Компенсация емкостных токов замыкания на землю в сетях 6-35кВ.

Корчмарик Ю.Г., Лобастов С.В.
ООО ВП «НТБЭ»


ВВЕДЕНИЕ

Самым частым видом повреждения (до 95%) в сетях 6, 10, 35 кВ являются однофазные замыкания на землю (ОЗЗ), сопровождающиеся протеканием через место замыкания емкостного тока и перенапряжениями высокой кратности на элементах сети (двигателях, трансформаторах) в виде высокочастотного переходного процесса. Такие воздействия на сеть приводят в лучшем случае к срабатыванию земляных защит. Отыскание поврежденного присоединения представляется трудоемкой и длительной организационной задачей – поочередное отключение присоединений затягивается на продолжительное время и сопровождается комплексом оперативных переключений для резервирования потребителей. И, как правило, большинство междуфазных замыканий начинается с ОЗЗ. Развитие однофазных замыканий на землю сопровождается разогревом места замыкания, рассеиванию большого количества энергии в месте ОЗЗ и заканчивается отключением потребителя уже защитой МТЗ при переходе ОЗЗ в короткое замыкание. Изменить ситуацию можно применением резонансного заземления нейтрали.

Токи замыкания

При ОЗЗ на землю через место повреждения протекает емкостный ток, обусловленный наличием электрической емкости между фазами сети и землей. Емкость сконцентрирована, в основном, в кабельных линиях, длина которых и определяет общий емкостный ток ОЗЗ (ориентировочно на 1 А емкостного тока приходится 1 км кабеля).

Виды ОЗЗ

Все ОЗЗ делятся на глухие (металлические) и дуговые. Наиболее частым (95% всех ОЗЗ) и наиболее опасным видом ОЗЗ являются дуговые ОЗЗ. Опишем каждый вид ОЗЗ отдельно.

1) с точки зрения уровней перенапряжений на элементах сети наиболее безопасны металлические замыкания на землю (например, падение провода воздушной ЛЭП на землю). В этом случае через место пробоя протекает емкостный ток, не сопровождающийся большими перенапряжениями в виду специфики такого рода ОЗЗ.

2) особенность дуговых ОЗЗ - наличие электрической дуги в месте ОЗЗ, которая является источником высокочастотных колебаний, сопровождающих каждое ОЗЗ.

Способы подавления токов ОЗЗ

Существует два способа подавления токов ОЗЗ.

1) отключение поврежденного присоединения – этот способ ориентирован на ручное либо автоматическое (с использованием средств РЗА) отключение. При этом потребитель в соответствии с категорией переводится на резервное питание или остается без питания. Нет напряжения на поврежденной фазе – нет тока через место пробоя.

2) компенсация емкостного тока в месте замыкания установленным в нейтрали сети реактором, обладающим индуктивными свойствами.

Суть компенсации емкостных токов ОЗЗ

Как было замечено, при замыкании фазы на землю (пробое) через место ОЗЗ протекает емкостный ток. Этот ток при ближайшем рассмотрении обусловлен емкостями двух оставшихся (неповрежденных) фаз, заряженных до линейного напряжения. Токи этих фаз, сдвинутые друг относительно друга на 60 электрических градусов, суммируются в точке повреждения и имеют по величине тройное значение фазного емкостного тока. Отсюда и определяется величина тока ОЗЗ через место повреждения: . Этот емкостный ток можно скомпенсировать индуктивным током дугогасящего реактора (ДГР), установленного в нейтраль сети. При ОЗЗ в сети на нейтрали любого присоединенного к ней трансформатора, обмотки которого соединены в звезду, появляется фазное напряжение, которое, если имеется вывод нейтрали, присоединенный к высоковольтной обмотке реактора L, инициирует индуктивный ток реактора через место пробоя. Этот ток направлен встречно емкостному току ОЗЗ и может его компенсировать при соответствующей настройке реактора (рис. 1)

Необходимость автоматической настройки в резонанс

Для достижения максимальной эффективности ДГР контур, образованный емкостью всей сети и индуктивностью реактора – контур нулевой последовательности сети (КНПС) - должен быть настроен в резонанс на частоте сети 50 Гц. В условиях постоянных переключений в сети (включений/отключений потребителей) емкость сети изменяется, что приводит к необходимости применения плавнорегулируемых ДГР и автоматической системы компенсации емкостных токов ОЗЗ (АСКЕТ). К слову сказать, применяемые в настоящее время ступенчатые реакторы типа ЗРОМ и др. настраиваются вручную, исходя из расчетных данных о емкостных токах сети, и поэтому не обеспечивают резонансной настройки.

Принцип действия АСКЕТ

КНПС настраивается в резонанс устройством автоматической регулировки компенсации типа УАРК.101М, работающим на фазовом принципе. На вход УАРК.101М подаются опорный сигнал (линейное напряжение) и сигнал 3Uo с измерительного трансформатора (например, НТМИ). Для правильной и устойчивой работы АСКЕТ необходимо создать искусственную несимметрию в сети, что делается источником возбуждения нейтрали (ИВН) - либо включением высоковольтной конденсаторной батареи в одну из фаз сети, либо установкой специального несимметричного трансформатора типа ТМПС со встроенным ИВН (с возможностью регулирования коэффициента трансформации с дискретностью 1,25 % фазного напряжения). В последнем случае величина напряжения 3Uo в режиме резонанса и устойчивость работы АСКЕТ остаются постоянными при изменении конфигурации сети (см. формулы ниже). В нейтраль этого же трансформатора устанавливается ДГР (например, типа РДМР). Таким образом, АСКЕТ представляется в виде системы ТМПС+РДМР+УАРК.101М.

О соотношении величин естественной и искусственной несимметрии

. В сети с изолированной нейтралью напряжение на разомкнутом треугольнике НТМИ с учетом коэффициента трансформации соответствует напряжению естественной несимметрии. Величина и угол этого напряжения нестабильны и зависят от различных факторов (погодных,…..и т.д.), поэтому для правильной работы АСКЕТ необходимо создать более стабильный сигнал как по величине, так и по фазе. Для этой цели в КНПС вводится источник возбуждения нейтрали (источник искусственной несимметрии). Если использовать терминологию теории автоматического управления, искусственная несимметрия представляет собой полезный сигнал, используемый для управления КНПС, а естественная – помеха, от которой необходимо отстроиться путем выбора величины искусственной несимметрии. В сетях с наличием кабельных линий с емкостным током 10 и более ампер величина естественной несимметрии, как правило, очень мала [2]. П.5.11.11. ПТЭЭСиС [4] ограничивает величину напряжения несимметрии (естественной + искусственной) в сетях, работающих с компенсацией емкостного тока, на уровне 0,75% фазного напряжения, а максимальную степень смещения нейтрали на уровне не выше 15% фазного напряжения. На разомкнутом треугольнике НТМИ эти уровни будут соответствовать значениям 3Uo= 0,75В и 15В. Максимальная степень смещения нейтрали возможна в режиме резонанса (рис.2).

Приведем ниже формулы для расчета напряжения 3Uo в режиме резонанса для двух способов создания искусственной несимметрии:

в случае применения конденсатора Co

где Ксм – переключаемый коэффициент смещения фазы В специального трансформатора.

Из формул видно, что в случае применения конденсатора Co величина 3Uo в точке резонанса зависит от емкостного тока сети (Ioz), а в случае применения специального несимметричного трансформатора не зависит.

Минимальное значение 3Uo выбирается, исходя из условия надежной работы устройства УАРК.101М, и составляет 5В.

В вышеприведенных формулах не учитывается величина напряжения естественной несимметрии сети ввиду ее небольших значений. Пример суммарного вектора показан на рис. 3 внизу.