Нелинейные динамические модели пространственно-развитых систем (решетки связанных отображений, системы с запаздыванием)
Прохоров Михаил Дмитриевич
Саратовский филиал Института радиотехники и электроники РАН
Источник: http://delist.ru/article/18022008_prokhorovmd
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность работы. Исследование динамики систем, имеющих развитую пространственную структуру, является актуальной задачей современной радиофизики. Актуальность изучения пространственно-развитых систем обусловлена их чрезвычайно широким распространением в природе и технике. Под такими системами будем понимать в работе объекты, состоящие из большого числа взаимодействующих между собой элементов (цепочки и решетки осцилляторов и автогенераторов, кристаллические решетки, нейронные сети), и системы с запаздывающей обратной связью. Построение и исследование моделей пространственно-развитых систем опирается на основные достижения теории нелинейных колебаний и волн и предполагает привлечение современных методов нелинейной динамики. Ключевая роль отводится при этом радиофизическим объектам, традиционно использующимся в качестве полигона для изучения сложных колебательно-волновых явлений. Исследования комплексов связанных радиофизических элементов [Анищенко В.С., Рабинович М.И.], распределенных автоколебательных систем с запаздывающей обратной связью [Кислов В.Я., Залогин Н.Н., Мясин Е.А.], системы электронный пучок — обратная электромагнитная волна [Трубецков Д.И., Безручко Б.П., Кузнецов С.П.], кольцевых генераторов [Дмитриев А.С., Кислов В.Я.] позволили разобраться во многих фундаментальных проблемах нелинейной динамики.
Для описания динамики пространственно-развитых систем, состоящих из большого числа элементов, используются различные модели, отличающиеся выбором дискретного или непрерывного представления времени, пространства и локального состояния. Наиболее широко привлекаемые модели — ансамбли связанных обыкновенных дифференциальных уравнений [Гапонов-Грехов А.В., Афраймович В.С., Некоркин В.И., Осипов Г.В., Шалфеев В.Д., Астахов В.В., Белых В.Н., Волков Е.И., Казанцев В.Б., Пономаренко В.П.], решетки связанных отображений [Канеко К., Капрал Р., Кузнецов А.П., Кузнецов С.П., Пиковский А.С., Дмитриев А.С., Некоркин В.И., Майстренко Ю.Л.] и клеточные автоматы [фон Нейман Д., Малинецкий Г.Г.]. Пространственные свойства в таких системах проявляются в наличии решений, при которых мгновенные состояния разных элементов ансамбля отличны друг от друга. Эту особенность пространственно-развитых систем из сосредоточенных элементов можно рассматривать в ряде случаев как аналог пространственных мод ограниченной распределенной системы. Характерной особенностью многоэлементных колебательных систем является мультистабильность, перекликающаяся с пространственной многомодовостью. Именно принципиальная многомодовость, когда возможные варианты движений многочисленны, а бассейны притяжения нескольких сосуществующих в фазовом пространстве аттракторов образуют сложную и даже фрактальную структуру, является типичным свойством пространственно-развитых нелинейных систем.
Во многих случаях наиболее эффективными моделями ансамблей связанных систем оказываются решетки связанных отображений, использующие дискретное описание времени и пространства и непрерывную переменную состояния. Выбор базового отображения и вида связи вносит свою специфику в поведение моделей, но феномен мультистабильности в динамике многоэлементных систем всегда является определяющим. Использование хорошо изученных отображений для моделирования цепочек и решеток из базовых элементов со сложной динамикой позволяет продвинуться в понимании нелинейных явлений в связанных системах, классифицировать и исследовать их колебательные состояния. Следуя естественной логике «от простого к сложному», мультистабильность в связанных системах исследуется в работе сначала на примере связанных квадратичных отображений, как с постоянными, так и с изменяющимися во времени параметрами. В последнем случае наибольший интерес представляет исследование связанных систем при изменении их параметров в интервале, содержащем бифуркационные значения. Эта задача до настоящего времени остается мало изученной. Вместе с тем, актуальность ее изучения определяется фундаментальной значимостью явлений, возникающих при бифуркационных переходах в системах с быстро меняющимся параметром в присутствии шумов. Речь идет, в первую очередь, о явлении спонтанного нарушения симметрии постбифуркационных состояний системы [Кравцов Ю.А., Бутковский О.Я.], которое имеет место в разных областях естествознания и тесно связано с возникновением пространственной и временной упорядоченности в химических и биохимических процессах.
Дальнейшее усложнение модели ансамбля связанных систем ведется в работе как по линии использования более сложных моделей для базовых элементов, так и путем пространственного развития модели через увеличение количества элементов и усложнение способа связи между ними. Наличие собственной нетривиальной динамики отдельных элементов пространственно-развитой системы наряду со свойствами и архитектурой межэлементных взаимодействий определяет пространственно-временное поведение системы в целом. Особый интерес при этом представляет исследование таких явлений, как синхронизация колебаний, формирование структур, регуляризация и хаотизация колебаний в ансамбле, пространственно-временной хаос и управление им. В силу большого разнообразия многоэлементных систем ряд важных вопросов их поведения остается нерассмотренным или недостаточно изученным. К ним, в частности, относятся многие аспекты поведения решеток связанных отображений, базовый элемент которых обладает мультистабильностью и имеет несколько управляющих параметров. Учет в моделях мультистабильности элементов обогащает динамику пространственно-развитой системы в целом и приводит к появлению новых видов мультистабильных состояний. Представляет интерес изучение бифуркационных механизмов образования мультистабильности в решетке неавтономных осцилляторов, моделируемых многопараметрическими мультимодальными отображениями, исследование пространственно-временных структур, изучение влияния шума и неидентичности элементов на вид пространственного распределения и управление пространственно-временных хаосом. Мультистабильность типична для нелинейных колебательных систем различной природы и ее учет при моделировании динамики отдельных элементов ансамбля связанных систем расширяет степень общности результатов исследования.
Для описания пространственно-развитых систем, характеризуемых наличием запаздывающей обратной связи, обычно используются бесконечномерные модели в виде дифференциальных уравнений с запаздывающим аргументом [Икеда К., Гласс Л., Маккей М.К., Кащенко С.А., Ланда П.С.]. Такие модели являются бесконечномерными, поскольку требуют задания непрерывного множества начальных значений динамической переменной на отрезке времени, равном времени задержки. В пространственно-развитых радиофизических системах запаздывание обусловлено тем, что сигналы распространяются с конечной скоростью и им требуется время на преодоление расстояний. Исследованию динамики автоколебательных систем с запаздыванием, как теоретическому, так и экспериментальному, уделено достаточно много внимания. Изучение нелинейных динамических моделей различных генераторов с запаздывающей обратной связью (ЛБВ-генераторов, генераторов на основе пролетных клистронов, радиотехнических кольцевых генераторов с фильтрами низких частот) позволило существенно продвинуться в понимании сложной динамики многих практически важных радиоэлектронных устройств. Значительно менее изученной является задача восстановления модельных дифференциальных уравнений систем с запаздыванием по временным рядам наблюдаемых величин. Решение этой проблемы позволило бы не только предсказать поведение ряда практически важных устройств и систем с запаздыванием при изменении параметров, но и оценить адекватность заложенных в модели представлений об объекте, осуществить классификацию систем и режимов их функционирования, определить значения параметров, недоступных непосредственному измерению в эксперименте. Вызывает также интерес использование систем с запаздывающей обратной связью в системах передачи информации. Разработка коммуникационных систем, использующих хаотические сигналы, представляет собой активно развиваемое в последние годы направление радиофизики [Дмитриев А.С., Панас А.И., Старков С.О., Хаслер М.]. Способность даже простых систем с запаздыванием первого порядка генерировать широкополосные хаотические колебания очень высокой размерности привлекает к ним внимание как к потенциальным элементам, которые могут быть использованы в системах скрытой передачи информации. Однако, вопрос о маскирующих свойствах сигналов систем с запаздыванием остается открытым и требует тщательного исследования.
На настоящем этапе развития нелинейной динамики весьма актуален вопрос о синхронизации сложных движений вообще и в пространственно-развитых системах в частности. Изучение синхронизации находится в центре внимания многих исследователей. Вместе с тем, проблема диагностики синхронизации автоколебаний по экспериментальным временным рядам, особенно при короткой длине ряда и высоком уровне шума, требует дальнейшего изучения. Например, проблематично проведение анализа синхронизованности колебательных процессов по экспериментальным данным, представляющим собой суперпозицию нескольких сигналов. Кроме того, взаимодействующие системы могут обладать сложным набором собственных ритмов, что типично для многих физиологических систем. Большой интерес вызывает исследование синхронизации колебательных процессов в таких жизненно важных физиологических системах, как сердечно-сосудистая и респираторная системы. Информация о синхронизованности ритмов этих систем может оказаться полезной при медицинской диагностике их состояния.
Современная тенденция направленности многих научных исследований на изучение систем живой природы обуславливает актуальность использования аппарата нелинейной динамики для описания колебательных процессов в физиологических системах. При этом имеются основания для привлечения в качестве базовых моделей дифференциальных уравнений с запаздыванием. Наличие запаздывающей обратной связи во многих физиологических автогенераторах обусловлено конечной скоростью распространения нервных импульсов и конечным временем их обработки со стороны управляющих систем. В работе предлагаются и исследуются модели с запаздыванием для описания системы медленной регуляции кровяного давления. Построение и исследование моделей позволяет лучше понять особенности функционирования и взаимодействия элементов сердечно-сосудистой системы.
Таким образом, тематика диссертационной работы затрагивает сферы фундаментальных вопросов радиофизики, нелинейной динамики и теории колебаний и является актуальной.
Цель диссертационной работы состоит в моделировании пространственно-развитых систем, включая исследование пространственно-временных структур и мультистабильности в решетках связанных отображений, разработку новых методов восстановления по временным рядам модельных дифференциальных уравнений систем с запаздыванием, разработку новых методов диагностики синхронизации автоколебаний по экспериментальным временным рядам и их применение к реальным пространственно-развитым системам.
Для достижения цели решались следующие основные задачи:
- исследование мультистабильных состояний и бассейнов их притяжения в системе связанных элементов, как с постоянными, так и с изменяющимися параметрами;
- исследование пространственно-временной динамики и управление пространственно-временным хаосом в решетках неавтономных бистабильных осцилляторов, моделируемых мультимодальными отображениями;
- разработка новых эффективных методов построения по хаотическим временным рядам нелинейных динамических моделей для широкого класса автоколебательных систем с запаздывающей обратной связью, включая системы высокого порядка с запаздыванием, системы с несколькими временами задержки, неавтономные и связанные системы с запаздыванием;
- разработка методики выделения скрытого сигнала сообщения в системах передачи информации, использующих нелинейное подмешивание информационного сигнала в хаотический сигнал системы с запаздыванием;
- разработка новых методов детектирования синхронизации автоколебаний внешним сигналом с изменяющейся частотой по многомерным и одномерным временным рядам и их применение для исследования внешней синхронизации в экспериментальных системах с запаздыванием;
- исследование на модельных и экспериментальных данных синхронизации между основными колебательными процессами в сердечно-сосудистой системе человека, характеризуемой наличием запаздывающих обратных связей.
Научная новизна работы заключается в следующем:
- обнаружено и исследовано существование устойчивых несинфазных колебательных состояний в области сильной связи двух идентичных систем, демонстрирующих удвоения периода при изменении управляющего параметра;
- впервые показано, что в системе двух связанных одинаковых элементов с изменяющимися во времени параметрами в зависимости от величины коэффициента связи может наблюдаться запаздывание бифуркаций не только несинфазных, но и синфазных состояний;
- проведено управление пространственно-временным хаосом в цепочке неавтономных бистабильных осцилляторов, моделируемых мультимодальными отображениями;
- выявлены характерные особенности расположения экстремумов во временных реализациях систем с запаздывающей обратной связью;
- предложены новые методы реконструкции модельных дифференциальных уравнений с запаздыванием для различных классов автоколебательных систем с запаздывающей обратной связью по их хаотическим временным рядам;
- впервые продемонстрирована возможность восстановления кольцевых автоколебательных систем с запаздыванием по временным рядам динамических переменных, измеренных в различных точках кольцевой системы;
- исследована возможность определения по временному ряду порядка модельного уравнения системы с запаздыванием;
- впервые предложены методы восстановления по временным рядам модельных уравнений неавтономных и связанных систем с запаздыванием;
- разработана методика выделения информационного сигнала в системах связи с нелинейным подмешиванием при различных конфигурациях передатчика, построенного на основе системы с запаздыванием с неизвестными параметрами;
- предложены оригинальные, основанные на непрерывном вейвлетном преобразовании сигналов, методы диагностики по экспериментальным временным рядам наличия или отсутствия синхронизации автоколебаний внешним воздействием с модулированной частотой;
- обнаружено существование синхронизации между дыханием и медленными автоколебаниями кровяного давления человека при различных режимах дыхания.
Практическая значимость работы. Результаты исследования бифуркационных переходов в связанных системах с изменяющимися параметрами могут быть использованы для управления бифуркационными процессами и для достижения заданного постбифуркационного состояния системы в условиях воздействия шума. Для целей обработки информации могут оказаться полезными результаты исследований мультистабильности и динамического копирования в решетках бистабильных элементов. Автоколебательные системы с запаздыванием очень широко распространены не только в радиофизике и электронике, но и в нелинейной оптике, биофизике, физиологии и многих других научных дисциплинах. Предложенные в диссертационной работе методы определения их параметров по экспериментальным временным рядам представляют интерес для широкого круга исследователей. Результаты по исследованию систем скрытой передачи информации, построенных на основе систем с запаздыванием, позволяют выработать рекомендации для повышения степени защиты конфиденциальной информации. Предложенные методы диагностики синхронизации автоколебаний представляют практический интерес при исследовании синхронизации колебательных процессов в реальных системах по экспериментальным, сильно зашумленным временным рядам. Анализ синхронизации между ритмами сердечно-сосудистой системы оказывается полезен при диагностике ее состояния и контроле эффективности лечения. Подготовленный программный продукт («Программа расчета суммарного процента фазовой синхронизации между ритмами сердечно-сосудистой системы человека», свидетельство об официальной регистрации программы для ЭВМ № 2005610960) передан в Саратовский НИИ кардиологии и Нижегородскую государственную медицинскую академию, в которых он используется для медицинской диагностики.
Результаты работы используются в учебном процессе на факультете нелинейных процессов и факультете нано- и биомедицинских технологий Саратовского государственного университета.
Основные положения и результаты, выносимые на защиту
- В системе связанных элементов с изменяющимися во времени параметрами с уменьшением скорости изменения управляющего параметра в области мультистабильности уменьшается вероятность установления состояний, соответствующих видам колебаний, возникающим в результате более поздних бифуркаций.
- Метод последовательной стабилизации движений элементов позволяет осуществить управление пространственно-временным хаосом в цепочке связанных бистабильных осцилляторов, моделируемой связанными мультимодальными отображениями. Величина управляющего воздействия, необходимого для перевода цепочки из режима пространственно-временного хаоса в области бистабильности в пространственно однородный режим, может быть существенно уменьшена, если на начальном этапе управления воздействовать на систему малым шумом.
- Предложенные методы восстановления по хаотическим временным рядам модельных дифференциальных уравнений с запаздыванием, основанные на статистическом анализе временных интервалов между экстремумами временного ряда системы с запаздыванием и проецировании ее бесконечномерного фазового пространства в подпространства малой размерности, обеспечивают высокое качество реконструкции различных классов систем с запаздывающей обратной связью, включая системы с запаздыванием высокого порядка, системы с несколькими временами задержки, неавтономные и связанные системы с запаздыванием.
- Разработанная методика выделения скрытого сигнала сообщения в системах связи, использующих нелинейное подмешивание информационного сигнала в хаотический сигнал системы с запаздыванием, основанная на реконструкции передающей системы с запаздыванием по временному ряду передаваемого сигнала, обеспечивает высокое качество восстановления информационного сигнала при различных конфигурациях передатчика, параметры которого априорно неизвестны.
- Анализ разности между мгновенными фазами автоколебаний, вычисленными в моменты времени, сдвинутыми друг относительно друга на некоторую постоянную величину, позволяет определить наличие синхронизации автоколебаний внешним сигналом с изменяющейся частотой по одномерным временным рядам.
- Медленные колебания кровяного давления человека с собственной частотой около 0.1 Гц могут быть синхронизованы с дыханием. Предложенная для их описания модель, имеющая вид неавтономной системы с запаздывающей обратной связью, демонстрирует явления захвата частот и фаз медленных колебаний кровяного давления и дыхания, качественно подобные наблюдающимся в эксперименте. Показатели синхронизации между ритмами сердечно-сосудистой системы могут быть использованы для диагностики ее состояния.
Апробация работы. Результаты диссертационной работы докладывались и обсуждались на семинарах в Саратовском филиале ИРЭ РАН, СГУ, Саратовском НИИ кардиологии, университете г. Потсдама (Германия), федеральном политехническим институте г. Лозанны (Швейцария), а также на следующих российских и международных научных конференциях: международной школе по нелинейным явлениям (ISNS) (Нижний Новгород, 1995); International Conference on Nonlinear Dynamics and Chaos. Applications in Physics, Biology and Medicine (ICND) (Саратов, 1996); International Specialist Workshop on Nonlinear Dynamics of Electronic Systems (NDES) (Москва, 1997; Budapest, Hungary, 1998; Delft, The Netherlands, 2001); International Symposium on Nonlinear Theory and its Applications (NOLTA) (Crans-Montana, Switzerland, 1998; Dresden, Germany, 2000); международной школе «Хаотические автоколебания и образование структур» (ХАОС) (Саратов, 1998, 2001, 2004); International School «Synchronization: Theory and Application» (Yalta, Ukraine, 2002); International Conference «European Dynamics Days» (Palma de Mallorca, Spain, 2003); Workshop on Detecting and Processing Regularities in High Throughput Biological Data (Piscataway, USA, 2005), школе-семинаре «Динамический хаос и его приложения» (Звенигород, 2007).
Материалы работы использовались при выполнении ряда НИР и научных проектов, поддержанных грантами РФФИ (№96-02-16755, 99-02-17735, 00-02-17441, 01-02-06038, 03-02-17593, 07-02-00589), CRDF (REC-006) и INTAS (93-2492, 03-55-920).
По теме диссертации опубликовано 85 научных работ, включая 35 статей в рецензируемых журналах, 24 статьи в сборниках и трудах конференций, 26 тезисов докладов. Список основных публикаций приведен в конце автореферата.
Достоверность научных выводов подтверждается согласованностью результатов аналитического исследования, численного моделирования и физического эксперимента между собой, а также с результатами других авторов.
Личный вклад автора заключается в выборе направления исследований, в формулировке и постановке основных задач диссертации, определении методов и подходов к их решению, проведении большей части численных расчетов и некоторых экспериментальных исследований, в проведении теоретического анализа и интерпретации полученных результатов. Исследование связанных квадратичных отображений проводилось совместно с Безручко Б.П., Селезневым Е.П и Ивановым Р.Н. Построение моделей и исследование систем с запаздыванием выполнено на паритетных началах с Пономаренко В.И. Методы диагностики синхронизации автоколебаний предложены в соавторстве с Храмовым А.Е., Короновским А.А. и Пономаренко В.И.
Структура и объем работы. Диссертация состоит из введения, шести глав, заключения и списка литературы. Она содержит 389 страниц, включая 140 рисунков, 3 таблицы, 311 наименований цитируемой литературы и 47 наименований работ по теме диссертации.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
- Проведено исследование явления мультистабильности колебательных состояний и бассейнов их притяжения в системе двух диссипативно связанных квадратичных отображений с использованием способа различения мультистабильных состояний по фазовому признаку. Аналитически обнаружено и численно исследовано существование несинфазных режимов колебаний при сильной связи подсистем. Установлено, что области несинфазных колебаний при слабой и сильной связи симметричны друг другу в пространстве параметров системы, но сами несинфазные режимы качественно различны. Показано, что введение связи между элементами приводит к появлению устойчивых режимов, существующих при таких значениях параметра нелинейности, достижение которых в отсутствие связи было бы невозможным. Исследована структура бассейнов притяжения мультистабильных состояний системы связанных квадратичных отображений и их эволюция при изменении параметров.
- Исследовано явление нарушения равенства вероятностей постбифуркационных состояний системы связанных квадратичных отображений с изменяющимися во времени параметрами. Показано, что в зависимости от величины коэффициента связи в системе наблюдается запаздывание бифуркаций либо несинфазных, либо синфазных состояний. В области мультистабильности с уменьшением скорости изменения управляющего параметра наблюдается уменьшение вероятности установления состояний, соответствующих видам колебаний, возникающим в результате более поздних бифуркаций. В результате действия шума вероятности нахождения связанной системы в каждом из возможных конечных состояний начинают выравниваться, причем эффект выравнивания вероятностей тем больше, чем выше уровень шума и меньше скорость изменения бифуркационного параметра.
- Для пространственно-развитой системы, представляющей собой замкнутую цепочку синфазно возбуждаемых бистабильных осцилляторов, предложена и исследована дискретная модель в виде кольца связанных мультимодальных отображений. Получено уравнение эволюции во времени пространственных мод возмущений цепочки в окрестности неподвижных точек. Показано, что эволюция однородных пространственных состояний кольца к хаосу происходит только через последовательность бифуркаций удвоения периода. Для неоднородных состояний показано, что в кольце с нечетным числом элементов переход к хаосу может происходить только через последовательность бифуркаций удвоения периода, а в кольце с четным числом элементов в зависимости от пространственного периода структуры наблюдаются как бифуркации удвоения периода, так и бифуркации рождения тора. Рассмотренная модель хорошо качественно описывает характер перехода к хаосу пространственно-временных структур, наблюдаемых в натурном эксперименте в замкнутой цепочке неавтономных резистивно связанных колебательных контуров с диодом.
- Осуществлено управление пространственно-временным хаосом в цепочке связанных бистабильных осцилляторов. Показано, что воздействие на систему малого шума на начальном этапе управления может существенно уменьшить величину управляющего воздействия, необходимого для перевода цепочки из режима развитого пространственно-временного хаоса в области бистабильности в пространственно однородный режим.
- Проведено исследование пространственно-временных структур в двумерных и трехмерных решетках неавтономных бистабильных осцилляторов, моделируемых мультимодальными точечными отображениями.
- Установлено, что во временных реализациях систем с запаздыванием, описываемых дифференциальным уравнением первого порядка с одним временем задержки, практически отсутствуют экстремумы, удаленные друг от друга на время запаздывания. Эта особенность сохраняется и для временных реализаций систем с запаздыванием высокого порядка, при условии, что параметры, характеризующие инерционные свойства системы, достаточно малы. Во временных реализациях систем с запаздыванием с двумя и более временами задержки число экстремумов, разделенных интервалами времени, равными этим задержкам, существенно меньше, чем число экстремумов, разделенных другими интервалами времени.
- Предложены оригинальные методы восстановления по хаотическим временным рядам модельных дифференциальных уравнений с запаздыванием для различных классов пространственно-развитых систем с запаздывающей обратной связью, включая системы с запаздыванием высокого порядка и с несколькими временами задержки. Методы опираются на закономерности расположения экстремумов во временных рядах систем с запаздыванием и проецирование бесконечномерного фазового пространства системы с запаздыванием в подпространства малой размерности. Предложена методика определения по временному ряду априорно неизвестного порядка системы с запаздыванием. Разработанные методы протестированы на эталонных системах с запаздыванием и применены для построения по экспериментальным временным рядам модельных уравнений радиотехнических генераторов с запаздывающей обратной связью с различным числом линий задержки и последовательно соединенных низкочастотных RC-фильтров.
- Предложены методики восстановления кольцевых автоколебательных систем с запаздыванием по временным рядам различных наблюдаемых динамических переменных, полученным из различных точек системы.
- Предложен метод восстановления по временным рядам нелинейных динамических моделей систем с запаздывающей обратной связью, находящихся под внешним воздействием. Рассмотрены различные способы внесения внешнего воздействия в систему с запаздыванием. Метод работоспособен в широком диапазоне изменения величины внешнего воздействия, в том числе при уровнях воздействия на систему с запаздыванием, сопоставимых с уровнем собственных колебаний в системе в отсутствие воздействия.
- Предложен метод реконструкции модельных дифференциальных уравнений с запаздыванием для связанных систем с запаздыванием по их временным рядам. Метод позволяет восстановить параметры связанных систем с запаздыванием, а также установить наличие некоторых видов линейной связи между системами, определить априорно неизвестный тип связи, величину связи и ее направление по хаотическим временным рядам при достаточно высоких уровнях шума. Эффективность метода продемонстрирована на примере хаотических временных рядов связанных уравнений Маккея-Гласса, в том числе с добавленным шумом, а также на примере экспериментальных временных рядов связанных радиотехнических генераторов с запаздыванием.
- Разработана методика выделения скрытого сигнала сообщения в системах связи, использующих нелинейное подмешивание информационного сигнала в хаотический сигнал системы с запаздыванием. Она обеспечивает высокое качество восстановления передаваемого информационного сигнала при различных конфигурациях передающей системы, параметры которой априорно неизвестны. Работоспособность метода продемонстрирована на численных примерах и в эксперименте.
- Предложен метод определения параметров одномодового полупроводникового лазера с оптической обратной связью, описываемого уравнениями Ланга-Кобаяши.
- Предложены методы диагностики синхронизации автоколебаний внешним сигналом с изменяющейся частотой по многомерным и одномерным сильно зашумленным временным рядам. Методы применены для исследования по экспериментальным временным рядам внешней синхронизации неавтономного радиотехнического генератора с запаздывающей обратной связью и системы медленной регуляции кровяного давления, характеризуемой наличием запаздывания.
- Для описания медленных колебаний кровяного давления с собственной частотой около 0.1 Гц предложена модель в виде неавтономной системы с запаздывающей обратной связью, учитывающая влияние дыхания. Показано, что при гармоническом внешнем воздействии с линейно изменяющейся частотой предложенная модель демонстрирует явления захвата частот и фаз медленных колебаний кровяного давления и дыхания, качественно подобные наблюдающимся в эксперименте. Исследована возможность восстановления параметров модельных уравнений с запаздыванием по экспериментальным временным рядам артериального давления.
- Проведено исследование синхронизации между основными колебательными процессами сердечно-сосудистой системы человека на основе анализа как многоканальных, так и одноканальных данных. Продемонстрировано существование у здоровых людей областей синхронизации между дыханием и основным сердечным ритмом и между дыханием и медленными автоколебаниями кровяного давления с собственной частотой вблизи 0.1 Гц. Исследована зависимость качества синхронизации от режима дыхания и величины вариабельности сердечного ритма. Показано, что показатели синхронизации между ритмами сердечно-сосудистой системы могут быть использованы для диагностики ее состояния.
СПИСОК ОСНОВНЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ
- Bezruchko B.P., Prokhorov M.D., Seleznev E.P. Multiparameter model of a dissipative nonlinear oscillator in the form of one–dimensional map // Chaos, Solitons and Fractals, 1995, V.5, N.11, P.2095–2107.
- Безручко Б.П., Прохоров М.Д., Селезнев Е.П. Особенности устройства пространства параметров двух связанных неавтономных неизохронных осцилляторов // Письма в ЖТФ, 1996, Т.22, В.6, С.61–66.
- Прохоров М.Д. Виды колебаний диссипативно связанных систем с удвоением периода при сильной связи // Изв. ВУЗов, Прикладная нелинейная динамика, 1996, Т.4, N.4,5, С.99–107.
- Безручко Б.П., Прохоров М.Д. Управление пространственно-временным хаосом в цепочке бистабильных осцилляторов // Письма в ЖТФ, 1999, Т.25, В.12, С.51–57.
- Bezruchko B.P., Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. Reconstruction of time-delay systems from chaotic time series // Phys. Rev. E, 2001, V.64, 056216.
- Караваев А.С., Пономаренко В.И., Прохоров М.Д. Восстановление моделей скалярных систем с запаздыванием по временным рядам // Письма в ЖТФ, 2001, Т.27, В.10, С.43–51.
- Ponomarenko V.I., Prokhorov M.D. Extracting information masked by the chaotic signal of a time-delay system // Phys. Rev. E, 2002, V.66, 026215.
- Безручко Б.П., Прохоров М.Д., Селезнев Е.П. Виды колебаний, мультистабильность и бассейны притяжения аттракторов симметрично связанных систем с удвоением периода // Изв. ВУЗов, Прикладная нелинейная динамика, 2002, Т.10, N.4, С.47–68.
- Пономаренко В.И., Прохоров М.Д. Выделение информационной компоненты хаотического сигнала системы с запаздыванием // Письма в ЖТФ, 2002, Т.28, В.16, С.37–44.
- Bezruchko B.P., Seleznev Ye.P., Ponomarenko V.I., Prokhorov M.D., Smirnov D.A., Dikanev T.V., Sysoev I.V., Karavaev A.S. Special approaches to global reconstruction of equations from time series // Изв. ВУЗов, Прикладная нелинейная динамика, 2002, Т.10, N.3, С.137–158.
- Пономаренко В.И., Прохоров М.Д. Восстановление уравнений системы с задержкой по экспериментальному временному ряду // Изв. ВУЗов, Прикладная нелинейная динамика, 2002, Т.10, N.1–2, С.52–64.
- Prokhorov M.D., Ponomarenko V.I., Gridnev V.I., Bodrov M.B., Bespyatov A.B. Synchronization between main rhythmic processes in the human cardiovascular system // Phys. Rev. E, 2003, V.68, 041913.
- Bezruchko B.P., Prokhorov M.D., Seleznev Ye.P. Oscillation types, multistability, and basins of attractors in symmetrically coupled period-doubling systems // Chaos, Solitons and Fractals, 2003, V.15, N.4, P.695–711.
- Ponomarenko V.I., Prokhorov M.D., Karavaev A.S., Seleznev Ye.P., Dikanev T.V. Recovery of dynamical models of time-delay systems from time series // Изв. ВУЗов, Прикладная нелинейная динамика, 2003, Т.11, N.3, С.56–66.
- Bespyatov A.B., Bodrov M.B., Gridnev V.I., Ponomarenko V.I., Prokhorov M.D. Experimental observation of synchronization between rhythms of cardiovascular system // Nonlin. Phen. in Compl. Syst., 2003, V.6, N.4, P.885–893.
- Пономаренко В.И., Прохоров М.Д. Кодирование и извлечение информации, замаскированной хаотическим сигналом системы с запаздыванием // Радиотехника и электроника, 2004, Т.49, N.9, С.1098–1104.
- Пономаренко В.И., Прохоров М.Д. Реконструкция уравнений систем с двумя временами запаздывания по временным рядам // Письма в ЖТФ, 2004, Т.30, В.22, С.23–30.
- Пономаренко В.И., Гриднев В.И., Прохоров М.Д., Беспятов А.Б., Бодров М.Б., Караваев А.С. Синхронизация сердцебиения и ритма регуляции сосудистого тонуса с дыханием // Биомедицинские технологии и радиоэлектроника, 2004, N.8–9, С.40–51.
- Прохоров М.Д., Пономаренко В.И., Караваев А.С. Восстановление уравнений систем с запаздыванием под внешним воздействием по временным рядам // Письма в ЖТФ, 2004, Т.30, В.2, С.81–88.
- Prokhorov M.D., Ponomarenko V.I. Recovery of time-delay systems with two delays from time series // Nonlin. Phen. in Compl. Syst., 2004, V.7, N.4, P.400–404.
- Пономаренко В.И., Прохоров М.Д., Караваев А.С., Безручко Б.П. Определение параметров систем с запаздывающей обратной связью по хаотическим временным реализациям // ЖЭТФ, 2005, Т.127, В.3, С.515–527.
- Prokhorov M.D., Ponomarenko V.I. Estimation of coupling between time-delay systems from time series // Phys. Rev. E, 2005, V.72, 016210.
- Пономаренко В.И., Прохоров М.Д., Корюкин И.В. Определение параметров полупроводникового лазера с оптической обратной связью по временным рядам // Письма в ЖТФ, 2005, Т.31, В.21, С.79–86.
- Prokhorov M.D., Ponomarenko V.I., Karavaev A.S., Bezruchko B.P. Reconstruction of time-delayed feedback systems from time series // Physica D, 2005, V.203, N.3–4, P.209–223.
- Прохоров М.Д., Бодров М.Б., Пономаренко В.И., Гриднев В.И., Беспятов А.Б. Исследование синхронизации между ритмами сердечно-сосудистой системы человека по последовательности R-R интервалов // Биофизика, 2005, Т.50, В.5, С.914–919.
- Пономаренко В.И., Прохоров М.Д. Определение параметров уравнения Икеды по зашумленному временному ряду // Письма в ЖТФ, 2005, Т.31, В.6, С.73–78.
- Пономаренко В.И., Прохоров М.Д. Восстановление уравнений связанных систем с запаздыванием по временным рядам // Письма в ЖТФ, 2005, Т.31, В.2, С.41–48.
- Ponomarenko V.I., Prokhorov M.D., Bespyatov A.B., Bodrov M.B., Gridnev V.I. Deriving main rhythms of the human cardiovascular system from the heartbeat time series and detecting their synchronization // Chaos, Solitons and Fractals, 2005, V.23, N.4, P.1429–1438.
- Hramov A.E., Koronovskii A.A., Ponomarenko V.I., Prokhorov M.D. Detecting synchronization of self-sustained oscillators by external driving with varying frequency // Phys. Rev. E, 2006, V.73, 026208.
- Пономаренко В.И., Прохоров М.Д. Оценка порядка и реконструкция модельного уравнения системы с запаздыванием // Письма в ЖТФ, 2006, Т.32, В.17, С.73–80.
- Короновский А.А., Пономаренко В.И., Прохоров М.Д., Храмов А.Е. Изучение синхронизации автоколебаний по унивариантным данным при изменении частоты внешнего воздействия с использованием вейвлетного анализа // Письма в ЖТФ, 2006, Т.32, В.11, С.81–88.
- Киселев А.Р., Беспятов А.Б., Посненкова О.М., Гриднев В.И., Пономаренко В.И., Прохоров М.Д., Довгалевский П.Я. Внутренняя синхронизация основных 0.1 Гц-частотных ритмов в системе вегетативного управления сердечно-сосудистой системой // Физиология человека, 2007, Т.33, N.2, С.69–75.
- Hramov A.E., Koronovskii A.A., Ponomarenko V.I., Prokhorov M.D. Detection of synchronization from univariate data using wavelet transform // Phys. Rev. E, 2007, V.75, 056207.
- Короновский А.А., Пономаренко В.И., Прохоров М.Д., Храмов А.Е. Диагностика синхронизации автоколебательных систем при изменении частоты внешнего воздействия с использованием вейвлетного анализа // Радиотехника и электроника, 2007, Т.52, N.5, С.581–592.
- Короновский А.А., Пономаренко В.И., Прохоров М.Д., Храмов А.Е. Метод исследования синхронизации автоколебаний по унивариантным данным с использованием непрерывного вейвлетного анализа // ЖТФ, 2007, Т.77, В.9, С.6–17.
- Prokhorov M.D. Multistable states at strong symmetric coupling of identical period doubling systems // Proceedings of Int. Symposium on Nonlinear Theory and its Applications (NOLTA’98), Crans-Montana, Switzerland, 1998, V.3, P.1055–1058.
- Bezruchko B.P., Ivanov R.N., Prokhorov M.D. Discrete modeling of 1-D and 2-D lattices of driven bistable oscillators // Proceedings of Int. Symposium on Nonlinear Theory and its Applications (NOLTA’98), Crans-Montana, Switzerland, 1998, V.3, P.1113–1116.
- Bezruchko B.P., Prokhorov M.D. Controlling spatiotemporal chaos in a chain of bistable oscillators // Proceedings of 7th Int. Specialist Workshop on Nonlinear Dynamics of Electronic Systems (NDES’99), Roenne, Denmark, 1999, P.81–84.
- Bezruchko B., Ivanov R., Kravtsov Y., Prokhorov M. Basins of attraction of final states for a system of coupled elements with varying parameters // Proceedings of Int. Symposium on Nonlinear Theory and its Applications (NOLTA 2000), Dresden, Germany, 2000, V.2, P.543–546.
- Караваев А.С., Пономаренко В.И., Прохоров М.Д. Восстановление по временным рядам модельных уравнений систем с запаздыванием // Материалы международной межвузовской конференции «Современные проблемы электроники и радиофизики СВЧ», Саратов, 2001, С.84–86.
- Karavaev A.S., Ponomarenko V.I., Prokhorov M.D. Reconstruction of time-delay systems from chaotic time series // Proceedings of 9th Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2001), Delft, The Netherlands, 2001, P.101–104.
- Prokhorov M.D., Karavaev A.S., Ponomarenko V.I. Reconstruction of driven and coupled time-delay systems from time series // Proceedings of 12th Int. Workshop on Nonlinear Dynamics of Electronic Systems (NDES 2004), Evora, Portugal, 2004, P.280–283.
- Безручко Б.П., Бодров М.Б., Диканев Т.В., Караваев А.С., Пономаренко В.И., Прохоров М.Д., Селезнев Е.П., Сысоев И.В., Смирнов Д.А. Некоторые проблемы реконструкции модельных уравнений по временным рядам // в сб. «Нелинейные волны’2004» под ред. Гапонова-Грехова А.В., Некоркина В.И., Нижний Новгород: ИПФ РАН, 2005, С.381–397.
- Пономаренко В.И., Прохоров М.Д., Гриднев В.И., Бодров М.Б., Беспятов А.Б., Безручко Б.П. Синхронизация дыхания и процесса с частотой 0.1 Гц в сердечно-сосудистой системе человека // Материалы IV Всероссийского симпозиума «Медленные колебательные процессы в организме человека: теория и практическое применение» и II Междисциплинарной школы-семинара «Нелинейная динамика в физиологии и медицине», Новокузнецк, 2005, С.51–56.
- Безручко Б.П., Пономаренко В.И., Прохоров М.Д., Караваев А.С. Реконструкция модели системы барорефлекторной регуляции кровяного давления человека по экспериментальным данным // Доклады VII международной научно-технической конференции «Физика и радиоэлектроника в медицине и экологии – ФРЭМЭ 2006», Владимир, 2006, С.115–117.
- Безручко Б.П., Караваев А.С., Пономаренко В.И., Прохоров М.Д., Гриднев В.И., Киселев А.Р., Посненкова О.М. Синхронизация низкочастотных ритмов сердечно-сосудистой системы // Материалы V Всероссийского симпозиума и III школы-семинара «Медленные колебательные процессы в организме человека. Теоретические и прикладные аспекты нелинейной динамики в физиологии и медицине», Новокузнецк, 2007, С.50–54.
- Prokhorov M.D., Ponomarenko V.I., Karavaev A.S., Bezruchko B.P. Recovery of dynamical models of time-delay systems from time series: Application to chaotic communication // In: Nonlinear Phenomena Research Perspectives, Ed. Wang C.W., New York: Nova Science Publishers, 2007, P.7–53.
Статьи в научных журналах:
Статьи в сборниках и трудах научных конференций: