perceived level of threats. A fuzzy rule-based system is used
here to increase the level of details of the decision process.
The base considers three factors when evaluating the threats: 1)
the elapsed time since the last attack; 2) its shield level (i.e.
the status of the walls surrounding the base); and 3) the
combined strength of the enemies in sight. The fuzzy rule-
based system takes these three inputs and derives the desired
radius of the player tanks, which is then directed to the player-
tank agents via a request conversation. The settings of the

input and output variables are shown in Fig. 5 (elapsed time is
expressed in unit of 30 milliseconds, or one game execution
cycle, and the desired radius is denoted in number of grids).

0 2 4 6 8 10 12

0

0.5

1

SHIELD

D
eg

re
e

of
 m

em
be

rs
hi

p POOR OK GOOD

0 500 1000 1500 2000 2500 3000

0

0.5

1

LASTASSAULT

D
eg

re
e

of
 m

em
be

rs
hi

p NOW RECENT HISTORY

0 2 4 6 8

0

0.5

1

ENEMYSTRENGTH

D
eg

re
e

of
 m

em
be

rs
hi

p WEAK MODERATE STRONG

5 10 15 20 25 30

0

0.5

1

RADIUS

D
eg

re
e

of
 m

em
be

rs
hi

p CLOSE MEDIUM FAR

Fig. 5 Fuzzy Variables for Player Radius Control

The traditional and the URC configuration were
evaluated and both met the expectations. However the
traditional configuration employs 27 rules, which is three
times the number of rules used in the URC configuration, the
CPU usage is considerably higher as well. Obviously in this
particular application the URC configuration is much more
beneficial.

Below is a series of portraits of the game showing the
effects of the fuzzy rule-based system in various situations.
The legends , , and indicate the two player tanks and
the base, with their respective sight limits denoted as , ,

and . The roaming radius limit of the player tanks is also
shown on the pictures (denoted by) for visualization
purposes.

Fig. 6 Portrait of the game in action – beginning

Fig. 7 Portrait of the game in action – slightly vulnerable

Fig. 8 Portrait of the game in action – emergency

In Fig. 6, the game has just begun and all conditions are
favorable – the shields of the base are intact, no enemy in
sight of the base, and there has never been any registered
attack. As a result, the player tanks are allowed to roam
almost freely. When the situation deteriorates in Fig. 7, the
player tanks are informed to remain closer to the base. Finally,
in Fig. 8 the base faces imminent threats – the shield on the
right side is almost penetrated and an enemy is approaching,
forcing one of the player tanks to engage the enemy and the
other one to rush into the direct neighborhood of the base.

V. CONCLUSIONS

The Agent-oriented approach to game development offers
many benefits throughout the development cycle. It provides a
natural way of modeling the game creatures and a software
architecture of high flexibility and low coupling which allows
the flourish of behaviors. In addition, developers can easily
integrate their old game development frameworks with the
new design approach.

Agents will certainly play a key role in game
development in the near future. However the agent-oriented
approach is not without drawbacks. The most serious problem
is the conflict between the need to maintain a storyline and the
autonomous nature of the agents. The storyline often demands
precise control over certain creature’s properties, but the
autonomous agents may exhibit undesirable emergent
behaviors due to the absence of centralized planning and
control. Such unwanted emergent behaviors can be eliminated
on a per-problem basis, like the teammate avoidance problem
described earlier. While patch works can also be effective, the
general solution to this kind of problems will be a hybrid
architecture that features both centralized control and
autonomous agents with ‘back doors’ for external control.

Fuzzy logic is another intelligent technique that could be
used to boost the performance of games. It handles complex
control problems at low computational costs, without
sacrificing the subtle details. While the paper discusses its
applications within the context of agent-oriented game design,
fuzzy control certainly applies to games of any architecture.

ACKNOWLEDGMENTS

Support provided by Alberta Science and Research
Authority is gratefully acknowledged.

REFERENCES
[1] C. Crawford, The Art of Computer Game Design, Columbus: McGraw-

Hill, 1984.
[2] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and

practice,” The Knowledge Engineering Review, 10(2), pp.115-152, 1995.
[3] W. Pedrycz and F. Gomide, An Introduction to Fuzzy Sets, Cambridge:

MIT Press, 1998.
[4] M. E. Bratman, D. Israel, M. Pollack, “Plans and Resource-Bounded

Practical Reasoning,” Computational Intelligence, 4:349-355, 1988
[5] M. P. Georgeff and A. L. Lansky, “Reactive Reasoning and Planning,”

Proceedings of the Sixth National Conference on Artificial Intelligence,
volume 2, pp.677-682, Seattle, WA, 1987

[6] A. S. Rao and M. P. Georgeff, “Modeling Rational Agents within a BDI-
architecture,” Proceedings of Knowledge Representation and Reasoning,
pp.473-484, 1991

[7] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge, “A formal
specification of dMARS,” Intelligent Agents IV, M. P. Singh, A. S. Rao,
and M. Wooldridge, eds, pp. 155--176. Springer Verlag, Berlin, 1998

[8] M. d'Inverno and M. Luck, “Engineering AgentSpeak(L): A formal
computational model,” Journal of Logic and Computation, 8(3), pp.233-
260, 1998

[9] M. P. Georgeff and F. F. Ingrand, “Decision-Making in an Embedded
Reasoning System,” Proc. Int'l Joint Conf. on Artificial Intelligence, pp.
972--978, August 1989

[10] M. Ljungberg and A. Lucas, “The oasis air traffic management system,”
Proceedings of the Second Pacific Rim International Conference on
Artificial Intelligence, 1992

[11] A. S. Rao, A. Lucas, D. Morley, M. Selvestrel, G. Murray. “Agent-
oriented architecture for air-combat simulation,” Technical Report
Technical Note 42, The Australian Artificial Intelligence Institute, 1993

[12] M. E. Bratman, Intentions, Plans and Practical Reasoning, London:
Harvard University Press, 1987

[13] A. S. Rao, “A Unified View of Plans as Recipes,” Contemporary Action
Theory, Editors Ghita Holmstrom-Hintikka and Raimo Tuomela, Kulver
Academic Publishers, The Netherlands, 1997

[14] Y. Li and P. Musílek, “BDI.net: A Lightweight Framework,”
Proceedings of the Third ASERC Workshop on Quantitative and Soft
Computing Based Software Engineering, pp. 49-53, 2003

[15] Microsoft Visual C# .net Home Page,
http://msdn.microsoft.com/vcsharp/, 2002

[16] A.S. Rao, “AgentSpeak(L) : BDI agents speak out in a logical
computable language,” Proc. 7th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, MAAMAW'96, LNAI-
1038, Springer Pub., 1996

[17] J. Lee, M. J. Huber, E. H. Durfee, and P. G. Kenny, “UM-PRS: An
Implementation of the Procedural Reasoning System for Multirobot
Applications.,” Proceedings of the AIAA/NASA Conference on
Intelligent Robotics in Field, Factory, Service, and Space, pp.842-849,
1994

[18] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas, “JACK Intelligent
Agents – Components for Intelligent Agents in Java,” AOS Technical
Report 1, 1999

[19] M. Huber, “Jam: a bdi-theoretic mobile agent architecture,” Proc. Intl.
Conf. Autonomous Agents, pages 236–243, 1999

[20] H. Nwana, D. Ndumu, L. Lee, and J. Collis, “ZEUS: A tool-kit for
building distributed multi-agent systems,” Applied Artificial Intelligence
Journal, 13(1):129-186, 1999

[21] Y. Labrou, T. Finin, and Y. Peng, “Agent Communication Languages:
The Current Landscape,” IEEE Intelligent Systems, 14(2):45-52, 1999

[22] Foundation for Intelligent Physical Agents Home Page,
http://www.fipa.org/, 2003

[23] T. Finin et al, “Specification of the KQML Agent Communication
Language,” Technical Report, DARPA Knowledge Sharing Initiative,
External Interfaces Working Group, 1993

[24] W. E. Combs, “The Combs Method for Rapid Inference,” in The Fuzzy
Systems Handbook E. Cox, Ed., 2nd Edition, New York: AP
Professional, 1998, pp. 659--680

[25] W. E. Combs and J. E. Andrews, “Combinatorial Rule Explosion
Eliminated by a Fuzzy Rule Configuration,” IEEE Trans. Fuzzy Systems,
vol. 6, pp. 1—11, Feb. 1998

[26] J. M. Mendel and Q. Liang, “Comments on ‘Combinatorial Rule
Explosion Eliminated by a Fuzzy Rule Configuration’,” IEEE
Transactions on Fuzzy Systems, vol. 7, no. 3., June 1999.

[27] S. Dick and A. Kandel, “Comment on ‘Combinatorial Rule Explosion
Eliminated by a Fuzzy Rule Configuration’,” IEEE Transactions on
Fuzzy Systems, vol. 7, no. 4., Aug. 1999.

[28] Y. Li, P. Musílek and L. Kurgan, “Battlecity Revived: Game Design
with BDI.net,” Proceedings of the Fourth ASERC Workshop on
Quantitative and Soft Computing Based Software Engineering, pp. 24-
28, 2004

[29] N. J. Nillson, Problem-Solving Methods in Artificial Intelligence,
McGraw-Hill, 1971

