Единицы измерения в радиационной физике
Авторы: Панкратов С.
Источник: Наука и жизнь
– 1986, Выпуск 9
Авторы: Панкратов С.
Источник: Наука и жизнь
– 1986, Выпуск 9
Для оценки радиационной опасности, которой подвергается человек вблизи источников ионизирующих излучений, существует большой набор дозиметрических приборов. Каждый из них служит для измерения вполне определенной физической величины, а измерить какую-либо величину – это значит установить, сколько раз в ней содержится некоторая элементарная порция, называемая единицей физической величины. Выбор такой единицы, вообще говоря, произволен, и он закрепляется соответствующим международным соглашением. Какие же единицы выбраны для измерения свойств ионизирующих излучений?
Основная физическая величина, которая характеризует радиоактивный источник, это число происходящих в нем распадов в единицу времени. Такая величина была названа активностью. Активность того или иного вещества, например, радиоактивного изотопа, определяется количеством атомов, распадающихся в единицу времени (скажем, за одну секунду), и, следовательно, число испускаемых веществом радиоактивных частиц прямо пропорционально его активности.
В качестве единицы активности в Международной системе единиц СИ выбран беккерель (Бк, Bq). Активность в 1 Бк соответствует одному распаду в секунду. Однако в практической дозиметрии и радиационной физике чаще используется другая единица – кюри (обозначается Ки, Ci). Кюри в 37 миллиардов раз больше одного беккереля (1 Ки = 3,7 10 10 Бк), то есть соответствует 37 миллиардам радиоактивных распадов в секунду. С чем связан такой, казалось бы, странный и произвольный выбор единицы? Дело в том, что именно такое число распадов происходит в одном грамме радия-226 – исторически первого вещества, в котором были изучены законы радиоактивного распада. Поскольку активность одного грамма чистого радия близка к 1 Ки, то ее часто выражают в граммах. В этом (и только в этом) случае единица массы вещества обладает единичной активностью.
Благодаря распаду количество радиоактивных атомов в первоначальной массе вещества уменьшается с течением времени. Соответственно снижается, и активность. Это уменьшение активности подчиняется экспоненциальному закону:
Ct = C0 exp (- [0,693/T]t),
который называется законом радиоактивного распада. Здесь Ct – активность вещества по прошествии времени t, С0 – активность в начальный момент. Как видно из формулы, описывающей распад, величина T служит важнейшей характеристикой радиоактивности – она показывает то время, по истечении которого активность вещества (или число радиоактивных атомов) уменьшается вдвое. Это время T называется периодом полураспада.
У разных радиоактивных веществ период полураспада меняется в очень широких пределах: от миллионных долей секунды до нескольких миллиардов лет. Например, период полураспада урана-238 равен 4,5 миллиарда лет, радиоактивного изотопа йода-131 – около 8 дней, цезия-137 – тридцать лет. При авариях с ядерными установками последние два изотопа способны доставить наибольшие неприятности. Оба представляют собой летучие продукты деления, поэтому они легко могут попасть в атмосферу и образовать аэрозоли. Однако если йода-131 через несколько месяцев останется ничтожно мало – он практически весь распадется, – то цезий-137 вместе с другими выпавшими долгоживущими изотопами еще сохраняет способность заражать местность. Во что же превращается радиоактивный йод в результате распада? В инертный газ ксенон-131, который вполне устойчив. За 100 дней содержание йода-131 и соответственно его активность уменьшатся в 212 = 4096 раз.
Под действием излучений, испускаемых радиоактивными изотопами, в облучаемом объекте накапливаются различные нарушения. Принято считать (хотя это сегодня все чаще подвергается сомнению), что изменения, происходящие в облучаемом веществе, полностью определяются поглощенной энергией радиоактивного излучения. Это положение, строго говоря, не доказано, и его можно назвать энергетическим постулатом. Во всяком случае, поглощенная энергия излучения служит самой удобной физической величиной, характеризующей действие радиации на организмы.
И вот на VII Международном конгрессе радиологов, который состоялся в 1953 году в Копенгагене, в период наиболее острого интереса к атомной науке и технике, энергию любого вида излучения, поглощенную в одном грамме вещества, было рекомендовано называть поглощенной дозой. В качестве единицы поглощенной дозы был выбран rad, по первым буквам английского словосочетания radiation absorbed dose
, – поглощенная доза излучения). Один рад соответствует такой поглощенной дозе, при которой количество энергии, которая выделяется в одном грамме любого вещества, равно 100 эрг независимо от вида и энергии ионизирующего излучения. Таким образом,
1 рад = 100 эрг/г = 10-2 Дж/кг = 6,25•107 МэВ/г
для любого материала.
Поглощенная доза, образуемая в веществе в единицу времени, называетсямощностью поглощенной дозы и измеряется в единицах рад/с, рад/мин, рад/ч и т.д.
Рад, так же как и кюри (1 Ки = 3,7 гигабеккерелей, ГБк), – это так называемые внесистемные единицы, и с точки зрения ортодоксальных приверженцев системы СИ на их использование должен быть наложен суровый запрет. Однако жизненная практика оказалась сильнее формальных предписаний, и незаконная
единица поглощенной дозы – рад – используется гораздо чаще, чем соответствующая единица системы СИ – грэй (обозначается Гр, Gy), (например, в широко используемом юбилейном справочнике, посвященном 50-летню Американского института физики, которое отмечалось в 1981 году, единица грэй
вообще не упоминается) Соотношение между единицами поглощенной дозы таково:
1 Гр = 1 Дж/кг = 100 рад.
Мощность поглощенной дозы измеряется в системе СИ в Гр/с, Гр/ч и т.д.
Стоит обратить внимание на то обстоятельство, что рад (или грэй) – единица чисто физической величины. По существу, это энергетическая единица, никак не учитывающая те биологические эффекты, которые производит проникающая радиация при взаимодействии с веществом. Однако то, что действительно интересует специалистов по дозиметрии и радиационной физике, – это изменения в организме, возникающие при облучении человека. Оказалось, что тяжесть всяческих нарушений сильно различается в зависимости от типа излучения.
Другими словами, знания поглощенной дозы совершенно недостаточно для оценки радиационной опасности. Более того, измерить поглощенную дозу непосредственно в живой ткани чрезвычайно трудно, и даже если бы удалось проделать такие измерения, их ценность оказалась бы невелика. Действительно, отклик живого организма па облучение определяется не столько поглощенной дозой, сколько микроскопическим – то есть на уровне отдельных молекул – распределением энергии по чувствительным структурам живых клеток. Поэтому возникла необходимость ввести такую измеримую величину, которая учитывала бы не только выделение энергии, но и биологические последствия облучения.
Из соображений простоты и удобства биологические эффекты, вызванные любыми ионизирующими агентами, принято сравнивать с воздействием па живой организм рентгеновского или гамма-излучения. Удобство здесь состоит в том, что для рентгеновского излучения заданные дозы и их мощности сравнительно просто получаются (например, с помощью калиброванных рентгеновских источников), хорошо воспроизводятся и надежно измеряются. Все эти процедуры становятся заметно сложнее для других типов излучений. Чтобы можно было сравнивать воздействие последних с биологическими эффектами от рентгеновского и гамма-излучения, вводится так называемая эквивалентная доза, которая определяется как произведение поглощенной дозы на некоторый коэффициент, зависящий от вида излучения.
Этот коэффициент, называемый фактором качества
Q, приблизительно равен единице для гамма-лучей и протонов высокой энергии; для тепловых нейтронов Q ≈ 3, а для быстрых нейтронов значение Q достигает десяти. При облучении α-частицами и тяжелыми ионами Q ≈ 20, а это значит, что даже сравнительно малые поглощенные дозы могут вызвать серьезные биологические последствия. Эквивалентная доза измеряется в бэрах (бэр – биологический эквивалент рентгена). Иногда употребляется также наименование рем
(от английской аббревиатуры rem – roentgen equivalent for man, эквивалент рентгена для человека). Коэффициент качества излучения Q устанавливается на основе радиобиологических экспериментов и приводится в специальных таблицах. Для рентгеновского излучения (Q = 1) один рад поглощенной дозы соответствует одному бэру.
Рисунок 1 – Радиоактивный распад.
При радиоактивном распаде число нестабильных ядер уменьшается с течением времени очень быстро – экспоненциально. Продолжительность жизни распадающегося вещества характеризуют временем, по истечении которого количество активных атомов в веществе в среднем уменьшается вдвое. Этот промежуток времени Т называется периодом полураспада. Если, например, в материале, испытывающем радиоактивное превращение, первоначально было N0 ядер, то через время Т их станет 1/2 N0, через 2Т – 1/4 N0, через 3Т – уже 1/8 N0, и так далее. Число радиоактивных ядер будет выгорать
в геометрической прогрессии с показателем, равным двойке. Периоды полураспада для различных радиоактивных веществ изменяются от миллиардов лет до миллионных долей секунды и хорошо поддаются вычислению с помощью квантовой механики.
При этом имеется в виду облучение всего тела, как говорят, тотальное облучение. Для населения установлен предел дозы за год в десять раз меньший – 500 мбэр/год.
Как же узнать, какую дозу радиации получает человек, находящийся вблизи радиоактивного источника? В том-то и состоит предательская особенность ядерных излучений, что с точки зрения человека, попадающего в опасную зону, они никак себя не проявляют. Человеческие органы чувств, сформировавшиеся как инструмент выживания, совершенно не приспособлены к восприятию проникающей радиации, и в этом ее существенное отличие, трагическая выделенность по сравнению с другими природными воздействиями. Ведь даже небольшие с точки зрения физики изменения светового потока, температуры воздуха или механического давления вызывают довольно бурную реакцию человеческого организма.
По отношению к этим изменениям в окружающей среде природа с самого начала была поставлена в жесткие условия – жизнь обрывалась, если природные воздействия выходили за допустимые пределы. Острота восприятия помогает человеку ориентироваться в обстановке и принимать необходимые меры предосторожности. Скажем, зрение, которое на протяжении многих поколений служило почти единственным способом обнаружить врага, должно было действовать и в сумерках, и даже при свете звезд, когда световая энергия поступает лишь редкими порциями. Собрать и использовать каждый фотон, чтобы лучше увидеть надвигающуюся опасность, было делом жизни или смерти.
Рисунок 2 – Основные виды ядерных превращений, приводящие к испусканию радиоактивных излучений.
При альфа-распаде из ядра вылетает сравнительно тяжелая альфа-частица, которая представляет собой ядро атома гелия. Энергия вылетающей альфа-частицы по атомным масштабам довольно высока – примерно 5-10 МэВ, то есть почти в миллион раз больше энергии электрона в атоме. Поэтому альфа-частицы, проходя через вещество, могут производить в нем обильные нарушения вследствие ионизации и возбуждения атомов. При бета-распаде нейтрон внутри ядра самопроизвольно превращается в протон, и при этом испускается электрон (или, наоборот, протон переходит в нейтрон с испусканием позитрона). Кроме электрона и позитрона, при бета-распаде возникают также нейтрино и антинейтрино, однако их воздействие на вещество ничтожно. Образовавшееся в результате радиоактивного распада ядро, как правило, сильно возбуждено, и оно освобождается от избыточной энергии, испуская жесткие гамма-кванты. Это гамма-излучение обладает большой проникающей способностью и может причинить немалый вред живому организму.
Если зрение или обоняние – вспомним нюх собаки! – по своей обнаружительной способности близки к физическим пределам (которые невозможно преодолеть никакими техническими ухищрениями), то при восприятии радиации человек находится почти на пределе тупости
. Поэтому без специальных приборов мы не можем судить ни об уровне радиации, ни даже об ее наличии или отсутствии, а, следовательно, и о грозящей нам опасности. В таких приборах используются те же самые радиационные эффекты, которые причиняют нам вред, в частности, ионизация частиц среды. Ионизационный метод регистрации излучения стал исторически первым – он начал широко использоваться в 20-х годах. В связи с этим, были предприняты попытки установить такие единицы измерения радиации, которые позволили бы связать ионизационный эффект с биологическим, а также с поглощением энергии излучения. В 1928 году в качестве такой единицы был принят рентген (обозначается Р, R).
Введение новой единицы вызвало много споров. Прежде всего, возник вопрос: рентген – единица чего? Какой наблюдаемой физической величине она соответствует? Ответ на этот вопрос давался по-разному, однозначного толкования рентгена вначале не было. Какое-то время рентген рассматривали как количество излучения, характеризующее поглощенную из потока радиации энергию в единице массы воздуха. Такая интерпретация рентгена, вообще говоря, не соответствовала его определению как меры ионизационного эффекта. Ведь поглощенная энергия и число образовавшихся пар ионов – разные физические величины, поэтому использовать рентген для оценки поглощенной энергии оказалось неудобным.
Однако в соответствии с энергетическим постулатом
, специалистов по физике защиты от излучений и радиобиологов интересовала в первую очередь, поглощенная в живой ткани энергия. Трудности, возникавшие при ее подсчете через единицу рентген
, требовали разных уточнений и оговорок. Применение рентгена для оценки поглощенной энергии было неудобно еще и потому, что эта единица была введена и соответственно метрологически поддерживалась только для рентгеновского и гамма-излучений (да и то, строго говоря, с определенным спектром). Чтобы сравнивать эффекты, производимые в веществе корпускулярным излучением, например, электронами или нейтронами, приходилось вводить поправочные коэффициенты для каждого типа среды – воздуха, мышечной ткани, кости и т.д. Такие коэффициенты назывались эквивалентами рентгена. Одним словом, прямое использование рентгена, понимаемого как единица поглощенной энергии, создавало в радиационной физике много неудобств.
Рисунок 3 – Слой половинного ослабления
для жесткого гамма-излучения.
Так в физике защиты от излучений называют толщину того или иного материала, после прохождения которого интенсивность гамма-излучения уменьшается наполовину. Полного поглощения гамма-излучения (с энергией ниже 10 МэВ) в веществе не происходит, однако интенсивность потока гамма-квантов ослабляется по экспоненциальному закону, в точности такому же, как закон радиоактивного распада. При этом роль периода полураспада играет слой половинного ослабления. Для жесткого гамма-излучения с энергией квантов 1 МэВ толщина этого слоя составляет 5 см бетона, 3 см стали или 1 см свинца. Если необходимо уменьшить интенсивность опасного гамма-излучения в миллион раз, то потребуется свинцовый экран толщиной 20 см либо бетонная стенка метровой толщины (2220 примерно равно 106). 10 см свинца ослабляют жесткое излучение в тысячу раз. Для сравнения: альфа-излучение с энергией 1 МэВ практически полностью поглощается алюминиевой фольгой толщиной 5 микрон, а для поглощения бета-радиации с такой же энергией достаточно 1,6 мм алюминия.
В современной дозиметрии рентген рассматривается не как единица, характеризующая поглощенную энергию и тем самым напрямую связанная с биологическим эффектом, а только как единица, определяющая ионизирующую способность рентгеновского и гамма-излучений в 1 см3 воздуха. Физическая величина, которой соответствует единица рентген
, называется экспозиционной дозой рентгеновского и гамма-излучений. Экспозиционная доза определяется по ионизации воздуха – как отношение суммарного заряда всех ионов одного знака, созданных в воздушном объеме ионизирующим агентом, к массе воздуха в этом объеме. В системе СИ единицей экспозиционной дозы служит Кл/кг (кулон, деленный на килограмм). Экспозиционная доза в 1 Кл/кг означает, что суммарный заряд всех ионов одного знака (например, положительных), которые возникли под действием излучения в 1 кг воздуха, равен одному кулону.
С точки зрения убежденных приверженцев системы СИ, рентген – устаревшая и как бы незаконная
, внесистемная единица. Один рентген – это такая экспозиционная доза рентгеновского или гамма-излучения, при которой в 1 см3 атмосферного воздуха при температуре 0°C и давлении 760 мм ртутного столба возникают ионы, несущие положительный или отрицательный заряд в одну электростатическую единицу (1 CGSE). Поскольку заряд электрона равен 4,8 10-10 электростатических единиц, то число образовавшихся пар ионов, как нетрудно подсчитать, будет равно для экспозиционной дозы в 1 рентген 208 миллиардам на 0,001293 г воздуха (такова масса одного кубического сантиметра). На образование одной пары ионов в воздухе в среднем затрачивается энергия, примерно равная 34 электрон-вольтам (эВ), следовательно, при экспозиционной дозе в 1 рентген в 1 см3 воздуха поглощается около 0,114 эрг или, в пересчете на один грамм воздуха, 88 эрг/г. Таким образом, 88 эрг/г – это энергетический эквивалент рентгена для воздуха.
Хотя однозначную связь между поглощенной дозой радиации и экспозиционной дозой, измеренной в рентгенах, можно установить лишь приближенно (с точностью до флуктуации), практическое удобство единицы рентген
бесспорно, так как ионизацию в воздухе можно легко измерить с помощью ионизационной камеры. По результатам таких измерений мы можем судить о поглощенной энергии в биологической ткани.