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Abstract
In a cluster system with dynamic load sharing support, a job

submission or migration to a workstation is determined by the
availability of CPU and memory resources of the workstation at
the time [3]. In such a system, a small number of running jobs
with unexpectedly large memory allocation requirements may
significantly increase the queuing delay times of the rest of jobs
with normal memory requirements, slowing down executions of
individual jobs and decreasing the system throughput. We call
this phenomenon as the job blocking problem because the big jobs
block the execution pace of majority jobs in the cluster. Since
the memory demand of jobs may not be known in advance and
may change dynamically, the possibility of unsuitable job sub-
missions/migrations to cause the blocking problem is high, and
the existing load sharing schemes are unable to effectively han-
dle this problem. We propose a software method incorporating
with dynamic load sharing, which adaptively reserves a small
set of workstations through virtual cluster reconfiguration to pro-
vide special services to the jobs demanding large memory allo-
cations. This policy implies the principle of shortest-remaining-
processing-time policy. As soon as the blocking problem is re-
solved by the reconfiguration, the system will adaptively switch
back to the normal load sharing state. We present three contri-
butions in this study. (1) we quantitatively present the conditions
to cause the job blocking problem. (2) We present the adaptive
software method in a dynamic load sharing system. We show the
adaptive process causes little additional overhead. (3) Conducting
trace-driven simulations, we show that our method can effectively
improve the cluster computing performance by quickly resolving
the job blocking problem. The effectiveness and performance in-
sights are also analytically verified.

1 Introduction
Load sharing provides a system mechanism to dynamically

migrate jobs from heavily loaded workstations to lightly loaded
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workstations, aiming at fully utilizing system resources. Follow-
ing the load sharing principle, researchers have designed differ-
ent alternatives by balancing the number of jobs/tasks among the
workstations (see e.g. [5], [11], [14]), by considering memory al-
location sizes of jobs (see e.g. [1], [2]), and by considering both
CPU and memory resources (see e.g. [12], [13]). Recently, we
have developed dynamic load sharing schemes to schedule or mi-
grate jobs without the knowledge of their memory allocation sizes
before jobs start running [3]. All above cited schemes are de-
signed for job scheduling and migrations among the workstations
(inter-workstation scheduling). The job scheduling in multipro-
gramming environment of each conventional workstation (intra-
workstation scheduling) is normally conducted in a round-robin
fashion to fairly share processor cycles.

It has been proved that the optimal inter-workstation schedul-
ing policy is to always schedule the job with the shortest remain-
ing processing time [8]. This policy minimizes the mean response
time of the submitted jobs. In practice, the optimal scheduling
policy is impossible to be implemented for two reasons. First, the
remaining processing time of each job is unknown to the sched-
uler, which is the major reason. Second, jobs with long remain-
ing times, may be unfairly treated with unreasonably long de-
lays. We believe that the round-robin scheduling is practically
effective unless the job sizes are known in advance or accurately
predictable. One of our focuses is to study its effects to inter-
workstation scheduling.

In a cluster system with dynamic load sharing support, a new
job can be submitted to a workstation or a running job can be mi-
grated to the workstation under following conditions. When the
workstation has idle memory space, the job can be accepted if the
number of running jobs in the workstation is still less than a pre-
determined threshold which is the maximum number of job slots
a CPU is willing to take (also called the CPU Threshold). When
the workstation does not have idle memory space, or is even over-
sized, no jobs will be accepted without further checking the status
of the CPU threshold. This strategy has been shown its effective-
ness in load sharing, particularly to schedule jobs with unknown
memory allocation sizes [3]. In such a system, a small number
of running jobs with large memory allocation requirements can



be scattered among workstations to quickly use up the memory
space, causing slow job submissions to these workstations. Since
these large jobs normally have long remaining processing times,
eventually, all the workstations may become heavily loaded, stop-
ping job submissions and migrations. We call this phenomenon as
the job blocking problem, which is rooted from unsuitable place-
ments of these large jobs. The existence of these large jobs in a
few workstations may increase the queuing delay times of the rest
of jobs with relatively small memory requirements, slowing down
executions of individual jobs and decreasing the cluster system’s
throughput. Since job sizes including the memory allocations are
unknown in advance, the possibility of unsuitable job placements
to cause the blocking problem is high, and existing load sharing
schemes are unable to effectively handle this problem.

We have developed a framework of a dynamic load sharing
system with three major functions. First, since the scheduler in
each node does not have the knowledge of the size of demanded
memory and its changing range of each job in its lifetime, the
scheduler dynamically monitors the amount of page faults, mem-
ory demands of jobs, and considers the available physical mem-
ory space to make scheduling decisions accordingly. Second, a
memory threshold is set to ensure that memory demands of jobs
are not oversized or only oversized to a certain degree. The CPU
threshold is used to balance the number of jobs in the cluster,
and to set a reasonable queuing delay time for jobs in each work-
station. Third, whenever a certain amount of page faults due to
memory shortage or exceeding a memory threshold are detected
in a workstation, or whenever the number of running jobs reaches
the CPU threshold, new job submissions to this workstation will
be blocked and will be remotely submitted to other lightly loaded
workstations with available memory space or/and with additional
job slots if possible. Meanwhile, one or more jobs already exe-
cuting in the workstation that becomes overloaded may also be
migrated to other lightly loaded workstations if possible. For de-
tailed descriptions of dynamic load sharing with considerations
of both CPU and memory utilizations, the interested readers may
refer to [3].

When both job submissions and migrations are blocked in a
cluster, it implies that the resource allocation in each workstation
either reaches its memory threshold due to arrivals of some jobs
with large memory demands, or reaches its CPU threshold, or
both. Further job submissions or migrations will cause more page
faults or queuing delay in a destination workstation. One simple
solution would be to temporarily suspend the large jobs so that the
job submissions will not be blocked. However, this approach will
not be fair to the large jobs that may starve if job submissions
continue to flow, or that can be executed only when the cluster
becomes lightly loaded.

We have observed that CPU and memory resources are actu-
ally not fully utilized during the period of blocking. For example,
some workstations reaching their CPU thresholds may still have
idle memory space, while some workstations experiencing page
faults may still have additional job slots available. Our recent
experiments show that when a cluster system is not able to fur-
ther accept or migrate jobs, there are still large accumulated idle
memory space volumes available among the workstations. This
is because demanded memory allocations of a handful jobs could

not fit in any single workstation with other running jobs. We have
also found that jobs are not evenly distributed among worksta-
tions, which increases the total job queuing time. Unfortunately,
the dynamic load sharing scheme or job suspension described
above is not able to efficiently resolve this blocking problem by
further utilizing the potential available resources. We target to
address these problems of inefficient resource allocations. Our
observations and experimental results have motivated us to con-
sider scheduling jobs by adaptively and virtually reconfiguring a
cluster system to further utilize resources and to quickly resolve
the blocking problem.

To make a system more resilient against the blocking prob-
lem, it is preferable to incorporate a dynamic protection mecha-
nism with the load sharing system, rather than waiting for slow
self-recovering or using a brute-force approach, such as job sus-
pensions. In order to make our solution effective, we need to
address two potential concerns. First, we need to dynamically
identify large jobs, and to find suitable workstations for them
to execute on. Second, the policy should be beneficial to both
large and other jobs. We propose a software method incorporated
with dynamic load sharing, which adaptively reserves a small set
of workstations (called reserved workstations) through a virtual
cluster reconfiguration to provide special services to the jobs de-
manding large memory space. As soon as the blocking problem is
resolved by the reconfiguration, the system will adaptively switch
back to the normal load sharing state. On one hand, this method
can improve the utilization of CPU and memory resources of
non-reserved workstations, because jobs with normal sizes can be
smoothly executed without the interference of large jobs. On the
other hand, large jobs are treated fairly because they are served
by reserved workstations.

We present three contributions in this study. (1) We present the
conditions to cause the job blocking problem. (2) We present the
adaptive software method in a dynamic load sharing system. We
show the adaptive process causes little additional overhead. (3)
Conducting trace-driven simulations, we show that our method
can effectively improve the cluster computing performance by
quickly resolving the job blocking problem. The effectiveness
and performance insights are also analytically verified.

2 An Adaptively and Virtually Reconfigured
Cluster System

2.1 Job reallocations
Here is the basic idea of our software method for adaptive and
virtual cluster reconfigurations, which can be easily incorporated
with the dynamic load sharing scheme. The blocking problem
is initially detected when a workstation experiences a certain
amount of page faults, but the scheduler could not find a qualified
destination to migrate jobs from this workstation. If the accumu-
lated idle memory space size in the cluster is larger than the aver-
age user memory space of workstations in the cluster, the recon-
figuration routine is activated. The routine first identifies the most
lightly loaded workstation with largest idle memory space, and
continues to block job submissions and migrations to this work-
station. The time period between identifying the workstation and
completions of the running jobs in the workstation is called the re-



serving period. (One alternative is to end the reserving period as
soon as the available memory space in the reserved workstation is
sufficiently large for a job migration with large memory demand).
During the reserving period, if the blocking problem disappears,
the system will be back to the normal load sharing state. If the
blocking problem still exists after the reserving period, the re-
configuration routine will migrate a job with the largest memory
demand suffering serious page faults to the reserved workstation.
When the blocking problem is detected again in a workstation, the
reconfiguration routine will first try to migrate a job to a reserved
workstation if it exists, that is able to provide sufficient memory
space and job slots. Otherwise, the reconfiguration routine will
start another reserving period to identify an appropriate worksta-
tion. As soon as the blocking problem is resolved by the virtual
reconfiguration, the system will be adaptively switched back to
the normal load sharing state. The transition between the cluster
reconfiguration for reserved computing and normal load sharing
is quite natural. As a reserved workstation completes its special
service, the scheduler will view it as a regular workstation and re-
sume normal job submissions to the workstation. Notice that the
processes of starting and releasing a reconfiguration are not only
adaptive and virtual, but they cause little additional overhead as
well.

The framework of the reconfiguration routine is embedded in
the dynamic load sharing system in a workstation as follows:
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job to the reserved workstation.

The ���	�����	!
�
"#���	� $%
��
� is turned off when the reserved worksta-
tion completes executions of all the migrated jobs, which resumes
the normal job submissions and migrations to the workstation.

2.2 The rationale of our solution
The potential performance gain of our approach comes from four
sources. First, the idle memory space is available among work-
stations. Unfortunately, the available space in each individual
workstation is not large enough to serve any incoming jobs. A
considerable amount of accumulated idle memory space in the
cluster can be utilized by job reallocations. Reserving a work-
station plays an equivalent role to moving some accumulated idle
memory space to the reserved workstation, so that the worksta-
tion is able to serve large jobs that could not fit in any individual
idle memory space before the reservation.

Second, the identified large job is likely to be a large job with
long lifetime. The job is identified after the reserving period. If
a job is observed to demand a large memory space, causing page
faults for a period of time, this job will be likely to continue to
stay and execute for a longer time than other jobs in the work-
station for two reasons: (1) experiments have shown that a job
with a large memory demand in process interactions is less com-
petitive than jobs with small memory allocations in conventional
operating systems, such as Unix and Linux [6]; (2) experiments
have also shown that a job having stayed for a relatively long time
is predicted to continue to stay for a even longer time than other
jobs [5]. After a large job is migrated away, the rest of jobs will
be served quickly, and submissions to the workstation will con-
tinue to flow. The principle of the shortest remaining processing
time policy [8] is implicitly applied here.

Third, the concern of unfairly treating large jobs does not ex-
ist. We specially reserve workstations to process these large jobs
that are less competitive than jobs with small memory allocations.

Finally, in practice, the percentage of large jobs in a job pool
is low. If there are too many large jobs, the proposed method will
reserve too many workstations so that normal jobs can not run.
This causes unfairness to normal jobs. This concern could be
easily addressed because several studies (e.g. [5, 9]) have shown
that the percentage of exceptionally large jobs is very low in real-
world workloads.

2.3 What is the virtual reconfiguration not
able to do?

When the accumulated idle memory space in the cluster is not
sufficiently large, the virtual reconfiguration will not be effec-
tive. If the accumulated idle memory space is smaller than the
user space of a single workstation, it will be difficult to reserve
a workstation providing its entire memory space. Under such
a condition, we believe that the cluster memory resources have
been sufficiently utilized. Examining the accumulated idle mem-
ory space in the cluster is one way to detect this condition. If
a workstation can not be reserved within a pre-determined time
interval, it implies that the cluster is truly heavily loaded.

In a heterogeneous cluster system, a reserved workstation will
be the one with relatively large physical memory space. If the
user space in the reserved workstation is still not sufficiently large
for a migrated job, this implies that this job may not be suitable
in this cluster unless the network RAM technique is applied [12].
If this job has to be executed in the cluster, the virtual reconfig-
uration method will provide a reserved workstation for dedicated



service, where its page faults will not affect performance of other
jobs. The virtual reconfiguration may not work well for specific
workloads where big jobs are dominant. Again this case can be
rare in practice.

3 Experimental Environment

3.1 Tracing job execution at the kernel level

The lifetime of a job has been used as an important factor in
load sharing designs. Which process to be migrated in existing
scheduling policies (see e.g. [5]) is considered by predicting the
lifetime of CPU intensive jobs. Detailed breakdowns of the life-
time will provide more insightful considerations for load sharing
decisions.

We have developed facilities by kernel instrumentation [3],
which measures different portions of the lifetime for a job execu-
tion. Particularly, the instrumentation records when a job process
is interrupted for a system event, and how long this event lasts.
A trace buffer is initially allocated when the system is booted to
collect the system traces. The facilities also dynamically mea-
sure (1) current ages and lifetime of jobs, (2) the sizes of memory
allocation for each running job, and idle memory space in each
workstation, (3) events of page faults in each workstation, (4) the
read/write operations of each running job, and (5) the status of
I/O buffer cache in each workstation.

3.2 Application workloads

We have selected two groups of workloads. The first group
(workload group 1) consists of 6 SPEC-2000 benchmark pro-
grams: apsi, gcc, gzip, mcf, vortex, and bzip, which are both
CPU and memory intensive. Using the facilities described above,
we first run each program in a dedicated environment to observe
the memory access behavior without major page faults (except
for cold misses) and page replacement (the demanded memory
space is smaller than the available user space). We selected a
400 MHz Pentium II with 384 Mbyte physical memory and a
swap space of 380 MBytes to run workload group 1. The oper-
ating system is Redhat Linux release 6.1 with the kernel 2.2.14.
Table 1 presents the basic experimental results of the 6 SPEC-
2000 programs, where the “description” gives the application na-
ture of each program, the “input file” is the input file names from
SPEC200 benchmarks, the “working set” gives the maximum size
of the allocated memory space during the execution, the “life-
time” is the total execution time of each program.

The second group (workload group 2) consists of seven large
scientific and system programs that are representative CPU-
intensive, memory-intensive, and/or I/O-active jobs: bit-reversals
(bit-r), merge-sort (m-sort), matrix multiplication (m-m), a trace-
driven simulation (t-sim), partitioning meshes (metis), cell-
projection volume rendering for a sphere (r-sphere), and cell-
projection volume rendering for flow of an aircraft wing (r-wing).
The descriptions and related citations of these applications can be
found in [3].

We first measured the execution performance of each program
and monitored their memory performance related activities in a
dedicated computing environment of a 233 MHz Pentium PC

with 128 MByte main memory and a swap space of 128MB, run-
ning Linux version 2.0.38. The program memory demands in this
group are smaller than the ones in workload group 1. So, the
workstations we selected here are less powerful than the worksta-
tions used to run programs of workload group 1. Table 2 presents
the experimental results of all the seven programs, where the
“data size” is the number of entries of the input data, the “work-
ing set” gives a range of the memory space demand during the
execution, the “lifetime” is the total execution time of each pro-
gram.

Programs data size working set (MB) lifetime (s)
bit-r �

���
64.22 192.26

m-sort �
���

64.27 82.76
m-m .2B������ � 66.37 4902.29
t-sim 31,061 4.64 41.63
metis 1M-4M 1.37-4.30 124.41

r-sphere 150,000 36.84 — 39.66 318.64
r-wing 500,000 19.53 — 23.39 72.78

Table 2: Execution performance and memory related data
of the seven application programs.

3.3 Trace-driven simulations

Performance evaluation of the virtual reconfiguration is
simulation-based, consisting of two major components: a sim-
ulated cluster and application workload traces. We will discuss
our simulation model, system conditions and the workload traces
in this section.

3.3.1 Two simulated clusters

We have simulated two homogeneous clusters, each of which has
32 workstations whose types are consistent with the two groups of
experiments presented in the previous section. Application pro-
grams in workload group 1 are run in cluster 1, where the CPU
speed is 400 MHz, memory size is 384 MBytes, and the swap
space is 380 MBytes. While application programs in workload
group 2 are run in cluster 2, where the CPU speed is 233 MHz,
memory size is 128 MBytes, and the swap space is 128 MBytes.
In simulations of both clusters, the memory page size is 4 KBytes,
page fault service time is 10 � � , and the context switch time
is 0.1 � � . Ethernet connection speed, 	 , is 10 Mbps. The re-
mote submission/execution cost, � , is 0.1 second for 10 Mbps
network. The preemptive migration cost is estimated by assum-
ing the entire memory image of the working set will be transferred
from a source to a destination node for a job migration, which is��

�� , where � is a fixed remote execution cost in second, and) is the amount of data in bits to be transferred in the job migra-
tion. Each workstation maintains a global load index file which
contains CPU, memory, and I/O load status information of other
computing nodes. The load sharing system periodically collects
and distributes the load information among the workstations.



Programs description input file working set (MB) lifetime (s)
apsi climate modeling apsi.in 196.0 2,619.0
gcc optimized C compiler 166.i 145.0 228.0
gzip data compression input.graphic 195.0 249.0
mcf combinatorial optimization inp.in 80.0 969.0

vortex database lendian1.raw 115.0 345.0
bzip data compression input.graphic 200.0 403.0

Table 1: Execution performance and memory related data of the 6 SPEC 2000 benchmark programs.

3.3.2 Workload traces

The two groups of workload traces are collected by using our fa-
cilities to monitor the execution of the 6 SPEC 2000 benchmark
programs (workload group 1) and the 7 application programs
(workload group 2) at different submission rates on a Linux work-
station. Job submission rates are generated by a lognormal func-
tion: ����� � " � + � �� �	��
 �
����� ������������ � � "�� �

� "�� � (1)

where
����� � " � is the lognormal arrival rate function, " is the time

duration for job submissions in a unit of seconds, the values of  
and ! adjust the degrees of the submission rate. The lognormal
job submission rate has been observed in several practical studies
(see e.g. [4], [10]). Five traces for each group are collected in
each workload group (1 and 2) with five different arrival rates:

C Trace-1 (light job submissions): ! +#"�$ � ,  +#"�$ � , and 359
jobs submitted in 3,586 seconds.

C Trace-2 (moderate job submissions): ! +&%�$ � ,  +'%�$ � ,
and 448 jobs submitted in 3,589 seconds.

C Trace-3 (normal job submissions): ! +(%�$ � ,  +)%*$ � , and
578 jobs submitted in 3,581 seconds.

C Trace-4 (moderately intensive job submissions): ! + � $ � , + � $ � , and 684 jobs submitted in 3,585 seconds.
C Trace-5 (highly intensive job submissions): ! + .+$ , ,  +
.+$ , , and 777 jobs submitted in 3,582 seconds.

The jobs in each trace were randomly submitted to 32 work-
stations. Each job has a header item recording the submission
time, the job ID, and its lifetime measured in the dedicated envi-
ronment. Following the header item, the execution activities of
the job are recorded in a time interval of every 10 � � including
CPU cycles, the memory demand/allocation, buffer cache alloca-
tion, number of I/Os, and others. Thus, dynamic memory and I/O
activities can be closely monitored. During job interactions, page
faults are generated accordingly by an experiment-based model
presented in [3].

The 5 traces for workload group 1 are represented by
SPEC-Trace-1, SPEC-Trace-2, SPEC-Trace-3, SPEC-Trace-4,
and SPEC-Trace-5; and the 5 traces for workload group 2 are rep-
resented by App-Trace-1, App-Trace-2, App-Trace-3, App-Trace-
4, and App-Trace-5.

4 Performance Evaluation
The slowdown of a job is the ratio between its wall-clock ex-

ecution time and its CPU execution time. A major performance
metric we have used is the average slowdown of all jobs in a trace.
Major contributions to slowdown come from queuing time wait-
ing for CPU service, the delays of page faults, and the overhead of
migrations and remote submission/execution. The average slow-
down measurement can determine the overall performance of a
load sharing policy, but may not be sufficient to provide perfor-
mance insights. For a given workload trace, we have also mea-
sured the total execution time and its breakdowns.

Conducting the trace-driven-simulations on a 32 node clus-
ter, we have evaluated the performance of dynamic load sharing
supported by the adaptive and virtual reconfiguration method by
comparing its slowdowns and execution times of several applica-
tion workloads with dynamic load sharing without such a support.

4.1 Improving memory utilization

Figure 1 presents the total execution times (left figure) and the
queuing times (right figure) during the executions on a 32-node
cluster, where the jobs in workload group 1 are scheduled by
either the dynamic load sharing scheme (G-Loadsharing) [3] or
the dynamic load sharing supported by the virtual reconfiguration
method (V-Reconfiguration). The trace-driven simulation results
show the virtual reconfiguration method significantly reduced the
total execution times and the queuing times, and is particularly
effective to the workloads with higher job arrival rates. For ex-
ample, applying virtual reconfigurations, we were able to reduce
the execution times and the queuing times by 29.3% and 24.8%,
respectively for workload SPEC-Trace-1, by 32.4% and 35.8%,
respectively for workload SPEC-Trace-2, by 32.4% and 36.7%,
respectively for workload SPEC-Trace-3, by 30.3% and 34.0%,
respectively for workload SPEC-Trace-4, and 27.4% and 38.2%,
respectively for workload SPEC-Trace-5.

The reduction of the total execution times caused mainly by
the reduction of the queuing times effectively reduces the aver-
age slowdowns for each trace in workload group 1. The left fig-
ure in Figure 2 presents the comparative average slowdowns of
job executions using G-Loadsharing and V-Reconfiguration. The
virtual reconfiguration method reduced the average slowdowns
by 23.4%, 27.7%, 22.6%, 24.6% and 28.46% for workloads
SPEC-Trace-1, SPEC-Trace-2, SPEC-Trace-3, SPEC-Trace-4,
and SPEC-Trace-5, respectively.



Figure 1: The total execution times (left figure) and queu-
ing times (right figure) of the 5 traces of workload group 1
on a 32 workstation cluster scheduled by the dynamic load
sharing scheme (G-Loadsharing) and virtual reconfigura-
tion based dynamic load sharing (V-Reconfiguration).

Figure 2: The average slowdowns (left figure) and the av-
erage idle memory volumes (right figure) for executing the
5 traces of workload group 1 on a 32 workstation clus-
ter scheduled by the dynamic load sharing scheme (G-
Loadsharing) and virtual reconfiguration based dynamic
load sharing (V-Reconfiguration).

We have also observed the average total idle memory volumes
during the lifetime of job executions in each workload trace. We
collect the total idle memory volume in the cluster every second
to calculate the average amount of idle memory space during the
entire lifetime. We have repeated the measurements by using sev-
eral other time intervals, such as 10 seconds, 30 seconds, and 1
minute, and obtained almost identical average values. This im-
plies that the average total idle memory volume is not sensitive to
different measurement time intervals. The right figure in Figure
2 presents the comparative average idle memory volumes dur-
ing lifetimes of 5 workload traces using G-Loadsharing and V-
Reconfiguration. The virtual reconfiguration method reduced the
average idle memory volumes by 12.9%, 24.2%, 29.7%, 40.9%,
and 50.8% for workloads SPEC-Trace-1, SPEC-Trace-2, SPEC-
Trace-3, SPEC-Trace-4, and SPEC-Trace-5, respectively. This
group of results confirms that the virtual reconfiguration can fur-
ther utilize idle memory space so that the cluster is able to accept
(migrate and submit) more jobs and to speed up the job flow in
clusters. This is the main reason to achieve significant reductions

of average slowdowns in this workload.

4.2 Improving job balancing for high CPU
utilizations

Figure 3 presents the total execution times (left figure) and the
queuing times (right figure) during the executions on a 32-node
cluster, where the jobs in workload group 2 are scheduled by ei-
ther the dynamic load sharing scheme or the dynamic load sharing
supported by the virtual reconfiguration method. The trace-driven
simulation results show that the virtual reconfiguration method
reduced the total execution times and the queuing times, and is
particularly effective to the workloads of App-Trace-2 and App-
Trace-3. For example, applying virtual reconfigurations, we were
able to reduce the the execution time and the queuing time by
13.4% and 16.3%, respectively, for workload App-Trace-2, and
by 14.0% and 16.8%, respectively for workload App-Trace-3.
The reductions to other three traces are modest.

Figure 3: The total execution times (left figure) and queu-
ing times (right figure) of the 5 traces of workload group 2
on a 32 workstation cluster scheduled by the dynamic load
sharing scheme (G-Loadsharing) and virtual reconfigura-
tion based dynamic load sharing (V-Reconfiguration).

The reduction of the total execution times caused mainly by
the reduction of the queuing times reduces the average slowdowns
for each trace in workload group 2. The left figure in Figure 4
presents the comparative average slowdowns of job executions
using G-Loadsharing and V-Reconfiguration. The virtual recon-
figuration method effectively reduced the average slowdowns by
16.3%, 16.8%, and 6.8% for workloads App-Trace-2, App-Trace-
3, and App-Trace-4, respectively. The average slowdown reduc-
tions for workloads App-Trace-1 and App-Trace-5 are modest.
Our experiments show that the performance gains mainly come
from job balancing from the virtual reconfiguration. In fact, the
total idle memory volumes are almost the same as those before
virtual reconfigurations. We collect the number of active jobs in
each workstation every second to calculate the standard devia-
tion of the number of active jobs among all non-reserved work-
stations at this moment. This standard deviation gives the job
balance skew in each workstation. We further calculate the av-
erage job balance skew during the entire lifetime among all non-
reserved workstations by first summing all the individual skews
and then dividing the sum by the total number of time units. We



have repeated the measurements by using several other time in-
tervals, such as 10 seconds, 30 seconds, and 1 minute, and ob-
tained almost identical average values. This implies that the av-
erage job balance skew is not sensitive to different measurement
time intervals. The right figure in Figure 4 presents the com-
parative average job balance skew during lifetimes of 5 work-
load executions (workload group 2) using G-Loadsharing and V-
Reconfiguration. The virtual reconfiguration method reduced the
average job balance skew by 10.3%, 16.5%, and 6.3%, for work-
loads App-Trace-2, App-Trace-3, and App-Trace-4, respectively.
The two job balance skew differences for traces App-Trace-1 and
App-Trace-5 are small. This is a reason why little performance
gains are achieved by virtual reconfiguration for these two traces.
This group of results indicates that the virtual reconfiguration is
able to evenly distributed jobs among non-reserved workstations
to reduce total queuing time. We have showed that overall perfor-
mance gains (reductions of total execution times and slowdowns)
from improving job balancing is not as significant as that from
improving memory utilizations by virtual reconfiguration.

Figure 4: The average slowdowns (left figure) and average
job balance skews (right figure) for executing the 5 traces
of workload group 1 on a 32 workstation cluster sched-
uled by the dynamic load sharing scheme (G-Loadsharing)
and virtual reconfiguration based dynamic load sharing (V-
Reconfiguration).

5 Performance Modeling
The effectiveness and performance insights of the proposed

method are analytically verified in this section. The execution
time of job � in a workload for �8+0.2B $�$�$ B � , " ����� �'� � , is expressed
as " ����� �'� �,+1"����	�%�'� � 
 "
���	
 � �'� � 
 "���� � �'� � 
 "�����
��'� � B
where " ����� �'� � , " ���	
 � �'� � , " ��� � �'� � , and " ����
 �'� � are the CPU service
time, the paging time for page faults, the queuing time waiting in
a job queue, and the migration time if the job is migrated during
its execution.

The total execution time of a workload with � jobs,
� ����� , is

expressed as the sum of the total CPU service time (
� ���	� ), total

paging time (
� ���	
 � ), the total queuing time (

� ��� � ), and the total
migration time (

� ����
 ):
���������  ! "

#%$'& �����	(*),+

�  ! "
#%$ &�-/.�0 (*)*+21

 ! "
#%$ &3.�4�5 � (,)*+61

 ! "
#7$ &�8
0 � (*),+91

 ! "
#7$ &�:

"
5 (,)*+� � -3.�0 1;� .�4�5 �<1=� 8�0 �>1;� :

"
5@?

For a given workload with � jobs running on a cluster, we
compare the total execution time of the workload without virtual
reconfiguration,

� ����� , and the same quantity with virtual recon-
figuration to resolve the blocking problem, denoted as A� ����� +A� ���	� 
 A� ���	
 � 
 A� ��� � 
 A� ����
 . The comparison consists of the
following 4 separate models.

1. CPU service time. The jobs demand identical CPU services
on both cluster environment, so that

� ���	� + A� ���	� .

2. Paging time. There will be three possible results:
� ���	
 � �A� �	�	
 � , � �	�	
 � + A� ���	
 � , and

� �	��
 �CB A� �	�	
 � . Paging time
reduction (

� �	�	
 � � A� ���	
 � ) is the objective of the virtual
reconfiguration, which can be achieved by migrating jobs
with large memory demands to reserved workstations.

3. Queuing time. In a cluster with virtual reconfiguration, the
queuing time consists of two parts:

A� ��� � + A� � � ��� � 

�! D E � ����FHG	��5��A� B

where A� � � ��� � is the queuing time in non-reserved work-
stations, � is a FIFO queuing function mainly determined
by the CPU service time of jobs in the queue of a reserved
workstation, and � is the number of reserved workstations,
and FIG2��56� is the number of jobs in reserved workstation 5 .

The queuing time in reserved workstation 5 satisfies

����FHG2��56�A���KJ>LNM
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D P
B

where the arrival order of jobs to workstation 5 is in an in-
creasing order, i.e. job . is the first job arrived in worksta-
tion 5 , and job F G ��5�� is the last arrived job. Variable 3

D P
is

the waiting time of job
: 
 . for job

:
to complete in work-

station 5 . In other words, 3
D P

is the time interval between
the arrival time of job

: 
 . and the completion time of job:
.

4. Migration time. There will be again three possible results:� ����
 � A� ����
 ,
� ����
 + A� ����
 , and

� ����
 B A� �R��
 . The
migration time is workload and network speed dependent.
As high speed networks become widely used in clusters,
the migration time in load sharing is only a small portion in
the execution time, becoming less crucial for load sharing
performance. When

� �R��
 B A� ����
 , the virtual reconfig-
uration needs to sufficiently reduce queuing time to trade
off the increase in migration time. Our experiments show
that

� �R��
TS A� ����
 because the number of large jobs is very
small in job pools.

Using the four portions in the total execution time, considering
the paging time reduction (

� ���	
 � � A� �	��
 � ), and assuming the



difference between
� ����
 and A� ����
 is insignificant in load sharing

performance, we examine the potential execution time reduction
from the virtual reconfiguration:� � � ���� � (*� -/.�0 1;� .�4 5 �>1;� 8�0 � 1;� :
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The above model gives conditions for the virtual reconfigura-
tion to effectively reduce the total execution time by resolving
the blocking problem. A key condition for performance gains (i.e.
the above difference is larger than 0) is that the queuing time in
non-reserved workstations ( A� � � ��� � ) is significantly smaller than
the queuing time in all workstations without virtual reconfigura-
tion because jobs are more evenly distributed with a virtual recon-
figuration. Since time quantum �

� D E � � J<L@M
D	OP
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D P

in reserved workstations include CPU service times, and no page
faults due to memory shortage will be conducted, the queu-
ing time in the reserved workstations are minimized if 3

D � B3
D
� $�$�$ B 3

D
J L M

D	O
. This is easy to nearly achieve because only a

small portion of jobs are large ones.
The model also indicates that virtual reconfiguration can be

potentially unsuccessful with the following conditions:

1. The cluster is lightly loaded, and moderate page faults in
each node can be effectively reduced by dynamic load shar-
ing.

2. Majority jobs in the workload are equally sized in their
memory demands. Virtual reconfiguration will not show its
effectiveness because the chance of unsuitable resource al-
locations is very small.

3. If the memory allocation size of a migrated job to a reserved
workstation is larger than the available user space in the re-
served workstation, page faults may increase the job queu-
ing time in a reserved node.

The concern in the first condition has been addressed by adap-
tively reserving workstations, where the virtual reconfiguration is
not initiated until the blocking problem is detected. In practice,
our experiments have shown that the memory demands of jobs
in a workload are rarely equally sized. Thus, the second concern
should not be a base for designing a general purpose load shar-
ing system. The third concern can be addressed by selecting the
workstations with large user memory space as the reserved work-
stations.

6 Conclusion
Accommodating expected and unexpected workload fluctua-

tion of service demands is highly desirable in cluster comput-
ing. Existing studies indicate that even load sharing schemes

that dynamically assign and schedule resources are not able to
fully utilize the available resources. We propose an adaptive and
virtual reconfiguration method to address this limit. Our trace-
driven simulation experiments and analysis show that the pro-
posed method effectively improves cluster resource utilization,
resulting in significant performance gain. Two technical issues
should be addressed to implement the proposed method in clus-
ters. First, the globally shared load information in each node is
dynamically changed, and needs to be delivered timely and con-
sistently [7]. Second, the system is likely to be heterogeneous
from CPU speed, memory capacity, to network interfaces.
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