Качество и надежность электроснабжения Александр Воробьев 17.09.2003 LAN, # 09/2003 Электроснабжение характеризуется надежностью и качеством. К понятию качества в первую очередь относится качество электроэнергии, на которое влияют различные нарушения и искажения формы питающего напряжения. Эти нарушения могут поступать из энергосистемы: например, грозовые импульсы, коммутационные перенапряжения вследствие коммутации участков электрической сети, провалы и отклонения напряжения во время автоматического включения резерва (АВР) и переключения потребителей на другие источники питания. Искажения в электрическую систему нередко вносят и сами электроприемники с резкопеременным и нелинейным характером нагрузки: всевозможные преобразователи, промышленные потребители, электрический транспорт и т. д. Подобные свойства электроприемников относятся к электромагнитной совместимости – способности технических средств функционировать с требуемым качеством в заданной электромагнитной обстановке, не создавая недопустимых электромагнитных помех другим техническим средствам. Стандарты надежности и качества энергопитания Требования по надежности электроснабжения потребителей изложены прежде всего в таком основополагающем нормативном документе, как «Правила устройства электроустановок» (ПУЭ). В качестве главного показателя надежности электроснабжения вводится категория надежности. В правилах различают три категории (с третьей по первую) в зависимости от требований к надежности и времени устранения неисправностей, при этом в первой категории выделяют особую группу. В табл.1 приведены сведения о количестве независимых, взаиморезервирующих источников электроснабжения и соответствующих категориях надежности. Следует иметь в виду, что энергосистема предоставляет потребителю не более двух источников электроснабжения, то есть подключение обеспечивается не более чем к двум электрическим подстанциям. Прочие источники, ДЭС или ИБП, не являются объектами энергосистемы. Таблица 1 – Категории надежности электроснабжения
Качество электроэнергии влияет на работоспособность и эффективность функционирования питаемого оборудования. Применительно к инфокоммуникационным системам его следует рассматривать как воздействие кондуктивных помех (электромагнитных помех, распространяющихся по элементам электрической сети) на оборудование. Если уровень помех (показатели качества электроэнергии) не превышает устанавливаемых стандартом норм, то оборудование функционирует исправно, и нарушений (сбоев, снижения эффективности) инфокоммуникационных систем не происходит. Качество электроэнергии (качество напряжения) нормируется в ГОСТе 13109-97 «Нормы качества электроэнергии в системах электроснабжения общего назначения». В стандарте определяются показатели и нормы качества электроэнергии в электрических сетях систем электроснабжения общего назначения переменного трехфазного и однофазного тока частотой 50 Гц в точках присоединения электрических сетей, находящихся в собственности различных потребителей электроэнергиии. Показатели качества электроэнергии в электрических сетях, находящихся в собственности потребителей, регламентируются отраслевыми стандартами и иными нормативными документами, но они не должны быть ниже норм ГОСТа для точек общего присоединения. Когда указанные отраслевые стандарты и иные нормативные документы отсутствуют, нормы настоящего стандарта обязательны для электрических сетей потребителей электроэнергии. Устанавливаемые ГОСТом показатели качества электроэнергии определяют предельный уровень электромагнитной совместимости для кондуктивных электромагнитных помех в системах электроснабжения общего назначения. При соблюдении этих норм обеспечивается электромагнитная совместимость электрических сетей систем электроснабжения общего назначения и электрических сетей потребителей электроэнергии (приемников электроэнергии), не возникает нарушений и помех в работе оборудования вследствие неудовлетворительного качества электроснабжения. Влияние нарушений на работоспособность Различные показатели качества электроэнергии влияют на работоспособность инфокоммуникационных систем по-разному. Стандартом установлены нормально допустимые и предельно допустимые значения показателей. Ниже мы рассмотрим основные из них. Отклонение напряжения. Отклонение напряжения (рис.1) характеризуется показателем установившегося отклонения напряжения. Для него определены нормально допустимые и предельно допустимые значения отклонения на выводах приемников электроэнергии, соответственно, в +5 и +10% от номинального напряжения электрической сети. Этот показатель достаточно существенен, так как от его значений зависит работоспособность блоков питания. Колебания напряжения. Для инфокоммуникационных систем значимым показателем колебания напряжения (рис.1) является диапазон изменения напряжения. Предельно допустимый диапазон изменения напряжения имеет достаточно сложную функциональную зависимость от частоты повторения и формы огибающей. Данные зависимости приводятся в ГОСТе 13109-97. Рисунок 1 – Отклонение, колебание, перенапряжение и провал напряжения Провал напряжения. Провал напряжения (pис.1) характеризуется длительностью провала напряжения, величина которого в электрических сетях с напряжением до 20 кВ не должна превышать 30 с. Провал напряжения, так же как и его полное отключение, представляет наибольшую опасность для электроснабжения инфокоммуникационных систем. Рисунок 2 – Несинусоидальное напряжение Несинусоидальность напряжения. Несинусоидальность напряжения (pис.2) включает следующие показатели: – коэффициент искажения синусоидальности кривой напряжения; – коэффициент n-й гармонической составляющей напряжения. Нормально допустимые и предельно допустимые значения коэффициента искажения синусоидальности кривой напряжения должны быть не более 8% в точках общего присоединения к электрическим сетям с номинальным напряжением 380/220 В. Этот показатель не оказывает непосредственного влияния на качество электроснабжения инфокоммуникаций, поскольку современные блоки питания могут нормально работать от источников питания, у которых форма кривой напряжения близка к прямоугольной (меандр). Вместе с тем, несинусоидальное напряжение способно оказать вредное воздействие на обеспечивающее оборудование, например на двигатели компрессоров и вентиляторов систем кондиционирования технологических помещений. Следует также заметить, что данный вид искажений характерен для сетей электроснабжения промышленных предприятий, но не для жилых и офисных зданий. Несимметрия напряжений. Несимметрия напряжений характеризуется следующими показателями: – коэффициентом несимметрии напряжений по обратной последовательности; – коэффициентом несимметрии напряжений по нулевой последовательности. Эти показатели также не влияют в явном виде на качество электроснабжения инфокоммуникаций. Отклонение частоты. Отклонение частоты напряжения переменного тока в электрических сетях характеризуется показателем отклонения частоты, для которого установлены нормально допустимое и предельно допустимое значения: +0,2 и +0,4 Гц, соответственно. Частота – общесистемный параметр, т. е. она одинакова во всех точках объединенной энергосистемы. При возникновении существенных отклонений частоты в действие вводится противоаварийная автоматика энергосистемы. Отклонение частоты может привести к отключению целых районов и даже общесистемной аварии, что случается далеко не каждое десятилетие. Кроме того, современные блоки питания средств вычислительной и телекоммуникационной техники на 50 и 60 Гц остаются работоспособными при отклонениях в несколько герц, а не процентов, как это устанавливается стандартом. Импульс напряжения. Импульс напряжения (pис.3) характеризуется показателем импульсного напряжения. Значения импульсных напряжений для грозовых импульсов, возникающих в электрических воздушных и кабельных сетях 380/220 В энергоснабжающей организации, не превышают 10 и 6 кВ, соответственно. Для коммутационных импульсов в сетях 380 В значение импульса – не более 4,5 кВ. Появление грозового импульса в кабельной сети возможно, если он проникает в нее из воздушной. Например, если питание на трансформаторную подстанцию 10/0,38 кВ подается посредством воздушной линии, что характерно для сельских сетей, то появление грозового импульса в сети низшего напряжения 380/220 В не столь уж невероятно. В городских сетях, где линии как высшего, так и низшего напряжения, как правило, кабельные, возникновение грозового импульса трудно объяснимо. Рисунок 3 – Импульсы напряжения Временное перенапряжение. Временное перенапряжение (pис.1) характеризуется коэффициентом временного перенапряжения (отношением максимального значения огибающей амплитудных значений напряжения за время существования перенапряжения к амплитуде номинального напряжения). Значение коэффициента зависит от времени перенапряжения, но не превышает 1,47. При обрыве нулевого рабочего проводника в трехфазных электрических сетях напряжением до 1 кВ с наглухо заземленной нейтралью (т. е. нейтраль трансформатора или генератора непосредственно присоединена к заземляющему устройству) возникают временные перенапряжения между фазой и землей. Уровень таких перенапряжений при значительной несимметрии фазных нагрузок может достигать значений межфазного напряжения, а длительность – нескольких часов. Этот вид нарушений опасен не только из-за риска повреждения оборудования и нарушения режима его работы, но и представляет собой реальную пожарную опасность вследствие высокой вероятности возгорания электрооборудования и электроприемников. Таким образом, можно констатировать, что электропотребляющее оборудование инфокоммуникационных систем чувствительно к нарушениям качества энергоснабжения в разной степени в зависимости от вида искажений. Возможные последствия выражаются в сбоях в работе аппаратно-программных средств и, в меньшей степени, – в повреждениях оборудования. Наиболее критичными нарушениями являются провалы напряжения, поскольку они приводят к отключениям и перезагрузке оборудования. Перенапряжения и импульсы напряжения могут вызывать повреждение оборудования. Отклонения, колебания, несинусоидальность напряжения практически не влияют на работоспособность инфокоммуникационных систем. Эти нарушения, включая отклонения частоты, в большей степени оказывают воздействие на оборудование инженерных систем. |