Atroschenko Denis

  Electrotechnical faculty

  Department of mining and plant transport and logistics

  Speciality "Electromechanical equipment energy-intensive industries" 

 Ground of regime parameters of the air-lift device

  Scientific adviser: Professor Kondrahin Vitaliy

Resume Abstract

Abstact
In Ukraine 47,3 thousand industrial enterprises, from them 37,6 thousand small is. At18,8 % of all occupied population work and is made production and services for more than 70 подотраслей the industries.
         Industrial production of Ukraine provides more than third of total amount of a total internal product, almost 50 % of the goods and services, and also 80 % of export production.
         The industrial enterprises are the basic elementsof the vital spheres of the state: economic - basis of formation of cost; budgetary - filling sources; territorial - градообразователи; scientific and educational - development engines, consumers and sources of knowledge; social - places of realisation of human possibilities and maintenance with existence means; tax - sources of receipts; in financial - animators of money [
1].
         Coal industry of Ukraine is presented mainly by the enterprises DonetskLvovsko-Volynsk coal and Dneprovsky буроугольного pool. A basis for coal of Ukraine still there is Donbass.
         Coal extract in Donetsk area. The coal industry is one of the largest branches of a national economyof Ukraine. The coal share makes not less than 94-96 % in total amount of consumed own energy carriers of the country. Maintenance necessary and enough of extracted coal is a guarantee of power independence of the state.
         At the present stage of development of the industry the important role is occupied with hydrotransport in the mining industry, agriculture.
         The important role in hydrotransport occupies air-lift hydrolifting.Improvement of their parametres and characteristics is very important.
The big contribution to research эрлифтных installations was brought by scientists: Ignatov A., Kozyrjatsky L. Н, Kononenko A. P, Gejer V. G, Alexeys V.V., Alfyorov M. JA, Antons I. К, Logvinov N. G, Uskov Е. В, Zelinsky V. M, Mihajlov V. I, Лезгинцев of M. эрлифтной installations were engaged in questions on work and start-up such organisations: Donetsk national technical university, Sumy the state university, the East Ukrainian national university of a name of Vladimir Dalja, the Moscow college of mines.
         The made analysis of the literature shows, that for calculation эрлифтных installations there is a set of techniques, i.e. a uniform technique not существет, and the majority of them are not adapted for the COMPUTER. In the majority of design procedures the big attention is given to the analysis of the losses influencing for work эрлифта. Consideration of influence of dynamic relative immersing will allow to raise accuracy of calculations. The substantiation of rational parametres эрлифта is important, and also possibility them to define by means of the COMPUTER. Therefore working out of a technique and its further perfection are actual.
The work purpose is definition of rational parametres and design procedure working out air-lift device .
         For achievement of the specified purpose following problems are put:
-  The literature analysis on the given question;
-  Drawing up of mathematical model air-lift device;
-  Construction of account characteristics эрлифта at the constant expense of compressed air;
-  Research of power inputs.
In sources the basic schemes эрлифтных installations, their analysis are shown, the basic dependences are resulted, key parametres for calculation air-lift are given [12, 27].
         Some existing devices air-lift device are resulted. Theory questions эрлифтов with consideration of dependences of their productivity are taken up. The scope эрлифтных installations is shown. The calculation example air-lift is resulted at the constant expense of compressed air [27].
         In a source descriptions and the analysis of designs, for mining operations from a bottom of reservoirs air-lift device are stated; bases of the theory of calculation air-lift device are stated, the basic characteristics air-lifts and areas of their application for various conditions of operation are resulted; recommendations for choice optimum parametres and to calculation are given [22, 26].
         In a source descriptions and the analysis of designs, применямых for mining operations from a bottom of reservoirs air-lift device are stated; bases of the theory of calculation air-lift device are stated, the basic characteristics air-lifts and areas of their application for various conditions of operation are resulted; recommendations for choice optimum parametres and to calculation are given [22].
         The designing technique эрлифтных installations is resulted: the sequence of designing, a choice of parametres for designing is defined. Descriptions, equipment characteristics air-lift device are offered. The calculation method air-lift is offered [23].
         Questions on application air-lift on deep-water reservoirs are considered, ways of improvement of a design air-lift for their application are offered at mining operations. Calculation is offered, to the recommendation about calculation of constructive knots air-lift [5].
         In the book researches on application air-lift on reservoirs of the big depth for the purpose of overall performance increase эрлифта are shown and analysed. Experimental dependences which reflect work эрлифта in the big depths are resulted, and also at work with a firm material [11].
         In the book researches эрлифта are described, the designing and calculation methodology air-lift for its work on the big depths is offered [23].
         In work questions of modelling of working process эрлифта by means of the COMPUTER are considered, questions барботажного a mode air-lift are taken up and the mathematical model of process барботажа is offered, the specified calculations of parametres are carried out, dependences of account characteristics air-lift are thus shown [29].
Classification air-lifts, liquids used for transportation and hydromixes in the mining industry is offered [30].
With national economy growth the requirement for resources increases. It is connected by that with increase in capacities of the enterprises or input of the new enterprises in action power resources, such as coal are required that is in turn connected with increase in extraction of the last.
         Coal mining increase – a base direction of development of a power complex of our country as coal stocks in Ukraine big enough and them are expedient for developing. For mineral extraction last years the majority of mines leaves on the big depths that involves a problem of fast and qualitative water outflow. Important value is represented by a problem of clearing of mine capacities such as зумпфов from a firm material. With a pulp all pumps, especially from the big depth can pump out a such liquid not.
         It conducts all to considerable capital expenses for purchase of the new and expensive equipment, its service and repair. The cheapest and simple means for the decision of the given problems is application air-lift device.
         Air-lift installations are one of the most simple on a design, are simple in management, can work on the big depths, work with a firm material. In this connection it is possible to tell, that air-lift adequately competes to others water device. The scheme air-lift is shown in drawing 2.1.
Scheme air-lift. 
Animation: 7 frames; 15 repetitions; 76.8 kb
1 – an air separator; 2 – a submitting pipe; 3 – an air pipe; 4 – the amalgamator .
Fig. 4.1.1 Scheme air-lift
(animation: 7 frames; 15 repetitions; 76.8 kb.)
Productivity air-lift is defined by empirical dependence:
,                                                                                          (4.1.1)
Where  С  и  dn   –  accordingly factor of giving (productivity) and diameter of an elevating pipe air-lift device.
Volume productivity эair-lift essentially decreases with increase in density of a transported pulp, and mass productivity is less subject to these changes.
         In this connection at definition of operational parametres air-lift dependence is used:
,                                                                                       (4.1.2)
Where Gn – mass productivity air-lift, t/s.
           - Relative immersing of the amalgamator:
,                                                                                           (4.1.3)
Where h - depth of immersing of the amalgamator, m;
        H - height of lifting of a liquid over its level in capacities, m.
Superfluous pressure in the amalgamator air-lift at operating conditions is defined by dependence:
,                                                                      (4.1.4)
Where  - pulp density in the bringing pipeline taking into account sliding of firm particles concerning a liquid phase, kg/m3;
         - a hydraulic bias of a submitting pipe at movement in it only liquids.
Speed of relative sliding of firm particles:
,                                                                              (4.1.5)
Where  - speed of the constrained falling of single fractions in the conditions of a single-phase stream, m/s.
,                                                                          (4.1.6)
Where  - factor of resistance to movement of a firm body.
         After transformations we will receive:
.                                                (4.1.7)
Or
,                                                                       (4.1.8)
 From (4.1.8) relative immersing will look like:
.                                                                   (4.1.9)
Having substituted (4.1.9) and in (4.1.4), we will receive:
,                             (4.1.10)
Where  - speed of movement of a liquid, m/s;
Where
.
Then expression for pressure definition in the amalgamator will become:
.                              (4.1.11)
.
Considering, that the hydraulic bias is defined, ,
,                              (4.1.12)
Where .
Having executed corresponding transformations it is had:
,                                       (4.1.13)
From (4.1.13) follows, that:
,                                              (4.1.14)
Solving the equation (4.1.14) it is possible to calculate Gn for various, Gn ,that allows to investigate influence of these factors on parametres air-lift and to define their optimum values from the economic point of view.
         The expense of air led to normal conditions, is defined on dependence:
,                                                                                (4.1.15)
Where q – the specific expense of air.
,                                                                          (4.1.16)
Where  - dynamic height of lifting, m;
        - Isothermal EFFICIENCY air-lift;
        - Atmospheric pressure, Pas.
.                                                                          (4.1.17)
For calculation of the account characteristic under formulas () - () and the equations () were are taken following initial data:
-  Constant factors ;
-  Liquid density ρ=1026 kg/m3;
-  Density of a firm body =2500 kg/m3;
-  Atmospheric pressure Ра=101325 the Pas;;
-  Depth of immersing of the amalgamator h=1050 m;
-  Depth of immersing of the amalgamator Н=20 m;
-  Factor of a hydraulic friction =0,021;
-  Diameter of a lifting pipe =0,2 м;
-  Constant factors ;
-  Factor of resistance to movement =0,0526.
         Calculation of the account characteristic was conducted by means of the COMPUTER, the program for the equation decision (18) has been worked out.
Fig. 4.2.1 Account characteristic air-lift
From the received dependence of productivity air-lift it is possible to draw a conclusion, that at the expense of compressed air from 0 до10 m3/mines productivity air-lift sharply increases, further with increase in the expense of air productivity air-lift changes slightly.
In a fuel and energy complex of Ukraine the coal industry – one of the most perspective branches of development of a national economy. Because mine building begins with passage of trunks, and also mines "go deep", and water inflows grow, not to use more economic and effective ways of water outflow.
         
,                                                                                  (4.3.1)
Where - productivity factor эрлифта;
          - Diameter of a submitting pipe, m.
,                                                        (4.3.2)
,                                   (4.3.3)
Useful capacity will be will be defined from expression:
,                                                                (4.3.4)
The spent capacity thus:
                                                              (4.3.5)
Where  - air expense m3/s.
         Results of the analysis of influence of diameter lifting pipes on useful capacity and installation EFFICIENCY are more low presented. The analysis was spent for diameters: dn=0,2; 0,24;0,26; 0,28; 0,3; 0,33 м, and also for the expense of air Qв=0,4 m3/s therefore following dependences (fig. 2, 3) have turned out.
Fig. 4.3.1 – dependence of EFFICIENCY on lifting height at change of diameter of a lifting pipe.
 
Fig. 4.3.2 – dependence of useful capacity on lifting height at change of diameter of a lifting pipe.

As have shown results of research, at increase in diameter of a lifting pipe of installation useful capacity Nn and EFFICIENCY η air-lift increases. The correct choice of diameter of a lifting pipe conducts to reduction of power inputs.
   
As a result of the performed work following conclusions have been drawn:
 1.   The analysis of existing designs air-lift device, schemes откачки liquids (hydromix) for a choice of rational parametres air-lift, and also for conditions of its operation has been carried out;
 2.   The mathematical model эрлифта has been made and calculation of its account characteristic is made;
 3.   The productivity estimation эрлифта has been given at the constant expense of compressed air. At the expense of compressed air from 0 до10 m3/min productivity эair-lift sharply increases, further with
 4.   As have shown results of research, at increase in diameter of a lifting pipe of installation useful capacity Nn and EFFICIENCY η air-lift increases. The correct choice of diameter of a lifting pipe conducts to reduction of power inputs.

1.   Промышленность Украины сегодня [электронный ресурс] - Режим доступа: http://upr-search.com.ua
2.   Гейер В.Г., Данилов Е.И. Эрлифтный зумпфовый водоотлив с малой относительной глубиной погружения // Уголь Украины. - I 1978. - № 9. - С. 28-29.
3.   Гейер В.Г., Миргородский В.Г., Усков Е.В. Эрлифтный водоотлив стволов глубоких шахт // Разраб. месторождений полезных искoпаемых: Респ. межд . науч.-техн. сб. - 1971. - Вып. 24. - I С. 42-45.
4.   Антонов Я.К. Совершенствование эрлифтных подъемов для выдачи горной массы из глубоких шахт.: Автореф. дис. канд. техн. наук. - Донецк, 1985. - 18 с.
5.   Метревели В.Н. Применение эрлифтных установок в условиях обо­гатительных фабрик Чиатурского месторождения // Труды ХУ научн.-техн. конференции ГрузПи. - 1970. - Вып. 16. С. 61-69.
6.   Качан В.Г., Купчинский И.А. Бурение шахтных стволов и сква­жин. - М.: Недра, 1984. - 278 с.
7.   Козыряцкий& Л.Н. Исследование и разработка уточненного расчета эрлифтных установок горной промышленности: Автореф. дис. канд. техн. наук. - Донецк, 1976. - 20 с.
8.   Гейер В.Г., Логвинов Н.Г. Математическое описание безразмер­ных характеристик эрлифтов // Разработка месторождений полезных ископаемых: Респ. межвед. науч.-техн. сб. - 1972. - Вып.
9.   Малыгин С.С., Сорокин JI.H. Определение удельного расхода воз­духа и подачи коротких эрлифтов // Разраб. месторождений полезных ископаемых: Респ. межвед. науч.-техн. сб. - 1983. - Вып. 64. - С. 83-86.
10.  Алексеев В.В., Алферов М.Я. Расчет характеристики эрлифтной установки. - М., 1982. - 9 с. - Деп. в ВИНИТИ 02.03.83, № 1093-83.
11.  Адамов Б.И. Исследование и разработка глубоководных эрлифтных установок для подъема твердого материала: Дис. канд. техн наук. - Донецк, 1982. - 192 с. d67. Скорынин Н.И. Исследование и разработка глубоководных много­смесительных эрлифтных установок для подъема горных масс: Дис. ... канд. техн. наук. - Донецк, 1983. - 205 с.
12.  Костанда B.C., Логвинов Н.Г., Скорынин Н.И. Определение основных эксплуатационных параметров эрлифта с длинной подающей трубой и несколькими смесителями. - Донецк, 1982. - 12 с. - Деп. в ГРНТБ УкрНИИНТИ 20,03.82, № 3463.
13.  Костанда B.C. Исследование и разработка эрлифтных и углесос- но-эрлифтных подъемов гидрошахт: Дис. канд. техн. наук. - Донецк, 1963. - 213 с.
14.  Чеченев А.И. Расчет характеристик насосно-эрлифтной установки // Разраб. месторождений полезных ископаемых: Респ. межвед. науч.-техн. сб. - 1975. - Вып. 41. - С. 93-96.
15.  Стифеев Ф.Ф. Разработка эрлифтов для подъема пульп повышенной плотности: Дис. ... канд. техн. наук. - Донецк, 1985. - 189 с.
16.  Логвинов Н.Г., Скорынин Н.И. Процесс переключения подачи воз­духа с верхнего на нижний смеситель эрлифта // Разраб. месторождений полезных ископаемых: Респ. межвед. науч.-техн. сб. - Вып. 58. - С. 78-81.
17.  Логвинов Н.Г. Самовозбуждагощиеся колебания в воздушных подъем­никах // Разраб. месторождений полезных ископаемых: Респ. меж;вед. науч.-техн. сб. - 1973. - Вып. 31. - С. 88-98.
18.  Логвинов Н.Г., Стегниенко А.П. Исследование процессов пуска эрлифтного гидроподъема // Разраб. месторождений полезных ископаемых: Респ. межвед. науч.-техн. сб. - 1975. - Вып. 41. - С. 85-90.
19.  Козыряцкий Л.Н., Федоренко Б.А. Расчет удельного сопротивления в подъемной трубе эрлифта // Разраб. месторождений полезных ископаемых: Респ. межвед. науч.-техн. сб. - 1981. - Вып. 58. - С. 65-68.
20.  Усков Е.В. Исследование эрлифтов как средств водоотлива из глубоких шахт: Автореф. дис. ... кавд. техн. наук. - Донецк, 1972. - 20 с.
21.  Белов Б.А. Исследование и разработка технологических параметров и конструктивных схем эрлифтных снарядов для бурения неглубоких скважин в море: Дис. ... канд. техн. наук. - М., - 194 с.
22.  Триллер Е.А. Разработка схем и средств транспорта горной массы из подземных технологических емкостей: Автореф. дис. канд. техн. наук. - Донецк, 1984. - 16 с. 23.   Кононенко А. П. Рабочий процесс эрлифта и его моделирование. (Монографія) ISBN 978-966-377-095-6. Донецк: ГВУЗ «ДонНТУ”, 2010. – 171 с.
24.  Кононенко А. П. Модель  рабочего  процесса  эрлифта  со  снарядной  структурой  водовоз душного потока. Промислова гідравліка і пневматика. - Вінниця. - 2006. - №1 (11). - С. 34-37.
25.  Модель  рабочего  процесса  эрлифта  с  эмульсионной  структурой  водовоздушного потока.  Наукові  праці  ДНТУ.  Серія: "Гірничо-електромеханічна".  Випуск  101.  - Донецьк: ДонНТУ. – 2005. - С. 58-67.
26.  O принципе  действия  эрлифта.    Наукові    праці    Донецького    національноготехнічного  університету.  Серія "Гірничо-електромеханічна".  -  Донецьк:  ДонНТУ.  – 2007. – Вип. 13 (123) - С. 91-100.
27.   Модель  рабочего  процесса  эрлифта  в  условиях  переменных  притоков  жидкости(гидросмеси).  Наукові  праці  ДНТУ. Серія  "Гірничо-електромеханічна".  Випуск  16 (142). - Донецьк: ДВНЗ "ДонНТУ". – 2008. - С. 149-158.
28.  Кононенко А. П. Энциклопедия  эрлифтов.  (Монографія).  ISBN5-900818-12-8.  М.: ИнформСвязьИздат, 1995. - 592 с.
29.  Малеев В. Б., Игнатов А. В. Работа эрлифта при постоянном расходе сжатого воздуха. Наукові праці ДонНТУ. Серія "Гірничо-геологічна" №7(135). 2008 г. 108–113/
30.  Кононенко А. П., Козыряцкий Л. Н., Мизерный В. И. Классификация эрлифтов. Наукові праці ДонНТУ. Серія "Гірничо-геологічна" Вип. 7. 1999  г.  – С. 130-137.

         Note! When writing this abstract master's work is not completed. Final completion: January 2013. The full text of the and materials on the topic can be obtained from the author after the specified date.

 

Resume