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Efficient Algorithms for Data Distribution
on Distributed Memory Parallel Computers
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Abstract —Data distribution has been one of the most important research topics in parallelizing compilers for distributed memory
parallel computers. Good data distribution schema should consider both the computation load balance and the communication
overhead. In this paper, we show that data redistribution is necessary for executing a sequence of Do-loops if the communication
cost due to performing this sequence of Do-loops is larger than a threshold value. Based on this observation, we can prune the
searching space and derive efficient dynamic programming algorithms for determining effective data distribution schema to execute
a sequence of Do-loops with a general structure. Experimental studies on a 32-node nCUBE-2 computer are also presented.

Index Terms —Component alignment, data distribution, distributed memory computer, Do-loops, dynamic programming algorithm

for data distribution, parallelizing compiler.

1 INTRODUCTION

T HIS paper is concerned with designing efficient algo-
rithms for data distribution on distributed memory par-
allel computers. The abstract target machine we adopt is a ¢-D
grid of N; x N, x --- x N, processors, where D stands for di-
mensional. A processor on the g-D grid is represented by the
tuple (py, P2 ..., Pg); Where 0 <p; <N;—1for 1 <i<g. Such a
topology can be easily embedded into almost all distributed
memory machines; for example, the g-D grid can be embed-
ded into a hypercube computer using binary reflected Gray
code encoding. The parallel program generated from a se-
quential program for a grid corresponds to the SPMD (Single
Program Multiple Data) model, in which large data arrays
are partitioned and distributed among processors, and in
which each processor executes the same program but oper-
ates on distinct data items [11], [13], [30], [31], [38].

Given a sequence of s Do-loops with a general structure,
we want to determine an effective data distribution schema
for executing this sequence of Do-loops. This problem can
be classified into three cases as shown in Fig. 1:

1) a sequence of s Do-loops;

2) a sequence of s Do-loops which are enclosed by an it-
erative loop; and

3) a sequence of s Do-loops with a general structure;
among them, some consecutive Do-loops may be en-
closed by iterative loops, which, again, with adjacent
Do-loops, may be enclosed by other iterative loops,
and so on.

This problem is quite important because many scientific
programs are comprised of a sequence of Do-loops or itera-
tive loops, which may contain other sequences of Do-loops
with a general structure. Thus, a naive data distribution
scheme may result in excessive communication overhead
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on distributed memory parallel computers. For instance,
when computing a 2D fast Fourier transform (FFT) for a data
matrix, we calculate a 1D FFT for each row first, and then we
evaluate a 1D FFT for each column. If we adopt a fixed data
distribution throughout the computation on a linear proces-
sor array, it will incur a certain communication overhead due
to the requirement of several “bit-reverse shuffle-exchange”
and “butterfly-pattern” data communications. However, if a
compiler can perform a transpose operation for the matrix
between calculating 1D FFTs for all the rows and 1D FFTs for
all the columns, then no communication operations are re-
quired while each 1D FFT is evaluated. A similar situation
happens while partial differential equations are computed
based on the 3D FFT as included in the NASA/Ames nu-
merical aerodynamics simulation benchmarks.

Data distribution has been one of the most important re-
search topics in parallelizing compilers for distributed mem-
ory parallel computers. Mace first showed theoretically that a
class of dynamic data layout problems for interleaved memory
machines are NP-complete [33]. Anderson and Lam then pre-
sented another formulation of the dynamic data layout prob-
lem which was NP-hard [1]. Kremer also identified that the
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Fig. 1. (a) A sequence of s Do-loops; (b) a sequence of s Do-loops
which are enclosed by an iterative loop; and (c) a sequence of s Do-
loops with a general structure.
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problem of dynamic data remapping (the inter-phase data layout
problem) is NP-complete [23]. Li and Chen, in addition, proved
that the problem of determining an optimal static alignment be-
tween the dimensions of distinct arrays is NP-complete [32].

Thus, in practice, previous parallelizing compiler research
has emphasized allowing programmers to specify the data
distribution using language extensions, such that compilers
can then generate all the communication instructions accord-
ing to these language extensions [3], [34], [42]. For instance, in
High Performance Fortran (HPF), programmers have the obli-
gation to provide TEMPLATE, ALIGN, and DISTRIBUTE di-
rectives to specify data distribution [22]. It is also possible to
use compiler techniques to automatically determine data dis-
tribution of sequential programs on distributed memory sys-
tems. Li and Chen [32] and Gupta and Banerjee [11] formu-
lated the component alignment problem from the whole
source program and used it to determine data distribution.
However, the fixed data distribution schema they derived may
result in a larger communication overhead.

In addition, there have been other research works related
to the compilation of programs on distributed-memory
computers. Knobe et al. [20] and Knobe and Natarajan [21]
provided algorithms for automatic alignment of arrays on
SIMD machines. Chapman et al. [4] adopted Li and Chen’s
component alignment algorithm [32] for handling distrib-
uted data in Vienna Fortran; in addition, Chapman et al. [5]
used a language extension to handle dynamic data distri-
bution. Kremer et al. [25] proposed an automatic data lay-
out strategy which was implemented in their D program-
ming tools. Kremer also developed techniques for using 0-1
integer programming for automatic data layout in the inter-
phase data layout problem [24]. Other papers, which ad-
dressed the problem of determining initial data distribu-
tions or distributions for temporaries, include [6], [7], [39]-

Furthermore, Hovland and Ni determined data distri-
bution using augmented data access descriptors [14]. Kalns
et al. suggested a cost model for determining a small set of
appropriate data distribution patterns among many possi-
ble choices [18]. Kalns and Ni proposed techniques for logi-
cal processor mapping that minimizes the total amount of
data that must be communicated among processors [17].
Chen and Sheu [8], Huang and Sadayappan [15], Ramanu-
jam and Sadayappan [35], [36], and Wolf and Lam [40], [41]
determined the data distribution and/or degree of paral-
lelism of a single nested loop based on the hyperplane
method. In addition, Gong et al. [10] and Hudak and Abra-
ham [16] developed compile-time techniques for optimiz-
ing communication overhead.

Like previous works in [11], [32], we will deal with the
whole source program altogether; however, unlike them,
we will deal with each Do-loop independently. Data distri-
bution schema between two Do-loops may be different and
may require some data communication between them. We
found that if compilers adopt the owner computes rule: The
owner of the left-hand side element executes the assignment for
that element, to generate codes running on distributed
memory machines, then data distribution schema deter-
mine both the computation load and the communication
overhead among the processing elements (PEs). Because
data redistribution is expensive, it is a compromise to let

several consecutive Do-loops share a common data distri-
bution scheme. We will show that data redistribution is
necessary for executing a sequence of Do-loops if the com-
munication cost due to performing this sequence of Do-
loops is larger than a threshold value. Based on this obser-
vation, we can prune the searching space and derive dy-
namic programming algorithms which can determine ef-
fective data distribution schema for executing a sequence of
Do-loops having a general structure.

The rest of this paper is organized as follows. In Section 2,
we illustrate techniques for determining data distribution at
compiling time and introduce a primitive dynamic pro-
gramming algorithm for data distribution. In Section 3, we
analyze two tables used and generated by the proposed
dynamic programming algorithm. We prove that data re-
distribution is necessary for executing a sequence of Do-
loops if the communication cost due to performing this se-
quence of Do-loops is larger than a threshold value. In Sec-
tion 4, we propose efficient algorithms for determining data
distribution schema for executing a sequence of Do-loops
having a general structure. In Section 5, we present experi-
mental studies on a 32-node nCUBE-2 computer. Finally,
some concluding remarks are given in Section 6.

2 DETERMINING DATA DISTRIBUTION AT COMPILING
TIME

In this section, we will show how a component alignment
algorithm can be used to determine data distribution. This
method has also been adopted by other researchers [4], [11],
[25], [32]. Because we will generalize previous methods to
deal with a wider class of problems, in the following, we
will describe this method in great detail.

We will first analyze the relationship between left-hand-
side and right-hand-side array subscript reference patterns in
the original sequential program. Based on pattern matching
techniques, in Table 1, we specify communication primitives
used in the SPMD program when right-hand-side objects are
sent to the owner of the left-hand-side objects. These com-
munication primitives were also adopted by [11], [31].

In Table 1, the communication primitive Transfer specifies
that a message be sent from one processor to the other proces-
sor. Shift means a circular shift of data among neighboring proc-
essors along the specified grid dimension. AffineTransform indi-
cates sending data from each processor on the specified grid
dimension(s) to a distinct processor according to an affine trans-
form. OneToManyMulticast represents sending a message to all
processors on the specified dimension(s) of the processor grid.
Reduction stands for reducing data using a simple associative
and commutative operator over all the processors lying on the
specified grid dimension(s). Gather means to receive a message
from each processor lying on the specified grid dimension(s).
Scatter means sending a different message to each processor
lying on the specified grid dimension(s). Finally, ManyToMany-
Multicast represents replication of data from all processors on
the specified grid dimension(s) to themselves.

Readers can find that Case 2 is a special case of Case 3.
There exist algorithms for generating communication sets for
Case 3 [12], [19], [28]. Therefore, in the following, we will say
that two array subscripts have an affinity relation if these
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TABLE 1
COMMUNICATION PRIMITIVES USED IN THE SPMD PROGRAM
WHEN LEFT-HAND-SIDE AND RIGHT-HAND-SIDE ARRAY SUBSCRIPTS HAVE CERTAIN SPECIFIC PATTERNS

| case ‘ LHS RHS ‘ communication primitive ‘ cost on hypercube |
1 ¢ e Transfer(m) O(m)
2 i ite Shift(m) O(m)
3 f(d) fa(d) AffineTransform(m, seq) tneed additional analysis
4 i c OneToManyMulticast(m, seq) O(m « log num(seq))
5 c [ Reduction(m, seq) O(m « log num(seq))
6 i unknown | Gather(m, seq) O(m * num(seq))
7 | unknown p Scatter(m, seq) O(m * num(seq))
8 |idor f35(i) jor fa(j) | ManyToManyMulticast(m, seq) | O(m * num(seq))

7 Only when data arrays in both sides have the same data distribution.
1 [12, 19, 28] have presented algorithms for generating communication sets.

i and j are loop indexing variables; c, ¢{, and ¢, are constants at compiling time; “‘unknown” means that the value is unknown at compiling time; f,(i) and f,(i)
are two affine functions of the form s, * i + ¢, and s, * i + ¢, respectively; f3(i) amd f,(j) are two functions of i and j, respectively. The parameter m denotes the
message Size in words; seq is a sequence of identifiers representing the processors in various dimensions over which the collective communication primitive is
carried out. The function num applied to such a sequence simply returns the total number of processors involved.

two subscripts are affine functions of the same (single) in-
dex variable of a Do-loop. As to the costs of Case 6 through
Case 8, they are considerably higher than those of Case 1
through Case 5.

2.1 Determining Alignments of Arrays’ Dimensions

Given a program, we first construct a component affinity
graph from the source program. It is a directed and
weighted graph, whose nodes represent dimensions
(components) of arrays, and whose edges specify affinity
relations between nodes. Two dimensions of arrays are said
to have an affinity relation if two subscripts of these two
dimensions are affine functions of the same (single) index
variable of a Do-loop as shown in Case 3 of Table 1. Edges
are defined in two ways. First, if the subscripts of the di-
mensions of the array (or matrix) on the left-hand-side of
“=" have affinity relations with the subscripts of the dimen-
sions of the array(s) on the right-hand-side of “=", then
there are edges between corresponding pairs of dimen-
sions. Second, if two right-hand-side arrays (or matrices)
are the corresponding two operands of a binary operator,
and, if some pairs of subscripts of dimensions of these two
arrays have affinity relations, and, if, in addition, none of
the subscripts in these two arrays have affinity relations
with those of the left-hand-side array (or matrix), then there
are edges between corresponding pairs of dimensions of
these two arrays.

The weight with an edge is equal to the communication
cost and is necessary if two dimensions of arrays are distrib-
uted along different dimensions of the processor grid. The
direction of an edge specifies the direction of the data com-
munication according to the “owner computes” rule. The
component alignment problem is defined as partitioning the
node set of the component affinity graph into g disjointed
subsets (q is the dimension of the abstract target grid and
may be larger than the dimension of the physical target grid),
so that the total weight of the edges across nodes in different
subsets is minimized, with the restriction that no two nodes
corresponding to the same array are in the same subset.

Although the component alignment problem is NP-
complete, Li and Chen have proposed an efficient heuristic
algorithm [32]. In this paper, when dealing with component
alignment problems, we adopt Li and Chen’s heuristic al-
gorithm by regarding our directed component affinity
graphs as being undirected. The directions of edges, which
indicate parent-child relations, can be used to determine
block sizes of data distribution so that communication sets
can be represented by closed forms [29]. The directions of
edges also are used in a code-generation phase and will be
used to determine the direction of the data communication
according to the owner computes rule. For completeness, in
Fig. 2, we present a very brief version of the component
alignment algorithm; however, interested readers can refer
to the original paper for details about this method [32].

A heuristic component alignment algorithm:

Step 1: Construct a component affinity graph from the source program;

Step 2: choose a (high-dimensional) array with a highest dimensionality; thus, this array has the
maximum number of nodes in the graph, and let its corresponding nodes in the graph become

the initial basic set;

Step 3: while the remaining graph is not empty, do

Step 3.1 choose an array with highest dimensionality from the remaining graph;

Step 3.2 apply the optimal matching procedure to a bipartite graph constructed from the
basic set and the nodes corresponding to components (dimensions) of the newly selected

array;

/* All disjointed subsets of matched nodes represent a partition. */

Step 3.3 combine the matched nodes with the basic set as a new basic set.

Fig. 2. Heuristic component alignment algorithm.
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The above-mentioned q disjointed subsets is used to de-
termine data distributions for all data arrays. For each sub-
set, all matched nodes (dimensions of arrays) are assigned
the same data distribution, such as block, cyclic, block-cyclic
(cyclic(b)), replicated (the data array is replicated across
processors), or not distributed (the data array is stored in a
specific processor) [11], [27].

There are two oracles to help decide the block size b. The
load balance oracle suggests using cyclic (cyclic(1)) distribu-
tion if the iteration space is a pyramid (such as the iteration
space of an LU decomposition), a triangle (such as the itera-
tion space of a triangular linear system), or any other non-
rectangular space. The communication oracle emphasizes not
making the block size too small; otherwise, it will incur a
high communication overhead and a high indexing over-
head. These two oracles, unfortunately, are inconsistent.

Based on cyclic(b) distribution, we can, however, formu-
late the total execution time from the SPMD program which
includes both the computation time and the communication
time [28]. The total execution time T is a function of the
problem size m, the number of PEs N, and the block size b.
When the problem size m and the number of PEs N are
fixed, the optimal execution time can be obtained by re-
quiring that % = 0 or by substituting all possible b into the

formula. Alternatively, compilers may include a knowledge
base, which contains an analytical model and certain expe-
rienced data distributions, which can help determine the
grain and granularity of execution space [2].

2.2 Determining Whether Data Redistribution is
Necessary

Like the case of computing a 2D FFT as mentioned in Sec-
tion 1, it is reasonable to assume that the optimal data dis-
tributions for single Do-loops may be different from one
another in a sequence of Do-loops which perform compu-
tation-intensive scientific applications. In the following, we
will introduce a dynamic programming algorithm to de-
termine whether data redistribution is necessary.

Suppose that a program contains s Do-loops, Ly, Ly, ...,
L,, in sequence as shown in Fig. la. Let M;; be the cost of
computing the sequence of Do-loops L;, L, ..., Lisj_; using
the component-alignment algorithm, and let P;; be the dis-
tribution scheme, for L <i<sand 1<j<s-i+ 1. Define T;;
as the cost of computing the sequence of Do-loops Ly, Ly, ...,
Li+j-1 With the restriction that it uses the distribution scheme
Pi; to compute Do-loops L;, Li,y, ..., Lisjy. Thus, the final
data distribution scheme after computing T;; is P;;. Initially,
Ty is equal to My;. cost(Pi , P;;) returns the communica-
tion cost of changing data layouts from P;_  to P;;.

Algorithm 1: A dynamic programming algorithm for com-
puting the cost of the data distribution schema for execut-
ing a sequence of s Do-loops on distributed memory com-
puters is presented.
Input: M;;, Pi;, and Ty (= My), where 1<i<sand 1<j<s-
i+1.
Output; The cost of executing s Do-loops on distributed
memory computers.

1) fori:=2tosdo
2) forj:=1tos—i+1do

3) Tij = MIN g {Tii + M + cost(Pi_yy, Pip}h
4) end_for end_for
5) Minimum_Cost := MIN q{Ts 14}

If a sequence of s Do-loops is enclosed by an iterative
loop as shown in Fig. 1b, then line 5 in Algorithm 1 can be
modified in the following as Algorithm 1”:

5% Minimum_Cost’ := MINq<{ Ts s1x +
loop_carried_dependence(Tg .14}

where loop_carried_dependence(T, y.;4) returns the communica-
tion cost incurred by the loop-carried dependence. For exam-
ple, in an iterative loop, if a sequence of distribution schema

Pty Pyt o and Pg .y are used in computing Tg .y,

then loop_carried_dependence(T, y.,,) returns the communica-
tion cost of changing the data layouts from P ., to Pal, e

Algorithm 1 (and Algorithm 1’) can be regarded as
finding a single-source shortest path in a weighted graph.

In this weighted graph, there are two virtual nodes and

1) physical nodes. Two virtual nodes include one source

and one sink. 3%11 physical nodes n;; are numbered as i

and j,wherel<i<sand1l<j<s-i+ 1 The node weight,
edges, and edge weight of this graph are defined as follows.

1) The weight of each of two virtual nodes is zero.

2) The weight of node n;; is M;;.

3) The source has s edges connected to nodes n,;, and
the weight of each of these edges is zero, for 1 <j <s,
respectively.

4) The sink, which also has s edges, is connected by
nodes n; _i.1y, and the weight of each of these edges is
also zero, for 1 <i <'s, respectively. Also,

5) node n;;has s — (i + j) + 1 edges connected to nodes N
and the weight of each of these edges is cost(P;j, P
for(i+j)<sand 1<k<s—(i+]j)+1, respectively.

Then, Algorithm 1 is equivalent to finding the shortest path
from source to sink such that the sum of the node weight
and edge weight in each of these paths is a minimum. Fig. 3
shows the corresponding single-source shortest path prob-
lem for s =5.

source

nll nl2 nl3 nl4 nl5

Fig. 3. The corresponding single-source shortest path problem for s =5.
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DO 42n =1, OUT_ITERATION 22
DO6i=1,m 23
X(i)=0.0 L 24
DO6j=1,m 25
X(i) = X(@) + A(ij) 26
CONTINUE 27
DO 19k = 1, MAX_ITERATION 28
DO12i=1,m 29
C(i)=0.0 30
DO12j=1,m 31

C(@i) =C@H) + Aj) * B@) 32
CONTINUE 33
DO16i=1,m 34
DO16j=1,m 35
A(1,]) (AGi) + C@) - X(i)) / (m * m) 36
CONTINUE L 37
DO19i=1,m 38
X(@i) = X(1) +(B@) - C(1)/ AG.D) 39
CONTINUE 40
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CONTINUE
DO34i=1,m
DO34j=1,m
AG,D) = (AG.D) + V() - YD)/ (m * m)
ONTINUE

DO37i=1,m
Y(@{)= Y(l) + (U(@) - V(1)) / A(i,i)
CONTINUE
DO4li=1,m
XD(n,i) = X(@i) + A(1L,1) * Y(i)
YD(n,i) = Y(i) + A(1,1) * X(1)
CONTINUE
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Fig. 5. The component affinity graphs and the corresponding component alignment for various consecutive loops.

The sequence of data distribution schema obtained from
Algorithm 1 is at least as good as any static data distribu-
tion scheme because the cost of any static data distribution

scheme is equal to T, . We now briefly analyze Algorithm 1.
The time complexity of this dynamic programming algo-
rithm is O(s3). However, before applying this dynamic pro-
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COMPUTATION TIME AND COMMUNICATION TIME FOR VARIOUS CONSECUTIVE LOOPS

matrix A is distributed matrix A is distributed
row by row column by column
computation communication computation communication
loops time time time time
Iy C, 0 Cy Cly
Lo C. Cy Cy Cr
Lg Cyq Cs C. 0
Ly Cy C Cl. Cs
L Cyq 0 Ch Cs
L1 — Ly C.+C. Cy Ca+Cy Cs+Cy
Ly— Ls Ce+Cq Co+Cs Cr+C. Cr
Ls— Ly Ca+Cy Cs+ Cy C.+C. Cy
La—Ls Cr+C, Cr+Cy C.+Cy Cy+Cs
Ly —Ls Co+Ce+Cy Cy+Cjs Ca+Cy+C. C3+Cr
Ly — Ly Ce+Cq+Cy Cy+ Cs+ C7 Cir+C.+Ce Cr 4 Cy
Ls—Ls Cq+Cr+C, O3+ C7 4 C CetCo+Cy Cy+Cs
Ly — Ly Co+C.+Ca+Cy Co+C3+ Cr Cag+Cp+C.+Ce C3+C7+ Co
Ly—1Ls Cet+Ca+Cs+Co Cy+Cs+Cr+Ch Cr+Ce+Cet+ Gy Cr+Ca+ Cs
I1—Ls | C.+Co+Cq+Cr+C, | Co+C34+Cr+C | Ca+C;+C.+C+Cy | C5+C7r+C3+Cs
TABLE 3
DATA DISTRIBUTIONS FOR VARIOUS CONSECUTIVE LOOPS
‘ loops | FP; | data distribution functions
Ly P1,1 fa(é,j) = fx (i) = LWD
Ly Pay | fa(i,§) = fx (i) = fu(i) = fc(l)—(L,,,/NJ)
Ly | Psa | falid) = fr() = (LA D) v
Ly Pia | fali ) = fr(G) = o) = fv (i (HJ_’LJ) .
Ls P51 | fa(i,5) = fxp(k, i) = fyp(k,i) fx(i):fY(I)*(L,fﬁi—vJ)
Li— Lo | Pra | fa(i,j) = fx (i) = fe(i) = fe(i) = (L 711\/'“
Ly— Ly | Poy | fali,g) = fx (i) = (i) = fe () = (I5%]); fr() =1
Ls—La | Pso | fa(i,d) = (i) = fuld) = i (G) = (&)
La=1Ls | Pagz | fa(i) = [xp(ik) = fyp (k) = fy(5) = fu(D) = Fv (D) = (Law D) Sx()
Ly —Ls | Pus | fa(i,5) = fx (i) = f8(i) = fe (i) = (|1&4%]); Ar(G)=1
Ly—La | Poy | fali,d) = fy(j) = f1 G) =) = UEn s fx () = f(d) = fe(i) = 1
Ls—Ls | Paa | fa(i,d) = fxo(i k) = fyo (k) = fr () = fo(i) = v () = (LE7%])s fx ()
Li— Ly | Pra | fai)) = fx():f (i) =fe@® = (&%) ) =lfol)=m3G =1
Ly—Ls | Poa f4(7 J) = Ixp(j, k) fYD(; k)= fy (i) = Jo() = fv (i) = (L&)
Ix (i) = f8(i) = fe (i) .
Li—Ls | Pus | fali)) = fm(k 7)7fm(k i) = fx(@) = Jo(i) = Je (i) = (L))
Iy G) =) = Fv()

gramming algorithm, we need to compute s(s + 1)/2 com-
ponent alignment problems for the consecutive Do-loops L;,
Lists s Lisjoy, Where 1<, j<i+j-1<s.

It is instructive to compare our method with the one in
[25]. In [25], the authors first explored several possible data
layouts for each program phase, and they then defined the
communication cost between candidate data layouts of ad-
jacent phases. The problem of finding dynamic data layouts
for the entire program is, thus, also reduced to a single-
source shortest path problem. However, they did not show
how to decide the length of each program phase. In our
experience, the communication overhead due to component
alignments of mismatched arrays is much higher than the
communication overhead due to selecting a different block
size from cyclic(b). The way to choose a block size b can be
determined by an analytical model or by certain experi-
enced data distributions. If b, is close to b,, the difference
between cyclic(b;) and cyclic(b,) is not significant. Thus, if
each program phase has only one data layout, then their
method corresponds to the leftmost path in our solution
space (as shown in Fig. 3).

2.3 An Example

In the following, we will use a complete example to illustrate
how the above dynamic programming algorithm can be ap-
plied to determine data distribution. Suppose that the prob-
lem size is m, and that the number of PEs used is N. Consider
the program in Fig. 4, which will be executed on a linear
processor array. Let line 2 to line 6 be loop L, line 7 to line 19
be loop L,, line 20 to line 24 be loop L;, line 25 to line 37 be
loop L,, and line 38 to line 41 be loop Ls. The component af-
finity graphs and the corresponding component alignment of
the loops from L; to L;, where 1 <i <] <5, are shown in Fig. 5.
The weight of an edge is defined as follows. Because the to-
pology of our target machine is a linear array, if the corre-
sponding array’s dimensionality on the tail of an edge is 1,
then the weight of that edge is defined as ManyToManyMul-
ticast(m/N, {N PEs}). If the corresponding array’s dimension-
ality on the tail of an edge is two, then the weight of that edge
is defined as ManyToManyMulticast(m?/N, {N PEs}).
Suppose that the average time of computing a floating
point operation is t;, and that the average time of transfer-
ring a word is t.. Then, depending on whether matrix A is
distributed row by row or distributed column by column,
Table 2 shows the approximate computation time and the
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TABLE 4
APPLY ALGORITHM 1 AND ALGORITHM 1’ TO THE SAMPLE PROGRAM

Mi=C.=83 My =Ce4+Co+Cy=¢

Moy =Ce+Co=7 Myp=Cqg+Ce+Co+Cs=10

My =C.=0 M3y =Co+Co+Cr=c¢
Mpy=Ce+Co=7 Mp=C+Co+Co+Cs=0¢

Ms1 =Cy =« Miz=C,+Cqg+Ce+Cy+Cs5=1
T = My =3

Tip = Mys = c

Tig = My =1

Tia=My=p

Tis = Mys = &

L‘123:C¢»+C6+C/+CQ+C7:I/
Ms3=Cy4+Ce+Ce+Ca+Cs =¢
Myy=C.+Ci+CHC; +Co+C3+Cr=p
Moy =Cp+Ce+Ce+Cy+Co+Cs+Cr=¢
Mis =Coa+Ce+Ca+Ce+Cp +C1

+ Co+Cs+Cr=0

Tyy = Ty + Moy + (cost(Pry, Par) = 0) = Co+ Co+ Cy = ¢
Toy = Ti1 + Moo + (cost(Pr1, Paz) =0) = Ce+ Cqg+ Co + Co+ C5 =1
by = 111 + Mag + (cost(Pr1, Pa3) = Cp +C1) =2C.+Coe +C; + Co+Cr+ Cp +Cr =0
Toq = Th1 4+ Moy + (cost(Pr1, Poa) =Cp +C1) = Cp +2C, +Co +Cp + Co+ C6+ Cr+ Cr+ Cr =7

Ty = MIN{To1 + Mz; + (cost(Pay, Ps1) = Cr

),
T3y = MIN{T5; + M35 + (cost(Pay, P3s) = Cr),

Tio + Msy + (cost(Pia, Pat) = Op)} = 20, + Co + Co+ O = 1
Tha + Mz + (cost(Pr2, P3s) = C7)} = 2C, +2C. +2C: + Cr =k

Ts3 = MIN{Tb1 + M3s + (cost(Pa1, Ps3) = Cr + C1), Ti2 + Maz + (cost(Pya, Ps3) = Cr + C1)}

=Cy+2C.+2C, 420, +Cs+Cr+Cyp = A

Tir = MIN{T31 + May + (cost(Pay, Par) = 0), To + May + (cost(Pag, Par) = Cr + C1),

Tis + May + (cost(Prs, Pyy) = Cr + C1)} = 2C, + 20, + 205 + Cr = &
Tyz = MIN{T31 + Mas + (cost(Pa1, Pas) = C1), Taa + Maz + (cost(Paz, Paz) = Cp + 2C1),

s+ Mas + (cost(Prs, Pas) = Cr + 201)} = Cy + 20, +2C +2Cs + Cs + Cp + Cr = A
Ts1 = MIN{Ty1 + Ms1 + (cost(Pa1, Ps1) = Cr), Ts2 + M5y + (cost(Ps2, Ps1) = Cr),

T 4+ Msy + (cost(Pas, Psy) = Cr + C1), Ti4 + Msy + (cost(Pra, Ps1) = C1)}

= Oy +2C. +2C, +2C, + 207 = p.

Minimum_Cost = MIN <p<s{Ts_r41,1}
= MIN{T51, Ty, T3, Toa, T15}

=T33 =Cyp+2C, +2C. +C1 +2C2 +Cs +Cp = .

Minimum_Cost’ = MIN1<p<5{T5_g41,& + loop_carried_dependence(Ts_j41 1)}
= MIN{T5, 4+ 0,742+ Cr + C1, Tz + Cp + C1, Tog + Cp + C1, T15 + 0}
=151 =Co+2C. + 20+ 205+ 2Cr = pu.

The values of M;; and Tj; are represented by Greek letters and will be used again in Table 5.

communication time of executing various consecutive
loops, where certain cost coefficients are defined below:

K = MAX_ITERATION C,=m*t,
C,=(4m / N) * ¢, C,=K*C,
Cy=4m*t Co=m’*t,
C.=(m*/ N)*t C,=C,+C,
Cy=m’*t Co=K*C
C,=K*((5m*+3m) / N) * t; Ce=3m*t,

Ci=K*(@2m” + (3m°/N) +3m) *t, C,=K*(m’+2m* (log
N) +m) *t}.

Data distributions are determined based on choosing a
smaller total execution time. Table 3 lists the data distribu-
tion functions of each data array for various consecutive
loops. As the iteration space is rectangular, to keep load
balance and avoid calculating the index overhead, “block”
distributions are chosen for all array dimensions. The data
distribution function fy(i) = p means that the entry i of the
one-dimensional data array X, X(i), is stored in PE p. The
data distribution function fA(i, j) = p means that the entry (i, j)
of the two-dimensional data matrix A, A(i, j), is stored in PE p.

Suppose that the cost of performing a matrix transpose
operation based on the cascade sum algorithm [9], Cy, is
(mZ/N) * (log N) * t; in addition, C is very small in compari-
son to C; and Cg < Cy < C;. Then, M;;, T;j, and the expected
execution time required to compute the sequence of s (= 5)

Do-loops can be solved by Algorithm 1 as shown in Table 4.
From Table 4, based on Algorithm 1, in total, C, + 2C_ +
2C, + C, + 2C, + C4 + Cy time is required to execute an it-

eration of the outermost loop. In addition, (Py,, Ps3) is a
candidate sequence of the data distribution schema for an

outermost iteration. That is, first, data layouts between L,
and L, are not changed; next, a matrix transpose operation
for matrix A is necessary before executing Ls; then data lay-

outs between Lj, Ly, and Ls are not changed. However, un-
der this sequence of data layouts, another matrix transpose

operation for matrix AT, which requires C; communication
time, is necessary before the next iteration.

Alternatively, based on Algorithm 1’, in total, C, + 2C, +
2C, + 2C, + 2C; time is required to execute an iteration of

the outermost loop. In addition, (Py,, Ps,, Ps,) is a candi-
date sequence of the data distribution schema for an out-

ermost iteration. That is, first, data layouts between L, and

L, are not changed; next, a matrix transpose operation for

matrix A is necessary before executing Lj; then, data layouts

between L; and L, are not changed; after that, another ma-
. . R T .

trix transpose operation for matrix A" is necessary before

executing Ls. This result is better than that of Algorithm 1
because no data communication is necessary for transfer-

ring data layouts from P5 ; to Py ,.
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2.4 More Details about Data Distribution

This subsection could appear immediately after introducing
Algorithm 1; however, we think that it is more appropriate to
present an example first. In this subsection, we will describe
the data distribution for each data array in P;; in detail.

As readers can see from Fig. 5, the component affinity
graph and the corresponding component alignment for
each Do-loop only deal with data arrays which are used in
that Do-loop. Therefore, if a data array is used in L;, Li,q, ...,
Lisj_1, then its data distribution can be determined based on
the results derived by the component alignment algorithm
and is defined in P;;. However, if a data array is not used in
Li» Li+1, .., Lisj-1, then, after applying the component align-
ment algorithm, its data distribution in P;; is not defined. In
the following, we use a heuristic method to assign a data
distribution in P;; for each data array if this data array is
not used in L, Liyy, ..., Lisj_g-

This heuristic method includes two phases. The first
phase is applied during constructing of the (P;;)-table. Sup-
pose that a data array is not used in the first e — 1 Do-loops,
and that it is used in the eth Do-loop, for e > 1. First, we
implicitly assume that its data distribution while comput-
ing the first e — 1 Do-loops is the same as that defined in the
eth Do-loop. Therefore, if i + j — 1 < ¢, then the data distri-
bution in P;; for this data array is defined as being the same
as the one defined in P, ;. Second, if this data array is not
used in a Do-loop, we also implicitly assume that its data
distribution is not changed during the computation. There-
fore, if i > e and this data array is not used in L, Lisq, ..., Lixj1,
then the data distribution in P;; for this data array is defined
as being the same as the one defined in P;_;,. For instance,
suppose that in the first three Do-loops, a data array is only
used in the second Do-loop. Then, its data distribution while
computing the first Do-loop and the third Do-loop is the
same as that defined in the second Do-loop.

The second phase is applied after performing Algorithm 1.
After performing Algorithm 1, we have found a sequence

of distribution schema P,  .P, . ...,P/wé, for comput-

ing a sequence of s Do-loops. Suppose that a data array is
first used in Laf L L then, its data distribu-

is determined based on the results derived by

A+l oo l,+,uf—1;

tion in Paf,#f

the component alignment algorithm. First, for i < f, this data
array isnotused in L, ,L; .,,...,L thus, we can let

its data distribution in P

Pll’#f. Second, for i > f, if this data array is not used in
Lli,LAi“, ...,L,liﬂli,l,
defined as being the same as that defined in P,

Ai+,ui—1;
be the same as that defined in

then its data distribution in P, s

oM

For instance, if we adopt (P, ,, P33) as the sequence of data
distribution schema for computing the sample program, al-
though data arrays B and C are not used in Lj, L4, and L,
their data distributions while computing L, L,, and L; are the
same as those defined in the first two Do-loops. Similarly,
although data arrays XD, YD, Y, U, and V are not used in L,
and L,, their data distributions while computing L, and L, are
the same as those defined in the last three Do-loops.

3 BEHAVIOR OF THE (M,))-TABLE AND (T;)-TABLE

We will now analyze the behavior of the (M;))-table and
(Tij)-table. We have found that M; 41y =2 M;, and T; (43 2 T,
for 1< y<s—i+ 1. We define THRESHOLD as a value that
is equal to four times the maximal communication cost
between any two distribution schema. The reason why we
define THRESHOLD as this value will be made clear in
Theorem 2 and will be discussed again in Section 3.2.

3.1 Main Theorems

We want to show that if Mg > (Mig + Mg pen) +
THRESHOLD), for some fwhere 1 < < vy + 1, then it is
better to use three distribution schema Pig Pi+p).o-pri): and
Pli+yr1),-y-1) to compute the sequence of Do-loops L;, Ly, ...,
Li+j-1, than to use only one distribution scheme P;; for y + 1
<j<s—i+1 Therefore, we need not compute M;;. Based
on this observation, we can show that T; .1y > Tisp) -ps1)
and Tij > Tsp) -1 Therefore, we need not compute T;
fory+1<j<s-i+1

THEOREM L. If M 41y > M g + M) g1y + THRESHOLD, for
some S where 1 < B < y + 1, then the following three cases
aretruefory +1<j<s—i+1.

i

1) Mij > Mig + Mg epray + Mispenygpgy + COSUPip,
Pi+p,-p+1) * COSUPG+p),(r-pr1)r Pl G-y-0)i
2) Tigrr) > Tiep,(r-pray
3) Tij > Tiiepn) -0
PROOF.

1) Consider the computation of Do-loops L;, L, ...,
Lisp-1) Liispyr -+ Liisgp Liieprry -+ Lisjor- LT COSE_0; be
the cost of computing the sequence of Do-loops L;,
Lists ... Lgsy using the distribution scheme P;;.
Then, cost_o, is at least as large as M; ). Thus,
cost_&;, > Mg + Mg pery + THRESHOLD. Let
cost_g, be the cost of computing the sequence of
Do-loops Ly ..., Lisjq using the distribution
scheme P;j;. Then, cost_&, is at least as large as
Mis 1), G-p-1)- Therefore,

M; ; = cost_d, + cost_d,

> M5+ M) gty * Misyan) oy + THRESHOLD
> Mivﬁ + M(i+ﬁ).(yfﬁ+1) + M(i+7+l),(j—y—1)
+e08t{Bp Pl o)+ COSt(P(Hﬁ)V(VfﬁH)’ Py ,-_y_l))-
2)

Ti,(y+l)
- MINKM{TFM M+ cost(P_ . Pi,(m))}
> Mlngkd{Ti_k,k + M5+ Mg -pa) +THRESHOLD}
2 MIN1§k<i{Ti—k,k +Mi s+ Mg -

+ cost(Pi,k'k, Pi,,;) + COSt(Pi,ﬂ‘ P(i+ﬁ),(y—ﬂ+1))}
>T

(i+B).(r-B+1)’

3) Let cost_o; and cost_d, be the same as those defined
in the first case. Then,
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T = MIN1£k<i{Ti—k,k + M+ COSt(Pi—k,k’ Pi,j)}
> MIlek<i{T'—k,k +cost_d, + cost_ 62}

> MIlek<i{Ti—k,k +M;;+M

() (r-B+1)
F My g+ THRESHOLD}
> MIN i { Tt My + Mgy + M o

+ cost(Pi_k'k, Pi’ﬁ) + cost(Piyﬁ, P(i+ﬁ),(y—[3+1))

+ COSt(P(Hﬁ)'(},,ﬁH)' P(i+y+l),(j—7—1))}
= T(i+y+1)~(j—7—1).
O

Under the condition in Theorem 1, we can further prove
that it is better to use several distribution schema to com-
pute the sequence of Do-loops, Li g Li_g+1, ---, Lisj1, than to
use only one distribution scheme P(i_, :+q) for 1 < ax<iand
y +1<j<s-—i+ 1 Therefore, we need not compute M i+q)-
Based on this observation, we can show that T;_y 140 >
Ti+p)=prry AN Ti_gy vy > Ty opay FOr L<a<iand 1<
B<y +1<j<s—i+1 Therefore, we need not compute
T(i—a),(jﬂz)l forl<oa<iand Y+ 1SJ <s—i+1.

THEOREM 2. If M (1) > M g + M) (5 g1y + THRESHOLD, for
some S where 1 < B <y + 1, then the following four cases
aretrueforl<o<iandy +1<j<s—i+1

1) Mi_oyipri+a) > M_aya + Mig + Miisg pe1) + COSE(P gy
Pig) + COSt(Pi g, Pisp),(y-pe1));
2) Mo g+a) > Mi-ao + Mig + Mg goprt) + M) G-p1)
+ COSt(Pi_gy.n Pig) + COSt(P; g, Pisngy (poprn) *+
COSUP v -1y Py -r-):
3) Ticap(miva) > Tiiep,oopray;
Ti-a)+a) > T, -r-1)

Proor. We will only prove the fourth case in this presenta-
tion; the other cases can be dealt with using a similar
technique. T;_ + IS the cost of computing the se-
qguence of Do-loops Ly, Ly, , Lise, Ly
Li+17 ceey L(i+ﬁ—l)! L(i+ﬁ)! ooy L(i+]/)! and L(i+}’+1)7 ceey Li+j—1
with the restriction that it uses the distribution
scheme P(i_g j+) 10 cOmpute Do-100ps Li_g, Li_giq, -0
Lisja. Let cost_&; be the cost of computing the se-
quence of Do-loops Li_, Li_g+1s --.» Li_g using the dis-
tribution scheme P;_y i+ Then, cost_d; is at least as
large as M_, . Let cost_g, be the cost of computing
the sequence of Do-loops L, Lisy, ..., Ly Using the
distribution scheme P(i_ j+)- Then, cost_g, is at least
as large as M yq). Thus, cost_§, > M 3+ Misp (pe1) +
THRESHOLD. Let cost_d5 be the cost of computing the
sequence of Do-100ps L), ..., Lisj_1 Using the distri-
bution scheme P_g g+ Then, cost_ds is at least as
large as Mjs 1) ). Therefore,

oo Ligas Ligs oot

T (400

= MIN T +M

l£k<(i—a){ (i-a)-k,k (i-a),(j+a)

+ COSt(P(i—a—k),k’ P(i—a),(jwc))}

1£k<(i7a){T(i7a)fkyk + cost_ &, + cost_ S, + cost_ 55}

1§k<(i—oc){T(i—oc)—k,k +M

= MIN

> MIN +M;+M

(i-o),00

(i+B).(v=p+1)

+ + THRESHOLD}

M+ (i-7-)

> MIN T+ M

1sk<(i—a){ (i—00)—k, + Mi,ﬁ +M

(i-o),00

(i+B).(v-p+1)

) + cost(P P )

+ M (i—a)e' 1B

(i+y+1),(j-7-1)

+ 00st(R 5. R (-pe) * COSt(P(iw»(y—ﬁu)' P(i+7+1)v(Hfl))}

2 T(i+y+l),(j—y—l)'

+ COSt(P(i—a—k),k’ Pica)a

O

From Theorem 2, condition 4, it is clear why THRESHOLD
is chosen to be equal to four times the maximal communi-
cation cost between any two distribution schema. Note that
Theorems 1, condition 1, 1, condition 2, and 2, condition 1
(and 1, condition 3, 2, condition 2, and 2, condition 3) will
be true when THRESHOLD is only equal to two times (and
three times, respectively) the maximal communication cost
between any two distribution schema. Theorem 1 and
Theorem 2 also suggest a sequence for computing (M;))-
table and (T;;)-table as shown in Fig. 6. For instance, if M3,
> (M3, + M,; + a threshold value), then from Theorem 1,
condition 1, we need not compute M, from Theorem 1,
condition 2, we need not compute T;,, from Theorem 1,
condition 3, we need not compute T;; from Theorem 2,
condition 1, we need not compute M,; and M,, from
Theorem 2, condition 2, we need not compute M,, and
M, s, from Theorem 2, condition 3, we need not compute
T,3 and Ty, and from Theorem 2, condition 4, we need not
compute T,, and Ty 5.

N1 (2 [3]4]5
1 1 3 10, |15
2 2 5 9/ |14,

3 4 8 13

4 7/ 112

5 11

Fig. 6. A sequence for computing (M,-J-)-table and (T,-J-)-table.

3.2 A Heuristic Method for Choosing a Threshold

Value
If a data matrix or a data array is generated and used
within more than one Do-loop, it may require a certain
communication cost while executing these two Do-
loops. For a 2D data matrix, the communication cost of
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TABLE 5
APPLY ALGORITHM 2 AND ALGORITHM 2’ TO THE SAMPLE PROGRAM

Iy Ji=1]i=2]j=3]j=4]j=5]

[G=1li=2]i=3]i=4]i=5]

Q

i=1 B € 2 save | save ‘ 1= l g € L save | save |
i=2 v 0 v save i=2 € 2 save | save
i=3 g € ¢ i=3 n K A
i=4 5 & i=4 K A
1i=5 « 1=5 o
T11 = A[ll = /j
T12 = 11[12 =€
T13 = A{lg =1

Tgl = Tll + J‘\/fv_l + (COSﬁ(Pﬂ, P21) = 0) =€
The = Th1 4+ Mas + (COSt(Pll, P22) = 0) =1
T31 = MIN{T5; + May + (cost(Pa1, P31) =
T35 = MIN{T5; + Mas + (cost(Pa1, P32) =
T33 = MIN{T5; + Mas + (cost(Pai, Ps3)
Ty = NII\I{T'«H + My + (c()bl P’«;|,P41)
T3 + May + (cost(Pys, Pys)
Tys = MI\I{T31 + My + (LOS[ Py, P4g)
T3 + Mas + (cost(Py3, Pao

)= Cr +2C,
T51 = MIN{T}4y + Msy + (cost(Py1, Ps1)

H “ [l || (Il

Minimum_Cost= MIN1<p<s{T5-r41,1}
= MIN{T5sy, Tha, Ta3}
=

Cr),Tvo + M3y + (cost(Pro,

Cr), o + M3y + (cost(Pro,

Cr + Ch), Tiz + Mas + (cost( P, Pa3) =
) Too + My + ((.UDL(P‘?Q P41)

Cr +C1)} =K

Cl) T + Mas + (cost(Paa, Pas) =

Py)=Cr)} =1

P3A FT)}*K
Cr+C1)) = A
Cr+CY),

Cr + 201),
)P=A

Cr), Tsa + Msy + (cost(Pss, Ps1) = Cr)} = p.

Minimum_Cost’ = MIN1<r<3{Ts—_p+1,% + loop_carried_dependence(Ts_p41,1)}
= MIN{Ts; + 0, T4z + Cr + C1, Tss + Cp + C1 }

= p.

a transpose operation is Cy. For a 1D data array, the com-
munication cost of a data redistribution operation is
bounded by m * t,, where m is the problem size. Therefore,

THRESHOLD =
2 min{4, No. of Do - loops where matrix A appears} * C; +

V matrix A
z min{4, No. of Do - loops where array B appears} *m ot
V array B

where each data matrix or each data array appears within
at least two Do-loops. The constant 4 in the above formula
is used because THRESHOLD is bounded by four times the
maximal communication cost between any two distribution
schema.

For example, in the sample program, matrix A appears
within five Do-loops, each of arrays X and Y appears within
three Do-loops, and each of other matrices and arrays only
appears once in some Do-loop. Therefore, THRESHOLD
can be chosenas 4« Cy + 2+ (3*mxt).

4 EFFICIENT ALGORITHMS FOR DATA DISTRIBUTION

Based on Theorem 1 and Theorem 2, we can improve Algo-
rithm 1 to deal with three cases as shown in Fig. 1.

4.1 The Case when a Program Segment Contains a
Sequence of s Do-Loops

This section discusses the first two cases shown in Fig. la
and Fig. 1b. Let ¥ be the minimum integer such that

M, 1y > M5+ Mg gy + THRESHOLD for some j
where 1 < <% <s—i+ 1. Note that, for the boundary cases
s—i+lorfB=

when ¥ = s —i+ 1, we define dummy values

Mis-is2s Msi11, @nd Mgy si_p+2), SO that the above assump-

tion is satisfied. Let y be the maximal value among ¥, for 1 <i

<s. For example, y = max; <;<{%}.

Algorithm 2: A new dynamic programming algorithm for
computing the cost of the data distribution schema for exe-
cuting a sequence of s Do-loops on distributed memory
computers is presented.

Input: M;;, Pij, and %, where 1 <i<sand 1 <j<x% Ty (=
M), where 1 <j<y;and y.

Output: The cost of executing s Do-loops on distributed
memory computers.

1) fori:=2tosdo

2) forj:=1toydo

3) Tij := MIN geming paf{ Tiokx + Mij + cost(Piy,
Pip, ifk<y k%

4) end_for end_for

5) Minimum_Cost := MIN; g {Tss1 0 IFK < Ypean}

If a sequence of s Do-loops is enclosed by an iterative
loop, then line 5 in Algorithm 2 can be modified below as
Algorithm 2"

5") Minimum_Cost” := MIN g, {Ts 14 +

loop_carried_dependence(Tg 1), if K< % 411}

We will now analyze Algorithm 2. The time complexity
of this new dynamic programming algorithm is

{[En))

which is bounded by O(sy?). In addition, before applying
Algorithm 2, we need to compute at most 5, + % + --- + % + 5
component alignment problems for the consecutive Do-
loops L, Lisy, ..., Lisj-r, Where L<i<sand 1 <j< y + 1. The
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total number of component alignment problems computed
is, thus, no more than s(y + 1).

Table 5 shows a complete example by applying Algo-
rithm 2 to the sample program mentioned in Section 2.3 for
determining data distribution. In this example, we let

THRESHOLD be 4 * C; + 6 * m = t,, and we also assume that
4% Cr+6*m=*t;is very small in comparison with C; (= K *
(m*+2m«(logN) +m) *t). Thus, , =3, =2 B=3 7 = 2;
¥s = 1; and y= 3. We can see that the result computed from
Algorithm 2 is the same as that computed from Algorithm 1.

However, the computation for My 4; My s5; My 4 T14; Tiss Toss

and T,, is saved. In addition, the computation for T, and
Minimum_Cost is simplified.

4.2 The Case when a Program Segment Contains s
Do-Loops with a General Structure
This section discusses the most general case as shown in
Fig. 1c. In general, some Do-loops in a sequence of Do-
loops may be iterative loops which contain other sequences
of Do-loops with a general structure. In other words, some
consecutive Do-loops may be enclosed by iterative loops
which, again, with adjacent Do-loops, may be enclosed by
other iterative loops, and so on. This enclosure relation can
be naturally represented by trees (or a forest). A Do-loop
may be a simple Do-loop or an iterative loop. Suppose that
an iterative loop encloses at least two Do-loops. Then, sim-
ple Do-loops are leaf nodes in the trees, and iterative loops
are internal nodes in the trees. If v Do-loops are immedi-
ately enclosed by an iterative loop, then this iterative loop is
the parent node of these v Do-loops, and these v Do-loops
are the v corresponding child nodes of this iterative loop.
For instance, in the sample program mentioned in Sec-
tion 2.3, Do-loops L4, L,, L3, L4, and L are five child nodes of
the outermost iterative loop. If we further elaborate the
sample program, we can see that Do-loops L, and L, are
two iterative loops, and that each of them contains three
small Do-loops. L, contains L, ;, which is from line 8 to line
12; L,,, which is from line 13 to line 16; and L, 3, which is
from line 17 to line 19. L, contains L, ;, which is from line 26
to line 30; Ly, which is from line 31 to line 34; and L3,
which is from line 35 to line 37. Fig. 7 shows the family tree
of the sample program. For convenience, we will say that
L,, Ly, Lg, Ly, and Lg are the first-level Do-loops in the outer-
most iterative loop; in addition, they are siblings in this tree
representation. Similarly, L, L,,, and L, ; are the first-level
Do-loops in L,, and they are siblings; L, 4, Ly, and L, 3 are
the first-level Do-loops in L,, and they are siblings.

Algorithm 3: An algorithm for computing the cost of the
data distribution schema for executing a program segment

the outmost iterative loop

L%L3¥5
/N /N

L21 122 1.23 141 L42 L43

Fig. 7. The family tree of the sample program.

which contains a sequence of s simple Do-loops with a general
structure on distributed memory computers is constructed.

Input: A program segment which contains a sequence of s
simple Do-loops with a general structure.

Output: The cost of executing this sequence of Do-loops on
distributed memory computers.

1) Suppose that there are y(s) first-level Do-loops in this
input program segment;

2) scan these y(s) first-level Do-loops one by one, while
there exists an iterative loop, L, which contains a se-
quence of w simple Do-loops: L4, Lsy, ..., Lyo With a
general structure, do recursively apply Algorithm 3 to
the iterative loop L;

3) construct (M;)-table, (P;;)-table, ¥, and yfor these y(s)
first-level Do-loops, where 1 < i< y(s), 1 <j <y < y(s)
—i+1, and y= maXq<,s{1h

4) apply Algorithm 2 to these y(s) first-level Do-loops,
and multiply the number of iterations by the resulting
sequence of distribution schema to obtain their
weight.

We will now briefly illustrate Algorithm 3. The first
three steps in Algorithm 3 are quite straightforward; in the
following, we will only explain the fourth step. We notice
that, after applying Algorithm 2’ to an iterative loop, if the
resulting sequence of distribution schema contains more
than one distribution scheme, then these distribution
schema cannot be combined with any other distribution
scheme in the sequel. For convenience, we use a dummy
distribution scheme to represent the resulting distribution
schema in the following. However, if there is only one dis-
tribution scheme obtained from Algorithm 2, then this dis-
tribution scheme may be combined with schema obtained
from adjacent Do-loops.

We will now use the sample program again to go
through Algorithm 3. First, because the sample program
contains one iterative loop, Algorithm 3 recursively calls
itself to handle this iterative loop. Then, because the outer-
most iterative loop contains five Do-loops, L4, Ly, Ls, Ly, and
Ls, it (Algorithm 3) scans these five Do-loops one by one.
Since L, and L, are iterative loops, it recursively applies
itself to these two loops. When dealing with L,, because L, ;,
L, and L, are simple Do-loops, it constructs (M;;)-table,
(Piyj)-table, %, and yfor these three Do-loops, where 1 <i < 3;
1<j<y<3-i+1;,%1=3,%=2; ;5=1, and y= 3. After that,
it can apply Algorithm 2’ to L, and obtain a single data dis-
tribution scheme which illustrates that matrix A is distrib-
uted row by row as mentioned in Table 2. Similarly, when
dealing with L,, because L,;, Ly, and L,3 are simple Do-
loops, it constructs (M;)-table, (P;;)-table, %, and y for these
three Do-loops, where 1 <i<3;1<j<%<3-i+1, % =3
% =2; 1,=1;and y = 3. After that, it can apply Algorithm 2’
to L, and obtain a single data distribution scheme which
illustrates that matrix A is distributed column by column as
also mentioned in Table 2.

After handling L, and L, (both of which are iterative
loops), Algorithm 3 constructs (M;))-table, (P;;)-table, ¥, and
y for the five Do-loops, Ly, Ly, L3, Ly, and Ls, where 1 <i <5;
1<j<%<5-i+L,1n=3,%=2,1=3,%=2;,7s=1; and
vy = 3. It then applies Algorithm 2’ to these five first-level
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TABLE 6
THE SIMULATION TIME, “EXECUTION TIME (COMMUNICATION TIME),”
FOR SOLVING THE SAMPLE PROGRAM IS EXPRESSED IN UNITS OF SECONDS:
1) BASED ON A DYNAMIC DATA DISTRIBUTION SCHEME; 2) BASED ON A STATIC DATA DISTRIBUTION SCHEME

| matrix size ‘ #PE =2 ‘ #PE =141 | #PE =38 ‘ #PE = 16 ‘ #PE = 32 |

11.1  (0.1) 5.6 (0.1) 2.8 (0.1) 1.6 (0.3) 1.2 (0.5)
25 x 2° 12.0 (0.8) 7.3 (1.6) 5.9 (2.5) 6.1 (3.8) 8.2 (5.9)
51.7  (0.3) 25.9  (0.2) 13.1 (0.2) 6.7 (0.3) 3.7 (0.6)
26 % 26 53.3 (1.3) 289 (2.4) 17.8  (3.8) 13.6  (5.7) 14.0 (8.5)
238.2 (1.2) 119.3  (0.8) 59.8  (0.5) 30.1 (0.5) 155 (0.7)

27 x 27 241.3  (2.0) 124.8  (4.0) 67.8 (6.3) 416 (9.2) 31.5 (13.2)
1083 (4.9) 542.1  (2.9) | 2713 (1.7) 136.0 (1.2) 68.5 (1.1)

28 x 28 1091  (3.9) 553.2 (7.6) | 287.0 (11.8) | 156.5 (16.3) 96.4  (22.7)
4869 (20.3) | 2435 (11.3) | 1218 (6.8) 610.0  (3.9) 305.6  (2.6)

29 x 29 4890 (7.8) 2462  (15.9) | 1251 (23.4) | 651.3 (32.1) | 358.0 (42.4)
10841 (45.2) | 5427 (29.8) | 2714 (16.7) 1358 (9.0)

210 210 ok 10911 (32.4) | 5499 (50.6) | 2801 (67.0) 1464 (85.2)

12129  (68.5) 6072 (46.8)

211 2l Ak oAk HAE 12322 (149.0) | 6291 (190.4)

(The net computation time) = (execution time) — (communication time).
ik means “not implemented” because of memory limitations.

Do-loops and obtains a sequence of three data distribution
schema as shown in Section 2.3. Then, it returns to Algo-
rithm 3. Because there is only one outermost iterative loop
in the sample program whose data distribution schema
have been obtained, Step 3 and Step 4 in Algorithm 3 are
not applied in this case.

We will now analyze the time complexity of Algorithm 3.
Suppose that a sequence of s simple Do-loops with a gen-

eral structure is enclosed by y(s) disjointed first-level itera-
tive loops or simple Do-loops, and, in addition, that the ith

iterative loop contains s; simple Do-loops with a general
structure. Then, s = zwls)si. We will first analyze how
many component alignment problems are required to be
computed in Algorithm 3. Based on the analysis of Algo-
rithm 2, if an iterative loop contains s simple Do-loops, it

requires computing O(sy) component alignment problems.
Therefore, from Step 3 of Algorithm 3, we can formulate the
recursive formula of the number of component alignment
problems that must be computed in Algorithm 3 as follows:

C() =1
C(s) = 2:’;(15) C(s;) +O(w(s)y), wheres = 2?/:(13) ;.

This recursion formula is similar to the one that counts the
number of nodes in an arbitrary tree in which each internal
node has at least two child nodes, and is bounded by the order
of the number of its leaf nodes. Therefore, C(s) is bounded by
O(sy); in addition, the constant factor is less than 2.

We will now analyze the other computation time re-
quired for Algorithm 3. First, based on the analysis of Algo-
rithm 2, if an iterative loop contains s simple Do-loops, Al-
gorithm 2 can deal with this iterative loop within O(sy?)
time units. Therefore, from Step 4 of Algorithm 3, the recur-
sion formula of the other computation time T(s) can be for-
mulated as follows:

T =1
T(s) = Z?;(E)T(Si) +0(y(s)y®), wheres = ZW(S) ..

i=1

Similar to computing C(s), T(s) is bounded by O(sy?).

5 EXPERIMENTAL STUDIES

In this section, we will present experimental studies and
show why it is important to determine whether data redis-
tribution is necessary. The target machine we used was a
32-node NnCUBE-2 computer located at Academia Sinica. In
this computer, each node has four megabytes of memory,
runs at a modest clock rate of 20 MHz, and is rated at 7.5
MIPS (Million Instructions Per Second) and 3.5 MFLOPS
(Million FLOating-point operations Per Second) in single
precision arithmetic.

5.1 The Sample Program

Table 6 lists experimental results for implementing the
sample application in Section 2.3 with various problem
sizes. In this experimental study, we implemented two ver-
sions of parallel programs:

1) one based on a dynamic data distribution scheme;
2) one based on a static data distribution scheme.

We let the constant OUT_ITERATION = 10 and the constant
MAX_ITERATION = 20 = log m, where m is the problem size.
Experimental results show that the proposed dynamic data
distribution scheme outperformed a static data distribution
scheme. Note that the computation time of these two parallel
algorithms was not exactly the same because the second al-
gorithm, which implements several message-passing data
communication operations during the computation, requires
more indexing operations than does the first algorithm,
which is based on the original sequential computation.

5.2 Two-Dimensional Fast Fourier Transform

(2D FFT)
In this experimental study, we implemented a 2D FFT, im-
mediately followed by an inverse 2D FFT using the con-
ventional row-column method. Therefore, the input data
matrix was equal to the output data matrix. This program
contains four loops:

L,: loop 1 performs a 1D FFT for each row;

L,: loop 2 evaluates a 1D FFT for each column;

L;: loop 3 calculates an inverse 1D FFT for each column;
and
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TABLE 7
COMPUTATION TIME AND COMMUNICATION TIME OF FOUR LOOPS

matrix A is distributed matrix A is distributed
row by row column by column
computation | communication || computation | communication
time time time time
L1 Cy 0 Cy Ch
Lo Cy Ch Cy 0
L3 Cy Ch Cy 0
Ly Cy 0 Cy Ch

Cg=cx (m2 = (log m)/N) * t;, where c is a constant; C, = 2 « (mZ/N) * (log N) * t..

TABLE 8
THE SIMULATION TIME, “EXECUTION TIME (COMMUNICATION TIME),”
FOR SOLVING THE 2D FFT PROGRAM IS EXPRESSED IN UNITS OF SECONDS:
1) BASED ON A DYNAMIC DATA DISTRIBUTION SCHEME; 2) BASED ON A STATIC DATA DISTRIBUTION SCHEME

| matrix size | #PE =2 ‘ #PE =4 ‘ #PE =8 ‘ #PE = 16 ‘ #PE = 32 |

0.163 (0.017) [ 0.085 (0.012) [ 0.049 (0.012) 0.035  (0.017) 0.039  (0.030)
2° x 2° 0.253  (0.083) | 0.255 (0.165) | 0.295 (0.243) 0.357  (0.322) 0.275  (0.251)
0.745 (0.062) | 0.380 (0.039) | 0.198 (0.027) 0.111  (0.026) 0.077  (0.034)
2° x 2° 0.949 (0.205) | 0.743 (0.351) | 0.712  (0.499) 0.773  (0.651) 0.887  (0.812)
3.378  (0.243) [ 1.711 (0.144) | 0.871 (0.087) 0.452  (0.060) 0.250  (0.054)
2" x 27 3.876  (0.523) | 2.515  (0.785) | 1.964 (1.055) 1.831  (1.339) 1.918  (1.636)
15.140  (0.962) | 7.651 (0.561) | 3.871 (0.325) 1.967  (0.194) 1.016  (0.129)
2% x 2° 16.521  (1.499) | 9.571  (1.892) | 6.281 (2.326) 4.892  (2.819) 4473 (3.354)
67.139 (3.832) | 33.878 (2.223) | 17.101 (1.272) 8.643  (0.727) 4.385  (0.427)
2% x 2° 71.599  (4.932) | 39.055 (5.128) | 22.878 (5.567) | 15.096 (6.193) 11.697  (7.051)
74.994 (5.045) | 37.819 (2.843) 19.096  (1.608)

210 x 210 bk bk 90.648  (15.056) | 53.242 (14.703) | 35.265 (15.477)
82.884  (6.302)

2! x 2" okkk okkk ok Hokck 121.508  (36.663)

kR means “not implemented” because of memory limitations.

L,: loop 4 computes an inverse 1D FFT for each row.

Table 7 shows the approximate computation time and
communication time of these four loops depending on
whether the input data matrix A is distributed row by row
or distributed column by column. A static data distribution
scheme which distributes data either row by row or column
by column will incur a 2C, communication overhead due to
the requirement of several “bit-reverse shuffle-exchange”
and “butterfly-pattern” data communications, where C;, = 2
* (M?/N) = (log N) * t. However, C, > Cy, where Cy is the
cost of performing a matrix transpose operation; thus, by
applying our algorithms, we can show that data redistribu-
tion is required between L, and L,, and between L; and L,.
Table 8 lists the experimental results of implementing this
2D FFT program based on both a dynamic data distribution
scheme and a static data distribution scheme. The experi-
mental results also show that using the above mentioned
dynamic data distribution scheme is better than using a
static data distribution scheme.

5.3 Two-Dimensional Heat Equation

In this experimental study, we implemented a 2D heat
equation using the alternative direction implicit (ADI)
method, which is a way to reduce two-dimensional prob-
lems to a succession of many one-dimensional problems.
Consider u; = byu,, + b,u,, on a rectangle. We adopted the
Peaceman-Rachford algorithm to formulate the partial dif-
ferential equation as a second-order approximation of
solving two sets of tridiagonal systems of linear equations,
where variables of one set of tridiagonal systems corre-
spond to elements from each column of an intermediate

matrix, and variables of the other set of tridiagonal systems
correspond to elements from each row of a target matrix
[37]. According to the Thomas algorithm, we can reduce a
tridiagonal system of linear equations to three sets of first-
order recurrence equations, which can be solved by fast
parallel algorithms based on either recursive-doubling
techniques or cyclic-reduction techniques.

Thus, a static data distribution scheme by distributing
data either row by row or column by column will incur a
communication overhead due to the requirement of either
“recursive-doubling-pattern” or “cyclic-reduction-pattern”
data communication. By applying our algorithms, we have
been able to show that data redistribution is required be-
tween performing these two sets of tridiagonal systems.
Table 9 lists the experimental results of implementing this
2D heat equation based on both a dynamic data distribu-
tion scheme and a static data distribution scheme. The ex-
perimental results also show that using the above-
mentioned dynamic data distribution scheme is better than
using a static data distribution scheme.

6 CONCLUSIONS

A scientific application program is naturally written using a
sequence of Do-loops and subroutines, and each subroutine
can be treated as another sequence of Do-loops. Because it
is not practical to implement an exponential time algorithm
to deal with optimal data distributions at compiling time, it
is helpful to implement a heuristic algorithm with poly-
nomial time complexity. In this paper, we have proposed
efficient dynamic programming algorithms which allow
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TABLE 9
THE SIMULATION TIME, “EXECUTION TIME (COMMUNICATION TIME),” OF THE FIRST 100 ITERATIONS
FOR SOLVING THE 2D HEAT EQUATION IS EXPRESSED IN UNITS OF SECONDS:
1) BASED ON A DYNAMIC DATA DISTRIBUTION; 2) BASED ON A STATIC DISTRIBUTION SCHEME

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 8, NO. 8, AUGUST 1997

| resolution ‘ #PE =2 ‘ #PE =4 | #PE =8 | #PE =16 | #PE = 32 ‘
16.086  (5.543) 9.393 (4.106) 6.068 (3.411) 4.640  (3.299) 4.360 (3.676)
2° x 2° 39.612  (6.193) 33.824  (12.515) 34.639  (18.773) 39.572  (25.016) 46.752  (31.548)
55.828 (17.714) 30.909 (11.842) 18.194  (8.637) 11.839  (7.047) 9.093 (6.683)
2" x 2 139.893  (16.784) 97.070  (24.178) 83.613  (37.905) 86.504  (48.964) 97.234  (63.195)
206.873  (62.178) 111.079  (38.718) 61.709 (25.511) 36.321  (18.200) 23.677 (14.603)
2% x 2° 520.590  (52.849) 315.673  (47.546) 227.535  (74.700) 203.104  (98.028) 209.332  (126.395)
793.865 (231.285) | 418.917 (137.613) | 225.146 (84.465) 124.967  (54.607) 73.619 (38.424)
2° x 2° | 2014.049  (186.911) | 1113.913  (96.638) 699.733  (152.807) | 526.407 (196.044) | 478.899  (250.583)
864.962  (310.443) | 461.217 (183.924) | 255.943 (117.280)
210 5 910 okokk ork 2360.988  (296.590) | 1539.387  (388.614) | 1197.972  (505.510)
956.192  (405.710)
211 oM okt ok ok bk 3372.475  (1009.577)
R means “not implemented” because of memory limitations.
variable length program segments to use different data [3] D. Callahan and K. Kennedy, “Compiling Programs for Distrib-

distribution schema in order to improve the computation
load balance and to avoid communication overhead. The
searching space of the algorithms was reduced dramatically
after we proved that data redistribution was necessary for
executing a sequence of Do-loops if the communication cost
due to performing this sequence of Do-loops was larger
than a threshold value, and if this threshold value was
equal to four times the maximal communication cost be-
tween any two distribution schema.

Suppose that we must use at least two distribution
schema to compute any (y + 1) consecutive Do-loops.
Normally yis a small integer, for example, y = 5. Then, we
can find a sequence of distribution schema for executing a
sequence of s Do-loops having a general structure (as
shown in Fig. 1c) in O(sy?) time units. In addition, while
applying these algorithms, we only need to compute at
most s(y + 1) component alignment problems, each having
a reasonable problem size. In practice, our method can be
used in parallelizing compilers to automatically determine
data distribution for distributed memory systems.
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