Эволюция SCADA: от телеметрических приложений до корпоративных системАвтор:
по материалам Citect, МКА: мир ВКТ 6/2008
Как
всё начиналось
Ранние управляющие решения, предварившие наступление эры SCADA, назывались «телеметрическими» системами и представляли собой попытки организовать дистанционный мониторинг небольшого числа параметров (обычно одного-двух). В те времена никому и в голову не могло прийти, что уже к концу столетия оператор управляющей системы будет видеть буквально всё происходящее на удалённой станции. Тем не менее, все основные требования, которым должны удовлетворять современные решения типа SCADA, равно как и большинство обеспечиваемых такими решениями преимуществ, присутствовали уже в телеметрических системах начала 70 годов прошлого века хотя бы в зачаточном виде. Для отображения текущего состояния системы тогда использовались «имитационные стены» (mimic wall). Оперативность вывода информации на такие стены можно охарактеризовать как «приближающуюся к реальному времени»: показания индикаторов и лампочек изменялись вручную по мере того, как перемещающиеся по удалённым локациям операторы получали новые данные. Аббревиатура SCADA расшифровывается как Supervisory Control and Data Acquisition – диспетчерский контроль и сбор данных. Почему контроль здесь назван «супервизорским»? В ранних SCADA-подобных системах вроде тех, что применялись в задачах водоснабжения и водоочистки в 60-70 годах XX века, связь между диспетчерской (головной станцией SCADA) и удалёнными станциями была столь призрачной, что организовать полноценный оперативный контроль не представлялось возможным. Первые управляющие системы типа SCADA разрабатывались для налаживания сбора данных с удалённых локаций. Каких данных? Традиционно в задачах добычи и транспортировки нефти, а также водоснабжения и водоочистки критическое значение имеет информация о давлении и расходе. Для контроля критических показателей в ранних SCADA-подобных системах обычно использовались один-два аларма, которые обеспечивали, например, контроль входа в здание либо подавали сигналы типа «ёмкость пуста», «ёмкость заполнена» или «отказ насоса». Почему параметров было так мало? Это обусловлено тогдашним уровнем развития управляющих систем. Организация надёжного мониторинга четырёх-пяти показателей для каждой удалённой станции расценивалась в те времена как крупный успех. Серьёзную проблему представляло даже налаживание дистанционного контроля времени работы насосов. Традиционные рынки и движущие силы Управляющие системы типа SCADA возникли в тех отраслях, где в отличие от обрабатывающей промышленности «производственные мощности» в принципе нельзя объединить под крышей одного или нескольких близко расположенных зданий. Основными пользователями SCADA-решений во все времена были распределённые компании и предприятия, занимающиеся:
Основными стимулами развития SCADA-систем и роста их популярности на протяжении последних пятидесяти лет служили два тесно связанных друг с другом фактора. Первый – это желание операторов иметь более полный и качественный контроль над распределёнными процессами. Второй фактор – это стремление руководства сокращать и регулировать расходы. Стремительный рост расходов за последние полвека в значительной степени обусловлен увеличением затрат на электроэнергию и рабочую силу. В отсутствие SCADA-системы насосами и прочими удалёнными станциями приходится управлять локально, руководствуясь информацией о давлении, расходе и другими данными, получаемыми на местах. Разные станции в этом случае управляются совершенно независимо, даже если они являются частью одной распределительной сети. В начале 1970 годов поставщики электроэнергии стали брать повышенную плату с водоснабженческих, водоочистных, нефтяных и газовых компаний за пользование электричеством для питания насосов в часы наибольшей нагрузки (peak pumping rates). Для очень многих крупных потребителей электричества из соответствующих отраслей такая повышенная плата была разорительной и вынуждала их эксплуатировать свои насосы по возможности в другое время. Если предприятие водоснабжения желает минимизировать свои расходы через регулирование поставок воды в какой-либо сектор своей распределительной сети, оно может обойтись без периодических включений-отключений насосов: для поддержания давления на нормальном уровне вполне достаточно дополнительных водонапорных башен и динамического открытия-закрытия межсекторных вентилей. Подобные методы позволяют осуществлять непрерывную подачу воды в сектор распределительной сети и поддерживать в нём нормальное давление с одновременной минимизацией энергопотребления, но требуют наличия головной станции, куда стекаются данные с удалённых локаций. Другая причина роста расходов – это рабочая сила. До наступления эпохи современных SCADA-решений, типичная распределённая система управления, будь то управление водоснабжением, водоочисткой, ирригацией или транспортировкой углеводородов, требовала наличия штата «операторов на колёсах», периодически посещающих удалённые станции с целью сбора данных, внесения изменений, контроля над соблюдением требований к техническому обслуживанию и проведения инспекций. Причём эта деятельность должна была осуществляться непрерывно и круглосуточно – 24 часа в день 7 дней в неделю. В 70 годах прошлого века типичная сеть водоснабжения в США обслуживалась в среднем шестью-восемью «операторами на колёсах». Существуют и другие факторы, способствующие развитию рынка управляющих систем типа SCADA. Это демографические изменения, рост эксплуатационных расходов и неэффективность альтернативных методов. Содержать операторов, разъезжающих от станции к станции для проведения рутинных инспекций, стало просто-напросто невыгодно. Такое удовольствие слишком дорого стоит, да и квалифицированных операторов в наши дни не так много, и их ещё придётся упрашивать взяться за такую работу. Не говоря уже о том, что оперативность обновления информации, максимально приближенная к реальному времени, считается необходимым условием для оптимизации работы распределённого предприятия, имеющего удалённые станции. От арендованных телефонных линий к радиосвязи В ранних SCADA-системах, использовавшихся на предприятиях водоснабжения и сбора сточных вод, применялись арендованные телефонные пары, по одной паре на один сигнал/аларм. Однако подведение телефонных линий к удалённым станциям влетало в копеечку, да и арендная плата была высока; к тому же телекоммуникационные компании неохотно соглашались на фиксацию отдельных соединений в своих коммутаторах. Это подвигало SCADA-операторов на поиск других решений. В 1970 годах многие попытались перейти на радиосвязь и немедленно столкнулись с целым рядом проблем: полосы частот тогда были значительно уже, чем в начале XXI столетия, а правила лицензирования частот в городах по всему миру были таковы, что зачастую превращали SCADA-системы на базе радио в несбыточную мечту. От аналога к цифре Ситуация упростилась после того, как в 70 годах прошлого века начался переход с аналоговой телеметрии, функционирующей по принципу частотной манипуляции (Frequency Shift Keying/FSK), к цифровой телеметрии. Первые цифровые решения были частнофирменными, затем появились системы на базе COTS-продуктов (Commercial Off The Shelf/готовые коммерческие продукты с полки). Микропроцессоры вкупе с разработанными в НАСА технологиями сжатия и кодирования (метод Боуза – Чоудхури и др.) позволили организовывать передачу на одной радиочастоте (или по одной арендованной линии в тех случаях, когда использовать радио было нельзя) сразу несколько алармов и аналоговых величин. В конце концов SCADA-системы стали давать своим пользователям то, о чём те всегда мечтали: актуальную информацию о происходящем в масштабах всего предприятия плюс возможность управления всем предприятием из единого центра. И всё же первые цифровые решения были не так надёжны, как реле, подключённые к одному FSK-каналу. SCADA-системы с радиосвязью периодически оказывались недоступны, что могло быть обусловлено самыми разными причинами, вплоть до вспышек на Солнце. Арендованные телефонные линии также не были панацеей: их могли порвать строители. Да и печатные платы сорок лет назад были совсем не так надёжны, как сегодня – отказы компонентов и просчёты в конструкции были самым обычным делом. В силу всего вышесказанного ранние SCADA-системы проектировались таким образом, чтобы сохранить за удалёнными станциями как можно больше управляющих функций. Были разработаны специальные дистанционные терминалы (Remote Terminal Unit/RTU), способные хранить ограниченные объёмы данных и поддерживать работу удалённых станций в периоды отсутствия связи с головной станцией. Типичная SCADA-система первого поколения оставалась подключённой к имитационной стене, и очень часто для обслуживания такой системы требовались «операторы на колёсах». Человеко-машинные интерфейсы А потом всё изменилось. С появлением компьютеров Macintosh, рабочих станций Silicon Graphics, частнофирменного графического программного обеспечения и, наконец, операционных систем Windows у разработчиков появилась возможность создавать человеко-машинные интерфейсы (Human Machine Interface/HMI), заменившие имитационные стены и оставившие «операторов на колёсах» без работы. Программные человеко-машинные интерфейсы всегда представляли собой нечто большее, чем просто ПО для визуализации состояния системы в реальном времени. Реальные решения класса HMI, вроде тех, что предлагала и продолжает предлагать компания Citect, практически с самого начала были программно-реализованными версиями головной станции SCADA-системы. Самые ранние SCADA-пакеты, где предусматривались такие виртуальные средства управления, как переключатели «ручн./выкл./автом.», регуляторы режима работы насосов, модули алармов и другие, требовали использования частнофирменных печатных плат. В XXI столетии размеры управляющих систем типа SCADA ограничиваются лишь производительностью процессора, точнее, временем, которое требуется главному компьютеру на опрос всех узлов. Сегодня никого не удивляют SCADA-решения с 500000 узлами, а появление управляющих систем-«миллионщиков» (1000000 узлов) ожидается уже к 2015 году. Частнофирменные дистанционные терминалы и программируемые контроллеры Поначалу в SCADA-подобных управляющих системах частнофирменным было всё. Дистанционные терминалы представляли собой шасси с одной или несколькими платами частнофирменной конструкции, и для организации связи с головной станцией использовались частнофирменные технологии. Появление программируемых логических контроллеров заставило SCADA-инженеров задуматься о преимуществах коммерчески готового оборудования (COTS). Технология Modbus перевела эти размышления в практическую плоскость: ПЛК с поддержкой шины Modbus стали доступной и достойной заменой для частнофирменных дистанционных терминалов. ПЛК, промышленные шины и виртуальные человеко-машинные интерфейсы обеспечили доступ на рынок SCADA коммерчески готовых продуктов и технологий, подходящих для использования как на удалённых, так и на головных станциях. Чем совершеннее становились программируемые логические контроллеры, тем более сложную функциональность дистанционных терминалов в них можно было реализовывать. Чем лучше, быстрее и мощнее делались компьютеры на базе ОС Windows, тем лучше, быстрее и мощнее становились программные продукты класса SCADA/HMI. К началу 1990 годов благодаря появлению коммерческого программного обеспечения для управления базами данных и увеличению объёмов памяти появилась возможность организации сбора, хранения и быстрого анализа огромных объёмов рабочих данных на базе ПЛК и ПК. Последними кусками мозаики стали однотеговые базы данных и программируемые контроллеры автоматизации (ПКА, Programmable Automation Controller), идущие на смену простоватым и недостаточно гибким ПЛК. Контроллеры типа ПКА разрабатываются специально под однотеговые БД, что создаёт условия для бесшовной интеграции на технологической платформе SCADA и обеспечения целостности данных от уровня устройств до архивного хранилища. Современные SCADA-сети В превращении SCADA-систем из полностью частнофирменных, каковыми они были в 1970 годах, в почти полностью открытые, каковыми они стали в начале XXI века, большая заслуга принадлежит открытым сетевым протоколам. Первым таким протоколом стал Modbus, затем в корпоративном мире развился сектор IT, где был придуман способ объединения отдельных компьютеров в сети с архитектурой «клиент-сервер». Появление технологии Ethernet и её сращивание со стеком протоколов TCP/IP позволило организовывать перемещение огромных объёмов данных на большие расстояния с использованием исключительно COTS-продуктов и открытых нечастнофирменных технологий. Кроме того, настойчивость, с которой компания Microsoft стремилась к созданию универсального механизма, который должен был позволить приложениям разных поставщиков взаимодействовать между собой, привела к появлению в индустрии SCADA ряда промышленных стандартов: сначала DCOM и OLE, затем OPC – специальной версии OLE для автоматизации технологических процессов. В современных управляющих системах типа SCADA связь с полевыми устройствами и корпоративным уровнем реализуется поверх Ethernet или беспроводных сетей на базе технологий OPC и TCP/IP, не привязанных жёстко к конкретным коммуникационным протоколам и средам. В самых новых системах применяются сервисы Microsoft .NET и стандарт XML, которые расширяют возможности технологии OPC и традиционных сетевых коммуникаций. Сближение управляющих систем типа SCADA и DCS Концепция SCADA была выработана в поисках способов организации управления на распределённых предприятиях, занимающихся водоснабжением и сбором сточных вод, транспортировкой нефти и газа, доставкой электроэнергии и т.п. Аналогами SCADA-систем для обрабатывающей промышленности, появившимися под влиянием схожих причин и призванными решать схожие задачи, являются управляющие решения типа DCS. Есть разные мнения относительно того, как следует расшифровывать аббревиатуру DCS, однако большинство специалистов склоняются к варианту Distributed Control System – распределённая система управления. DCS-решения всегда были почти полностью частнофирменными и продолжают оставаться таковыми по сей день. В этом отношении управляющие системы DCS сильно отличаются от управляющих систем SCADA, которые также относятся к распределённым, но строятся с использованием COTS-продуктов и открытых технологий. Однако с течением времени дистанция между решениями двух типов сокращается. Управляющие системы на базе SCADA вбирают в себя всё больше оригинальной DCS-функциональности, включая локальное управление с обратной связью, работу с алармами, оптимизацию технологических процессов и анализ данных. В свою очередь, DCS-поставщики предлагают системы, трудноотличимые от их SCADA-аналогов, но по-прежнему называющиеся DCS. Если забыть о некоторых особо критических функциях, востребованных в нефтехимических приложениях, типичная сегодняшняя DCS-система, которую предлагает классический поставщик промышленных управляющих решений, ничем не отличается от типичной сегодняшней SCADA-системы, над которой поколдовал интегратор. Возможности современных управляющих систем Современные управляющие системы типа SCADA обладают такими возможностями, о которых пионеры SCADA-направления 50 лет назад не могли и мечтать. В SCADA-пакетах XXI века предусмотрены средства разработки и библиотеки объектов, при помощи которых пользователи могут создавать собственные графические интерфейсы под свои нужды с соблюдением рекомендаций EEMUA и ASM. Операторам доступно всё, что необходимо для построения конечного SCADA-решения на базе коммерческого SCADA-пакета с объектным конфигурированием, включая различные инструменты, шаблоны и подсказки. Используя высокоскоростные соединения Ethernet и TCP/IP, операторы могут работать буквально с тысячами удалённых статусных точек, а при достаточной пропускной способности каналов даже получать с удалённых локаций видеоизображения. Во многих сегодняшних SCADA-системах, использующихся в нефтяной и газовой отраслях, каналы связи организуются на основе волоконной оптики, что обеспечивает максимально возможную пропускную способность и скорость передачи данных. Типичная картина Сегодня операторы могут видеть и анализировать данные, имеющие отношение к обслуживанию и оптимизации, управлять алармами и активами и изменять рабочие характеристики управляющей системы, не покидая диспетчерской. Современные управляющие решения типа SCADA являются открытыми и поддерживают подключение веб-клиентов, что придаёт им дополнительную гибкость. В то же время, современные SCADA-системы должны быть защищены как от внутренних, так и от внешних угроз, для чего в них предусмотрены пользовательские настройки безопасности. Сегодня концепция SCADA выходит на глобальный уровень: многие пользователи имеют по нескольку управляющих систем в разных уголках земного шара, где операторы говорят на иных языках, нежели создатели этих систем. Современные SCADA-системы должны представлять данные в как можно более простой и понятной форме с минимальными изменениями в версиях для разных языков. Архивное хранение данных в современных управляющих решениях типа SCADA – это не только функции БД со структурированными запросами. Подсистема хранения должна уметь оказывать помощь оператору в анализе тех данных, которые система собирает и отображает. В состав современных SCADA-пакетов включаются высокоуровневые графические средства работы с данными, поддерживающие анализ первопричин, сравнение процессов и групп, визуализацию алармов и последовательностей событий. Помимо поддержки визуальной работы с данными современные программные продукты класса SCADA должны содержать полностью интегрированные инструменты, позволяющие персоналу создавать подробные отчёты о том, что происходит на полевом уровне. Современные SCADA-системы не только помогают инженерам и операторам составлять отчёты, но и сами способны генерировать отчёты и направлять их при необходимости на корпоративный уровень вплоть до зала заседаний совета директоров. Наконец, современные управляющие решения типа SCADA должны иметь полный набор функций для управления алармами, используя которые, инженеры и операторы могут конфигурировать аварийные сообщения таким образом, чтобы эффективно изолировать и идентифицировать сбои в системе. Сегодня от SCADA-пакета ожидается поддержка работы с аналоговыми алармами, статусными алармами, алармами статистического контроля производственных процессов (Statistical Process Control/SPC), а также возможность адаптации алармов и определения пользовательских алармов. Лучшие продукты из разных источников или законченное решение от одного источника? Бизнес Citect и других компаний, предлагающих программные SCADA-пакеты, зависит от существования небольших инженерных фирм, выступающих в роли интеграторов управляющих систем. Наиболее дальновидные представители сообщества интеграторов образовали ассоциацию Control System Integrators Association, призванную помогать интеграторам обмениваться опытом, сравнивать эффективность их решений и решать вопросы сертификации. Интегратор управляющих систем – это новая профессия, имеющая особые черты, отличающие её от профессий инженера и конструктора. Доступность готового COTS-оборудования для оснащения удалённых станций и программного обеспечения типа SCADA для создания человеко-машинных интерфейсов и реализации другой высокоуровневой функциональности привела к тому, что компании-интеграторы всё реже работают «по старинке» с одним-двумя поставщиками. Сегодня интеграторы могут выбирать для своих клиентов лучшие продукты от разных поставщиков. В отсутствие широкого выбора программных человеко-машинных интерфейсов и SCADA-пакетов рынок интеграции управляющих систем в его нынешнем виде не мог бы существовать. Целостность данных Современные продукты класса SCADA позволяют создавать законченные интегрированные системы управления для работы со всеми данными, поступающими по каналам ввода-вывода. Такие системы должны поддерживать назначение глобальных временных меток для всех данных, ведение глобальной истории данных и анализ данных, а также импорт данных из разных БД и представление импортированных данных таким образом, как если бы все они хранились в одной БД. Целостность данных – это один из ключевых показателей качества функционирования современного SCADA-пакета. Модернизация Для COTS-оборудования длительные жизненные циклы нехарактерны, однако SCADA-системы обязаны иметь длительный жизненный цикл. На практике это означает, что аппаратные и программные средства управляющих систем должны быть легко обновляемыми, поскольку тогда в эти системы можно будет интегрировать различные технические новинки по мере их появления. Современные SCADA-системы способны выдерживать, по меньшей мере, четыре-пять полных модернизаций на протяжении жизненного цикла удалённых станций и подконтрольных производственных процессов. Разработчики и интеграторы сегодняшних управляющих систем типа SCADA используют коммерчески готовое оборудование и открытые сетевые протоколы, по возможности избегая применения частнофирменных подсистем, аппаратных средств и программного обеспечения. Из этого немедленно следует, что для современных SCADA-систем готовность к модернизация можно назвать естественным состоянием. Поскольку управляющим системам свойственно расширяться, а использующим эти системы компаниям – меняться и развиваться, очень важно, чтобы SCADA-решения изначально имели масштабируемую архитектуру: тогда наращивание их возможностей будет означать всего лишь добавление новых компонентов в существующую структуру, а не переделку всего проекта с нуля. Несмотря на то, что управляющие системы типа SCADA зародились в индустрии распределительных сетей, а затем включили в зону своего влияния сегменты автоматизации технологических процессов и серийного производства, они успешно используются также и для автоматизации дискретных производств. В этой связи современные SCADA-решения обязаны быть очень надёжными и предусматривать резервирование как ввода-вывода, так и сети. От производственных данных к интеллектуальным ресурсам Исторически SCADA-системы имели дело только с данными, обеспечивая их поступление в оперативные центры управления или на головные станции распределительных сетей. В последние 10 лет глобализация и конкуренция, а также поиски новых, более эффективных способов оптимизации производства, совместной разработки месторождений, управления основными фондами и затратами привели к необходимости прямого подключения SCADA-решений к корпоративным системам организации производства (Manufacturing Execution System/MES). Программные продукты класса MES преобразуют SCADA-данные в удобную форму и обеспечивают их доставку всем тем людям, которым по долгу службы необходимо иметь представление о работе их системы SCADA. Эти продукты должны соответствовать стандартам ANSI/ISA88 и ANSI/ISA95 и выдержать испытания на совместимость с высокоуровневыми бизнес-системами (SAP и другими.). Словесный портрет современной управляющей системы типа SCADA Масштабируемая
Действия
Статистический контроль (SPC)
Отчёты
Конфигурирование
Программное обеспечение
Безопасность
Обмен данными
|