Source of information: http://khd2.narod.ru/hydrodyn/ramblow.htm
Гидроудар может возникнуть не только при столкновении потока c неподвижной жёсткой заглушкой или задвижкой, но и в случае его столкновения с другим потоком, движущимся по той же трубе. При этом один поток может «догнать» другой, движущийся в том же направлении, либо испытать «лобовое столкновение» с потоком, движущимся навстречу.
Эта ситуация отнюдь не редкая. Она может возникнуть практически в любом закольцованном трубопроводе, например, в домовой жидкостной отопительной системе в момент её заполнения теплоносителем, если слесари неправильно откроют вентили.
Тем не менее, расчёт здесь очень прост — в случае встречного столкновения повышение давления (т.е. сила гидроудара) равно сумме повышений давлений для каждого из потоков, если бы он столкнулся с неподвижной преградой. В случае же попутного удара более быстрого потока в «хвост» более медленного повышение давления будет равно разности скачков давлений гидроударов каждого из потоков о неподвижную преграду. Это следует из формулы Жуковского, где повышение давления прямо пропорционально изменению скорости двигавшегося потока.
Дальнейшее развитие событий протекает аналогично гидроудару в частично заполненной вертикальной трубе за одним исключением — поскольку в этой трубе нет жёстких заглушек, жидкость может не остановиться, а продолжить движение в том направлении, в котором двигался более «сильный» поток, т.е. поток с большей энергией или подпитываемый внешним источником (конечно, скорость потока при этом изменится).
Ещё один вариант «из жизни» — это наличие утечек из трубы во время гидроудара. Причиной таких утечек может быть неполное перекрытие трубы заслонкой или заглушкой. Другая распространённая причина — наличие в трубе помимо входа, через который вливается поток, дополнительных отверстий (созданных специально или аварийных — в данном случае не так важно). Суммарная площадь таких отверстий или незакрытого просвета, естественно, должна быть меньше внутреннего сечения трубы, иначе гидроудара не будет в принципе, потому что не получится необходимого ограничения вытекающего из трубы потока.
Поскольку из-за наличия утечек жидкость не остановится полностью, то скачок давления будет меньше, чем при их отсутствии. Поэтому такой гидроудар иногда называют «неполным» в отличии от гидравлического удара с полной остановкой потока.
Если утечка достаточно велика, то характер гидроудара меняется кардинальным образом. По мере увеличения отверстия утечки при прочих равных условиях остаточная скорость v2 увеличивается, поэтому если сначала энергии, запасённой в упругой деформации, хватало на отрыв жидкости от заглушки, то затем её для этого уже недостаточно, а при дальнейшем увеличении отверстия этой энергии уже может не хватить даже для снижения давления возле заглушки ниже давления у входа в трубу. В результате при гидроударе с большой утечкой отсутствует этап разрежения, как он понимается в «классическом» гидроударе (давление не падает ниже внешнего давления у входа в трубу, не говоря уже об отбое с отрывом жидкости от заглушки), а значит, в принципе не возможны повторные циклы, связанные с обратным движением жидкости. Точнее, затухающие колебания давления по-прежнему имеют место, однако давление всё время остаётся достаточно высоким, а жидкость уже не меняет направления своего движения, лишь несколько меняя скорость, которая в конце концов стремится к скорости стационарного потока в канале переменного сечения, определяемой давлениями снаружи трубы — у её входа и у отверстия утечки.
Что можно выбрать критерием большой утечки при гидроударе? Представляется логичным считать утечку большой, когда остаточная скорость v2 достигает половины от исходной скорости потока v0 или превышает её:
Тогда в момент окончания этапа сжатия и падения давления накопленной энергии деформации уже недостаточно для создания обратного движения жидкости — она лишь замедляет своё движение в прежнем направлении, но никогда не движется вспять!
При этом без расчёта нельзя сказать, будет ли выполняться этот критерий при данном соотношении внутреннего сечения трубы и отверстия утечки — это зависит не только от соотношения сечений, но и от других факторов, прежде всего от скорости потока (чем меньше разность сечений и чем меньше скорость, тем больше вероятность признания утечки «большой»), а также от того, что находится за отверстием утечки: пространство, заполненное атмосферным воздухом или вакуум, либо не ограниченная стенками жидкость при том или ином давлении, либо узкая труба — пустая или чем-то заполненная... Впрочем, соотношение сечений основной трубы и отверстия утечки 400:1 и более (т.е. не менее двадцатикратной разности диаметров) обычно даёт «большую» утечку лишь при столь малых скоростях исходного потока, что говорить о гидроударе в этих случаях можно только теоретически — он слишком слаб. На практике и десятикратной разности диаметров (соотношение сечений 100:1) очень часто вполне хватает для того, чтобы считать утечку достаточно малой.
Поскольку жидкость разгоняется перед входом в трубу, то, когда в результате гидроудара жидкость в трубе остановилась, вынуждена остановиться и уже набравшая некоторую скорость жидкость возле входа в трубу. Эта остановка вызывает повышение давления вокруг входа, что часто интерпретируется как «выход ударной волны из трубы». Однако повышение давления прямо пропорционально скорости останавливаемой жидкости, а вне трубы эта скорость падает обратно пропорционально квадрату расстояния до входа. Поэтому уже в 10 радиусах трубы от её входа скачок давления при гидроударе составит лишь 1% от его силы в самой трубе — это выглядит как «затухание» ударной волны при выходе её из трубы.
Жидкость в трубе начинает двигаться наружу сразу, как только ударная волна вышла из трубы, поскольку давление сразу становится меньше давления в трубе, хотя и превышает давление невозмущённой внешней жидкости. Однако перепад давлений пока не так велик, и поэтому жидкость движется ещё не так быстро. Затем давление вне трубы быстро падает, и скорость движения жидкости наружу также быстро нарастает. Тем не менее, этот процесс обуславливает принципиальную неидеальность фронта падения давления, начинающего движение от входа к заглушке — он не может быть идеально скачкообразным даже теоретически!
Наконец, следует напомнить, что все описанные здесь процессы присходят очень быстро. Если гидроудар был достаточно слабый и отрыва жидкости от заглушки не произошло, то для трубы диаметром в несколько сантиметров время гашения ударной волны и формирование обратного фронта измеряется не милли-, а микросекундами!
Кстати, при обратном движении на стадии отбоя торможение выбрасываемой из трубы жидкости также происходит вне её пределов — в объёме резервуара возле входа. В случае сильного обратного движения со значительным отрывом жидкости от заглушки несферичность зоны торможения более выражена за счёт изначального присутствия направленного скоростного напора, и вблизи от входа трубы она, скорее, напоминает «факел», чем сферу. При этом непосредственно у стенок трубы возле входа возможна эжекция (подсос) жидкости в направлении выброса, то есть к срезу трубы, а не от него. Однако по мере торможения и удаления от входа форма эквискоростной поверхности при торможении выброса во внешней среде опять-таки приближается к сферической.
НАЗАД К БИБЛИОТЕКЕ