ЛИТЬЕ В КОКИЛЬ



Общая характеристика способа литья.

В общем объеме производства отливок из цветных металлов и сплавов на долю кокильного литья приходится около 40%. Это обусловлено такими преимуществами литья в кокиль, как повышенная размерная точность отливок, высокая производительность процесса, многократность использования литейных форм, возможность автоматизации процесса экономное использование производственных площадей, возможность комбинированного использования кокилей и сложных песчаных стержней, стабильность плотности и структуры отливок, высокие механические и эксплуатационные свойства.

При увеличении толщины стенки прочностные и пластические свойства отливок понижаются, но в меньшей степени, чем при литье в песчаную форму.

Недостатки литья в кокиль - высокие трудоемкость изготовления и стоимость металлической формы, повышенная склонность к возникновению внутренних напряжений в отливке вследствие затруднительной усадки и более узкого по сравнению с литьем в песчаную форму интервала оптимальных режимов, обеспечивающих получение качественной отливки.

Литье в кокиль широко используют при изготовлении фасонных отливок из алюминиевых, магниевых и цинковых сплавов; реже - при литье медных сплавов и редко используется при изготовлении отливок из тугоплавких сплавов.

Средняя толщина стенок кокильных отливок из алюминиевых сплавов составляет 3-7 мм. Характерная номенклатура кокильных отливок из алюминиевых сплавов: детали моторной группы (блок цилиндров, поршень, головка блока, картер); корпуса насосов, фильтров, выключателей; колеса автомобилей, вентиляторов; детали бытовых приборов.

Оптимальная толщина стенок кокильных отливок из магниевых сплавов составляет 5-10 мм. Литье в кокиль из магниевых сплавов ограничено используют при изготовлении тонкостенных отливок сложной конфигурации. Характерная номенклатура отливок: крышки (сальника, головки цилиндров, гидрораспределителя); картеры (коробок передач, сцепления); патрубки; опоры подшипников; корпуса (насосов, фильтров, подшипников); кронштейны, колеса вентиляторов и др.

Литье в кокиль медных сплавов чаще всего применяют при изготовлении отливок из кремнистой латуни типа ЛЦ16К4. Оптимальная толщина стенки отливок 8-12 мм. Характерная номенклатура: водная и паровая арматура втулки, шестерни, корпусные детали насосов, подшипники.

Конструкция металлических форм.

При литье в кокиль определяющее значение имеют тепловые условия формирования структуры отливки, которые в широких пределах могут изменяться варьированием толщины стенки киля, а также составом и толщиной покрытия, наносимого на рабочую поверхность кокиля.

При толщине стенки кокиля равной или меньшей толщины стенки отливки отл, определяющее значение внешний теплообмен между кокилем и окружающей среде; с увеличением толщины стенки кокиль роль внешнего теплообмена снижается, основное значение приобретает теплоаккумулирующая способность формы. Время затвердевания отливки и максимальная температура на рабочей поверхности кокиля уменьшается по мере увеличения объемного состояния массы кокиля и массы отливки до 4; дальнейшее увеличение этого показывает практически не оказывает влияние на время затвердевания отливки.

При изготовлении отливок из алюминиевых сплавов используют также практические рекомендации; для отливок с толщиной стенки до 5 мм толщина стенок кокиля составляет 20-40 мм (большее значение относится к сплавам с хорошей жидкотекучестью), для отливок с толщиной 5-20 мм - соответственно 40-80 мм.

Высокая стоимость изготовления кокилей вынуждает особое внимание уделять оценке эксплуатационной стоимости и соответствующему выбору материалов для рабочих элементов кокиля. Пригодность материала для кокилей оценивают по различным параметрам. Для хрупких металлов этим параметром является временное сопротивление

Многообразие номенклатуры литых деталей определяет разнообразие конструкций кокилей. В таблице 1 приведена классификация кокилей по их применению.

Кокили различают также по способу их изготовления (литьем, сваркой, обработкой резанием), по числу одновременно получаемых в их отливок (одно - и многоместные), способу регулирования температуры, степени универсальности конструкции (составные, из нормализованных элементов, специальные).

Среди специальных кокилей перспективы охлаждаемые, а также кокили из спеченных и композиционных материалов. Принудительное охлаждение стержня и боковых вставок позволяет устранить пористость в зоне стержня и повысить темп работы кокиля. Однако требуемый тепловой режим кокиля можно стабилизировать только при автоматическом регулировании процесса охлаждения, что усложняет конструкцию кокиля и его обслуживание.

Для регулирования охлаждения кокиля могут быть использованы специальные устройства - тепловые трубки, в которых используется испарительное охлаждение с замкнутым циклом обращения хладагента.

Кокили из спеченных порошковых материалов обеспечивают повышение газопроницаемости форм, дифференцированный (за счет армирования) отвод тепла от отливки и повышенную термостойкость.

При проектировании кокилей необходимо правильно выбрать зазоры и подвижных частях, а также между знаками песочных стержней и соответствующими отверстиями в кокиле.

При конструировании кокилей необходимо предусмотреть вентиляцию литейной формы, особенно при наличии развитых поверхностей, выемок и глухих полостей. Для этого на плоскости разъема кокиля делают вентиляционные каналы, а на развитых поверхностях и в глухих полостях устанавливают вентиляционные пробки. Реже для этой цели устанавливают фильтры из спеченных порошковых материалов. Эффективным средством вентиляции формы является нанесение мелкопрофильных узоров и сеток на рабочую поверхность; при этом, помимо вентиляции формы, можно сформировать требуемый фронт потока металла на данной поверхности и устроить затвердевание наружной корочки отливки.

Тепловой режим работы кокиля зависит от вида сплава, массы и сложности конфигурации отливок. Рабочие температуры кокилей находятся в интервале 100-470°С.для тонкостенных отливок кокили нагревают сильнее, чем для массивных и толстостенных.

Составы кокильных покрытий.

Покрытия, наносимые на рабочие поверхности кокиля, позволяют регулировать интенсивность теплообмена между отливкой и кокилем, защищают поверхность кокиля от химического взаимодействия с жидким металлом и обеспечивают литейной формы за счет их газопроницаемости.

В состав покрытия исходят огнеупорные наполнители связующие, активизаторы и вода. В качестве наполнителей используют мел, окись цинка, асбест, тальк, двуокись титана, шамот, графит. Все наполнители предварительно размалывают и просеивают через сито с ячейками размером не более 0,3-1,0 мм2. Асбест предварительно прокаливают при температуре 1000-1100°С и просеивают через сито с ячейками 2-3 мм2. для магниевых сплавов применяют наполнители более грубого помола, чем алюминиевых.

В качестве связующего чаще всего используют жидкое стекло, в качестве активизатора - борную кислоту.

При приготовлении покрытия наполнители замешивают в подогретую до 70-80°С воду; борную кислоту вводят в виде отдельно приготовленного раствора, а жидкое стекло - после охлаждения суспензии до комнатной температуры.

Важнейшей характеристикой покрытия является теплопроводность. Она зависит от теплопроводности наполнителя, пористости покрытия и состава газообразных продуктов, находящихся в порах. Увеличение пористости на 33 % снижает теплопроводность на 45 %, а замена азота в порошковом пространстве на водород приводит к росту теплопроводности почти на порядок. Теплопроводность покрытия равна 0,12-0,54 Вт/(м *°С); теплопроводность анодной пленки на кокиль из сплава АЛ9 - 0,5 Вт/(м *°С).

Покрытия наносят на рабочие поверхности кокиля (литники, прибыли) кистью или с помощью пульверизатора. При нанесении покрытия кистью температура кокиля не должна превышать 130 oС. Окрашивание из пульверизатора осуществляют на расстоянии 350-500 мм от окрашиваемой поверхности при давлении сжатого воздуха 0,25-0,35 МПа; температура кокиля не должна превышать 200°С.

Толщина (мм) наносимого покрытия на поверхность литниковой системы составляет 0,5-1,0, на поверхность прибылей - 2,0-3,0; на рабочую поверхность кокиля - 0,1-0,3.

Покрытия на основе окиси цинка при нанесении ложатся тонким ровным слоем и обеспечивают низкую шероховатость поверхности отливки. Поверхность с большой шероховатостью покрывают мелом и тальком; еще более грубую поверхность - асбестом (обеспечивает хорошую заполняемость формы). Вентилируемость кокиля улучшается при использовании покрытий с более грубым смолом составляющих.

Особенности технологии литья в кокиль цветных сплавов.

При литье в кокиль алюминиевых сплавов вследствие повышенной скорости затвердевания газоусадочная пористость подавляется, что способствует получению плотных отливок. Положительно сказывается повышенная скорость затвердевания на дисперсность структурных составляющих и фазовом составе сплавов: измельчается эвтектика, уменьшаются размеры и улучшается форма железосодержащих фаз. Однако кокиль хуже заполняется сплавом, чем песчаная форма, поэтому необходима повышенная температура металла при заливке. Улучшению заполняемости способствует также повышение температуры кокиля и применение покрытий с высокими теплоизолирующими свойствами. Большое значение имеют условия теплообмена между отливкой и кокилем для алюминиевых сплавов с широким температурным интервалом затвердеванием.

Высокопрочные алюминиевые сплавы склонны к образованию горячих трещин, поэтому при изготовлении отливок на этих сплавов рекомендуется податливые песчаные или оболочковые стержни вместо металлических или применять комбинированные литейные формы: нижнюю - металлическую, верхнюю - облицованную или полностью песчаную. Вследствие повышенной склонности к окислению и малой плотности необходимо проводить фильтрацию алюминиевых сплавов при заливке в кокиль. Чаще всего для этого используют сетки из стеклоткани или из перфорированной металлической ленты.

Для магниевых сплавов из-за их повышенной склонности к окислению, большой усадки и низкого теплосодержания предусматривают специальные средства защиты от окисления, повышенного перегрева металла перед заливкой, а также усиленное питание затвердевающей отливки из массивных прибылей и ускоренные подрыв стержней и раскрытие формы по сравнению с литьем в кокиль алюминиевых сплавов.

Для предотвращения возгорания жидкого металла полость кокиля припудривают серым цветом, иногда им достаточно присыпать кромки кокиля у литниковой чаши и выпора. Заливочный инструмент перед использованием промывают в расплавленном флюсе.

При конструировании кокилей необходимо учесть, что линейная усадка отливок на магниевых сплавах составляет, %: для мелких отливок (до 100 мм) 1,0-1,3; для средних отливок (100-400мм)0,8-1,2%; для крупных (400-1000 мм) 0,6-1,1.

Отливки из медных сплавов склонны к образованию трещин, что затрудняет их изготовление в кокилях. Медные сплавы имеют низкую жидкотекучесть. Из медных сплавов наибольшую жидкотекучесть имеют кремнистые бронзы, наиболее низкую - марганцевые. Для свинцовых бронз характерна ликвация компонентов, поэтому при изготовлении отливок из этих сплавов рекомендуют применять водоохлаждаемые кокили.

Температура заливки оловянных бронз 1080-1200°С; латуней 950-1100°С.

Кокильные машины. Специальные технологические приемы и способы заливки кокилей. Основным технологическим оборудованием при литье в кокиль являются однопозиционные кокильные машины и многопозиционные карусели.

При гравитационной заливке используют машины с поворачивающимся или наклоняемым кокилем. Угол поворота составляет 15-180°. Поворот кокиля способствует устранению турбулентности потока, улучшению направленности питания и затвердеванию отливок, расширению диапазона допустимых отклонений технологического процесса по различным параметрам. В кокильной машине повторного типа объединены раздаточная печь - миксер и кокиль, электронагреватели герметизированы трубой из силицированного графита и обеспечивают подогрев жидкого металла в тигле. Регулируемый поворот миксера приводит к заливке жидким металлом металлической формы. в процессе затвердевания миксер играет роль обогреваемой прибыли.