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Abstract – The underlying artificial intelligence of computer 

games is constantly in need of improvement to meet the ever-
increasing demands of game players. This paper discusses how 
intelligent agents and fuzzy logic can help increase the quality 
and amount of a computer game’s most important element: 
interaction. The applications of fuzzy logic in behavior design are 
illustrated in detail through implementation of an arcade-style 
game.  
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I. INTRODUCTION 

What is a computer game? In his influential book, The 
Art of Computer Game Design [1], Crawford identifies four 
fundamental elements of computer games: representation, 
interaction, conflict, and safety. A Game presents a virtual 
reality in which players enjoy interacting with the virtual 
beings and taking challenges presented by the environment 
without facing any physical risk. Of the four elements, 
interaction is considered the most important. The advent of 
computers has brought forward an unprecedented interactive 
capability, making computer games truly different from 
conventional games.  

Intelligent agents [2] and fuzzy logic [3] are two 
techniques that can help increase the quality of interaction in 
games. Agents provide a new architecture of game design that 
leads to more flexible interaction, and fuzzy control affords a 
practical method for generating subtle behavior.  

As defined in [2], an agent is an autonomous software 
entity that has its own goals, sensory inputs, reasoning, 
reaction, and social ties. In the agent-oriented approach to 
game design, the game creatures are modeled as purposeful 
‘living’ entities. This approach bears multiple benefits: 1) the 
distributed nature of the architecture facilitates the creation of 
complex system behaviors; 2) agents interact with each other 
through high-level communication languages instead of rigid 
low-level interfaces, making it simpler to manage large 
number of interactive behaviors; and, 3) when immersed in 
the virtual environment, players tend to perceive the virtual 
creatures as intelligent individuals; modeling them as such 
from the beginning helps to meet that expectation during later 
development stages.  

In the domain of games, fuzzy control is not just another 
control method: it is a quality behavior generator. Creatures 
with subtle behaviors enhance the perceived complexity, 
enjoyableness and credibility of a virtual environment. While 

classical rule-based systems often fail to attain subtlety, fuzzy 
rule-based systems allow the nuances among inputs to be 
captured and further reflected in the decisions at relatively low 
computational cost. Compared to some other intelligent 
techniques, fuzzy rule-based systems are easy to design and 
implement as well – they are very similar to the crisp rule-
based systems, differing only in the approach used to partition 
the input space. As a natural extension of classical set logic, 
fuzzy logic is playing an increasingly important role in games. 

This paper provides an anatomy of how agent technology, 
incorporated with fuzzy logic, can be applied to game design. 
A brief introduction to the Belief-Desire-Intention (BDI) 
agent theory and an overview of the BDI.net agent framework 
is provided in Section II.  Section III closely examines 
BattleCity.net, a re-implementation of an old arcade game. 
Section IV outlines the extended framework and describes 
how fuzzy rule-based computing can be used to improve the 
perceived quality of computer games. Finally, Section V 
summarizes the conclusions and indicates the direction of 
future work. 

II. BACKGROUND 

A. Software Agents 

An agent theory defines the internals of agents. Among 
the many theories surveyed in [2], the BDI model [4][5][6] is 
the most popular and influential.  

During the past decade, the BDI model has been well-
studied and formalizations have been developed [7][8]. The 
strong theoretical basis is supplemented by a number of 
successful industrial applications ranging from early NASA 
projects [9] to more recent air-traffic management [10] and air 
combat simulation [11].  

The BDI model is rooted in the philosophical work of 
Bratman [12], which studies intention and its relation to other 
mental attitudes. As its name implies, BDI features three 
major mental attitudes as its building blocks - belief, desire, 
and intention:  
• Belief is the agent’s knowledge about its environment and 

itself. 
• Desire describes the agent’s goal: a system state that the 

agent wants to achieve. 
• Intention is the course of action that the agent has chosen 

to achieve that goal. 
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Plan is another important element of the BDI model. A 
plan is a recipe of action for achieving a certain goal and is 
used to guide the deliberation process of the agents so they 
need not search through the entire space of possible solutions 
[13]. 

B. BDI.net 

BDI.net [14] is a Microsoft Visual C# [15] 
implementation of the AgentSpeak [16] BDI model. It is 
designed to be a lightweight framework for easy BDI 
implementation by casual programmers. This design 
philosophy leads to some favorable characteristics in 
comparison to the other existing BDI implementations, such 
as UM-PRS [17], JACK [18], JAM [19], dMARS [7], and 
ZEUS [20]. In particular, BDI.net offers the following 
advantages:  
• Mainstream support and portability: BDI.net is written 

using a popular programming language and work 
seamlessly with all programming languages that support 
the .NET framework; 

• Better alignment with standard programming knowledge: 
models can be described using common programming 
syntax rather than specialized symbolic logic; 

• Testability: BDI.net is designed with testability in mind, 
providing special facilities and considerations to aid the 
debugging process; 

• Explicit communication support: facilities for agent 
communication are built-in; and 

• Tool library: apart from basic infrastructure, the 
framework implements many intelligent algorithms 
(including fuzzy inference) ready for use by the 
application programmers. 
A BDI.net agent operates through iterations of its 

execution cycle as depicted in Fig. 1. 
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Fig. 1 BDI.net main execution cycle 

At the beginning of each cycle, the agent senses its 
environment and updates its belief. Consequently, desires may 
arouse in response to the newly received stimulations. The 
agent then matches its stock plans against the desires to find 
out the best applicable plan for each desire (based on the 
plans’ fitness values) and initiates new intentions of execution. 
Upon the end of the cycle, the intention that serves the most 
urgent desire is chosen from the intention library to be 

actually carried out. During execution, one plan may 
occasionally need to achieve a certain sub-goal that is beyond 
its capabilities to obtain. In such scenarios, the plan can 
stimulate a new desire which the agent will try to fulfill in a 
fashion similar to that described earlier. For the originating 
plan, the call is synchronous – it waits until the sub-goal is 
achieved or believed unobtainable before devising further 
actions. 

Communication is of paramount importance in any 
serious agent application: without communication, it is almost 
impossible to exercise control over a multi-agent system, let 
alone collaborative problem-solving. Agent Communication 
Language (ACL) [21], along with content language and 
ontology specifications, is an enabling technology of agent 
communication. BDI.net implements the Foundation for 
Intelligent Physical Agents (FIPA) [22] agent communication 
language standards for message encoding, semantics and 
pragmatics. FIPA ACL is chosen over the equally popular 
Knowledge Query and Manipulation Language (KQML) [23] 
due to its formal semantics, support for XML (which is 
relatively easy to parse), and other benefits such as 
specifications of interaction protocols.  

C. Fuzzy Rule-based Systems 

Fuzzy rule-based computing is the most widely used form 
of fuzzy logic. A fuzzy rule-based systems is generally 
composed of four components: 1) the fuzzifier converts the 
crisp inputs into fuzzy sets; 2) the rule base holds the relations 
between the inputs and the desired output, expressed as a 
collection of IF-THEN rules; 3) the reasoning unit applies the 
inputs to the rules; 4) the defuzzifier converts the result of 
reasoning back to crisp output values.  

In the case of multiple inputs, the antecedents of a fuzzy 
rule are usually connected with the logical AND connective, 
and the rule base should cover every possible combination of 
all linguistic terms defined on each input variable. This 
requirement of completeness leads to a combinatorial 
explosion of the rules: for a system of n inputs with m terms 
each, a total of mn rules are needed. Combinatorial rule 
explosion poses a severe problem for applying fuzzy control 
in game design as it complicates the design process and taxes 
precious CPU resources. 

Combs has proposed the Union Rule Configuration (URC) 
[24][25] to alleviate the rule explosion problem. A typical 
URC is expressed as follows: 

 IF X1 IS A11 THEN Y IS B1 
OR IF X1 IS A12 THEN Y IS B2 
OR IF X2 IS A21 THEN Y IS B2  (1) 
OR … 
OR IF Xi IS Aij THEN Y IS Bk 
Where Xi denotes the input variables, Y denotes the 

output variable, and Aij and Bk denote the linguistic terms 
defined on the fuzzy variables. Instead of presenting the 



relationship between the connected antecedents and the 
consequent, the URC relates each input variable directly to the 
output variable, thus reducing the total number of rules 
required to m⋅n.  

Although the theoretical foundations of URC are still 
under debate [26][27], there is evidence of its applicability in 
a relatively large number of situations. It can serve as a 
practical and economic alternative to other approaches (such 
as clustering and hierarchical systems) to solve the rule 
explosion problem. 

III. THE GAME 

BattleCity is an old Nintendo Entertainment System (NES) 
game released by Namco group in 1985. Like most early 
video games it employs a simple plot (cf. Fig. 2): 1 or 2 
players control their tanks and strive to protect their own base 
(presented as an eagle at the bottom of the map) and destroy 
all enemy tanks, then move on to the next stage. The game 
provides different terrain elements – rivers, bricks, stones, and 
trees, each featuring unique properties. The enemies have 
various shapes, colors, speeds, and armor strengths.  However, 
all enemies share the same stochastic behavior, making them 
relatively easy targets. During game play, the human 
contenders are to devise a terrain-relative strategy to 
effectively clear the hostile tanks while remaining out of 
harm’s way. 

 
Fig. 2 Original BattleCity Game (single player) 

BattleCity.net [28] is a remake of the original BattleCity 
game using the BDI.net framework and fuzzy logic. The rules 
and graphic elements are transplanted as is, but for the 
convenience of research the new game changes the plot to a 
computer vs. computer battle. While the enemy tanks remain 
stochastic, the player tanks are managed by intelligent agents 
in order to eliminate the need for human intervention.  

A. Design 

In an agent-oriented approach the target system is 
decomposed into autonomous entities and inanimate objects. 

The first step is to decompose the system properly and 
identify the agents. The nine types of entities are four terrain 
elements, three different enemy tanks, the base, and the 
player’s tanks. In theory, all entities can be agents, but that 
would result in a waste of computing resources. As with many 
other design issues there is no straightforward answer as to 
which entities should be designed as agents. However a 
simple rule of thumb is applied: if an entity is to perform 
actions that change the environment, and the motivation for 
performing these actions originates from the environment, it is 
a candidate to be made an agent.  

In BattleCity.net, the player-tank entity and the base 
entity are designed as agents, leaving the rest as plain objects. 
To generate a more realistic behavior, the player-tank agents 
have limited sight, which in turn demands that the base (also 
with limited sight) monitor its own vicinity and alert the 
player-tank agents when enemies draw close. Additionally, 
the base constantly evaluates its own situation and limits the 
player tank’s distance to a level commensurate with the 
currently perceived threat.  This strategy is to avoid a situation 
where the player tanks are too far away to rescue a threatened 
base.  
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Fig. 3 BattleCity.net Design (Selected Components) 

From a design perspective, an agent-oriented solution is a 
natural extension of object-oriented programming. Agent-
based games can still take advantage of existing game 



development frameworks. BattleCity.net makes use of a 2D 
grid game development framework that provides rendering, 
sound, collision detection, and basic object prototypes. BDI 
agents are embedded into the game objects to control their 
behaviors, but the actual actions are still performed by the 
objects, cf. Fig. 3.  

B. Implementation 

The game framework provides a control loop driven by 
an external timer to handle animations and collisions, and to 
give the other game entities an opportunity to perform their 
own processing. The enemy tanks use this time slice to make 
random moves and occasionally open fire, while the player 
tanks and the base pass the control to their ‘brains’, i.e. the 
agents. The terrain elements are not active entities and 
therefore do not require processing time.  

While the agent framework covers the mental operations 
of an agent, plans have to be set up to inform the agent what 
can be done and how to do it. There are six major tasks for the 
player agent: to avoid bullets, to protect the base, to destroy 
enemies that can be fired at, to track the enemies down, to 
avoid collision with team-mates, and when no other task is 
pressing, explore the battlefield. Each of these situations has 
to be completely handled by at least one plan. Taken that the 
game is not complicated, one plan is conceived for each 
respective task. Similarly, for the base agent, only two plans 
are needed - calling for help and restricting the roaming range 
of the player tanks. 

Aside from the main control loop described earlier, each 
BDI agent runs its own execution cycle in a separate thread. 
These loops are synchronized with the main control loop in 
order to avoid undesirable results. In other words, considering 
each timer event as one step, the agents should only be able to 
perform one set of actions at any step. BDI.net provides 
support for synchronization at two levels, both through 
semaphores: the agent execution cycle and the plans. At the 
agent execution cycle level, agents can be configured to wait 
for a ready-to-go signal at the beginning of each cycle. The 
plans can be interrupted and resumed at an execution cycle in 
the future.  This is useful when a plan, such as chasing the 
enemy, takes multiple steps to finish. Special care has to be 
taken when implementing such plans by closely monitoring 
the agent’s status to ensure that the plans are still valid under 
the current circumstances.  This need arises since new 
situations may develop while a plan is temporarily suspended 
and other plans of higher importance are executed, potentially 
invalidating the original conditions. 

Without centralized control, the game agents coordinate 
strategies among themselves. Calling for help is one situation 
that requires such coordination. As illustrated below in Fig. 4, 
when the base senses enemy tanks around, it sets up a 
contract net conversation with both player-tank agents by 
broadcasting a Call for Proposal (CFP) message that indicates 
the enemy’s position and the deadline of proposal submission. 
If a player agent is not too busy it will reply with the cost of 

performing the rescue (the time it takes to reach the enemy’s 
location). The base agent then chooses a winner from the 
submitted proposals. Once a contract is awarded to the player 
agent, it initiates a subscribe conversation message with the 
base agent so that it will be kept informed with up-to-date 
information about the threat. 

 
Fig. 4 Call for Help Contract Net Conversation 

At the current stage the rule-based approach (in which a 
set of if-then-else statements define the stimuli and the 
corresponding reactions) is used to generate the behaviors of 
the agents, and the standard A* search algorithm [29] is 
responsible for path finding. The same configuration would be 
used without problem in a game that does not employ the 
agent-based design. However, since all the agents are 
planning their own paths locally, there is a possibility that the 
player-tank agents may run into each other and, in the worst 
case, result in a deadlock. A solution to this problem is to 
have the agents negotiate with each-other in case of collision, 
but a simpler approach is taken here: both parties in collision 
will stop and wait for a random period of time before re-
evaluating their situation. In this way, the first agent to 
recover from the deadlock will have to find a new path.  

IV. FUZZY LOGIC IN GAME AGENTS 

As stated earlier, the base imposes dynamic constraints on 
the player tanks’ radius of roaming in accordance with its 
perceived level of threats. A fuzzy rule-based system is used 
here to increase the level of details of the decision process. 
The base considers three factors when evaluating the threats: 1) 
the elapsed time since the last attack; 2) its shield level (i.e. 
the status of the walls surrounding the base); and 3) the 
combined strength of the enemies in sight. The fuzzy rule-
based system takes these three inputs and derives the desired 
radius of the player tanks, which is then directed to the player-
tank agents via a request conversation. The settings of the 



input and output variables are shown in Fig. 5 (elapsed time is 
expressed in unit of 30 milliseconds, or one game execution 
cycle, and the desired radius is denoted in number of grids). 
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Fig. 5 Fuzzy Variables for Player Radius Control 

The traditional and the URC configuration were 
evaluated and both met the expectations. However the 
traditional configuration employs 27 rules, which is three 
times the number of rules used in the URC configuration, the 
CPU usage is considerably higher as well. Obviously in this 
particular application the URC configuration is much more 
beneficial. 

Below is a series of portraits of the game showing the 
effects of the fuzzy rule-based system in various situations. 
The legends , , and  indicate the two player tanks and 
the base, with their respective sight limits denoted as , , 

and . The roaming radius limit of the player tanks is also 
shown on the pictures (denoted by ) for visualization 
purposes.  

 
Fig. 6 Portrait of the game in action – beginning 

 
Fig. 7 Portrait of the game in action – slightly vulnerable 

 
Fig. 8 Portrait of the game in action – emergency 



In Fig. 6, the game has just begun and all conditions are 
favorable – the shields of the base are intact, no enemy in 
sight of the base, and there has never been any registered 
attack. As a result, the player tanks are allowed to roam 
almost freely. When the situation deteriorates in Fig. 7, the 
player tanks are informed to remain closer to the base. Finally, 
in Fig. 8 the base faces imminent threats – the shield on the 
right side is almost penetrated and an enemy is approaching, 
forcing one of the player tanks to engage the enemy and the 
other one to rush into the direct neighborhood of the base. 

V. CONCLUSIONS 

The Agent-oriented approach to game development offers 
many benefits throughout the development cycle. It provides a 
natural way of modeling the game creatures and a software 
architecture of high flexibility and low coupling which allows 
the flourish of behaviors. In addition, developers can easily 
integrate their old game development frameworks with the 
new design approach. 

Agents will certainly play a key role in game 
development in the near future. However the agent-oriented 
approach is not without drawbacks. The most serious problem 
is the conflict between the need to maintain a storyline and the 
autonomous nature of the agents. The storyline often demands 
precise control over certain creature’s properties, but the 
autonomous agents may exhibit undesirable emergent 
behaviors due to the absence of centralized planning and 
control. Such unwanted emergent behaviors can be eliminated 
on a per-problem basis, like the teammate avoidance problem 
described earlier. While patch works can also be effective, the 
general solution to this kind of problems will be a hybrid 
architecture that features both centralized control and 
autonomous agents with ‘back doors’ for external control. 

Fuzzy logic is another intelligent technique that could be 
used to boost the performance of games. It handles complex 
control problems at low computational costs, without 
sacrificing the subtle details. While the paper discusses its 
applications within the context of agent-oriented game design, 
fuzzy control certainly applies to games of any architecture. 
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