DonNTU   Masters' portal

Abstract

Content

Introduction

The desire to reduce the cost of primary energy (fuel) without affecting or even increasing returns enegrii the end user through a more efficient way to transform it - the main trend of modern tehniki.Eto applies to the heating systems of buildings and industrial facilities. Giving the final form of energy in the form of low-temperature heat (water or air is below 100 is below 50 C), these systems consume a high-quality fuel for heating in the boiler to the heating of the combustion products up to 1500 C, or even more wasteful electricity.

The extent of heating fuel costs are very high - more than half of the boiler and furnace fuel. Thermodynamically rationally spent, only that part which is burnt on the heating plants - is used to maximize high-temperature combustion heat to generate electricity and for heating of the coolant temperature, which is close to that required for heating.

Development of heat pump installations are currently stremitelno.Na our eyes from the existing for 100 years, the puzzle of thermodynamics, they become a common means of heating. If you are currently otopitelnyz heat pumps for buildings and millions of thousand promvshlenyh, the nearest one - two decades of their Number grow even ten times, and total power, as predicted by the technical committee for the WEC heat pumps in the range of 50 to 150 million kW

1. Relevance of the topic

The need for energy conservation is characteristic of our everyday zhizki - at home, in institutions and in industry. The desire to efficiently use energy brings people together - it can be seen on the activities of the International Energy Agency and the European Economic Community, co-financed energy projects.

One of the devices that can make a significant contribution to energy saving, is a heat pump. Increased capacity (temperature), low-grade heat can bring "new" sources such as ambient air, as well as waste heat, which can not be used because of its low temperature. The heat pump greatly increases the possibility of using nazkopotentsialnoy energy due to the cost of a fraction of the energy is completely converted into work.

2. Description and application of heat pump installations

The heat pump transfers the internal energy of the low temperature energy source to energy at a higher temperature. Because according to the second law of thermodynamics, the thermal energy without any - or external influences can pass only with a high temperature to a lower level for the implementation of heat pump cycle is necessary to use the drive energy. Therefore, the energy transfer process in a direction opposite to the natural temperature difference, is carried out in a circular loop.

Energy supplying heat to low temperature for the heat pump cycle, referred to as sources of heat. They give the thermal energy by heat transfer, convection, or radiation. Energy in the heat pump cycle, perceiving the thermal energy of high potential, called the receiver of heat. They take heat enegriyu by heat transfer, convection and radiation. Energy source that serves as a source of heat enters the evaporator where the refrigerant evaporates zhadky. The heat of vaporization needed for this, is taken away from the heat source, since the evaporation of refrigerant occurs at low temperature.

A circular loop a pair of vaporized refrigerant enters the compressor and compressed to high pressure. Upon compression of the temperature rises, which creates the possibility of return of thermal energy teplopriemniku.Pary refrigerant under high pressure coming into the condenser, through which flows energy source that serves as a receiver of heat. Its temperature below the temperature of the refrigerant vapor under high pressure. When condensation energy released tuplovaya perceived the heat. And the refrigerant through the condenser zhadky throttle goes back to the evaporator, and the circular loop is closed. In regulating valve high pressure at which the refrigerant at the outlet of the condenser is reduced to a pressure in the evaporator. At the same time decreasing the temperature.

Heat pumps have a very wide application in various industries:

3. The heat pump in the scheme of residential heating

Now consider the question of fuel economy, as its reserves are not unlimited in nature. It is clear that to address this issue should try to make maximum use of all the heat received by thermal power plants, especially the low-potential. There are many devices designed for the rational use of heat. These devices include, and the heat pump.

Imagine to consider the concept of co-generating heat engine with integrated heat pump:

Схема отопления с ТН

Picture 1 – Scheme of heating with cogeneration engine with built-in HP(1-Engine,2- Exchanger,3- Heat pump,4- Circulator,5- Generator,6- Bypass the heat pump).

Fuel is supplied to the motor which is connected to an electric generator. The products of combustion (flue gases) come into the heat exchanger network of water. The engine is cooled by a liquid, which takes part in his heat and after a high temperature. The heated coolant podaetsya in the heat pump, which gives extra warmth from the water return line heating networks. Then the water enters the heater power, after which the heating network. Introducing the heat pump heating system with cogeneration engine, are able to control the temperature of the water network, depending on the ambient temperature. This is done by bypassing part of the network water.

Conclusion

The heat pump and its use in enterprises is a huge breakthrough in obasti energy, as it allows a great deal Number of problems. Due to the fact that the heat pump allows more efficient use of heat from the combustion of fuel to burn less fossil Number of minerals to get the necessary amount of heat. At the same time we reduce pollution, because the burn less fuel.

The heat pump is very well both technically and from an environmental and development finansovoy.V heat pumps is huge potential for the entire energy sector.

References

  1. Янтовский Е. И., Янов В. С. Использование теплоты оборотной воды. — Промышленная энергетика, № 5, 1980.
  2. Лебедев П. Д. Теплообмениые, сушильные и холодильные установки. М.: Энергия, 1972.
  3. Холодильные машины / Под ред. II. II. Кошкина. — М.: Пищевая промышленность, 1973.
  4. Анатычук Л. И. Термоэлементы и термоэлектрические устройства. — Киев: Наукова думка, 1979.
  5. Пустовалов Ю. В. Экономическая эффективность парокомпрессиоиных теплонасосных станций. — Теплоэнергетика, № 2, 1981, с. 69—72.
  6. Быков А. В., Калнинь И. М. Об эффективности термодинамических циклов на неазеотропных смесях компонентов. — Холодильная техника, 1980, № 12, с. 11—20.
  7. Михельсон В. А. Проект динамического отопления. Собр. соч., т. 1. — М.: Изд-во с.-х. акад. им. К. А. Тимирязева, 1930, с. 321—357; Журн. прнкл. фнз., 1926, т. 3, вып. 3—4, с. 243—260.
  8. Гельперин Н. И. Тепловой насос.— Л.: ГНТИ, 1931. — 152 с.
  9. Гохштейн Д. П. Использование отходов тепла в тепловых насосах. — М.—Л.: Госэнергонздат, 1955. — 80 с. Современные методы термодинамического анализа энергетических установок. — М.: Энергия, 1969. — 368 с.
  10. Мартыновский В. С. Тепловые насосы. — М.—Л.: Госэнергонздат, 1955.— 192 с. Циклы, схемы и характеристики термотрансформаторов. — М.: Энергия, 1979. —285 с.
  11. Бродянский В. М. Эксергетнческнй метод термодинамического анализа. — М.: Энергия, 1973. —296 с.
  12. Зысин В. А. Отопительные установки с тепловым насосом. Работы ЦКТИ. Кн. 4, вып. 1. — М.—Л.: Машгнз, 1947, с. 31—39. Комбинированные парогазовые установки и циклы. — М.—Л.: Госэнергонздат, 1962.— 186 с.
  13. Каплан А. М. Тепловые насосы, их техннко-экономяческне возможностя и области применения. Работы ЦКТИ. Кн. 4, вып. 1.—-М.—Л.: Машгнз, 1947, с. 3—30.
  14. Ложкин А. Н. Трансформаторы тепла. —М.—Л.: Машгнз, 1948.— 200 с.
  15. Розенфельд Л. М., Звороно Ю. С, Оносовский В. В. Применение фрео- фреоновой холодильной машины для охлаждения н динамического отопления. — Теплоэнергетика, 1961, № 6, с. 12—16.
  16. Ундриц Г. Ф. Использование холодильных машнн для целей отопле- отопления.— Изв. Энергет. нн-та им. Г. М. Кржижановского, 1933, т. 1, с. 107—132.
  17. Янтовский Е. И,, Пустовалов Ю. В., Янков В. С. Теплонасосные станции в энергетике. — Теплоэнергетика, № 4, 1978, с. 13—19.
  18. D. REAV, D. MACMICHAEL НЕAТ PUMPS. DESIGN AND APPLICATIONS. Pergamon Press, Оксфорд, 1979
  19. Мартыновский В.С. Циклы,схемы и характеристики теплотрансформаторов.-М.,1979
  20. Соколов Е.Я.,Бродянский В.М.Энергетические основы трансформации тепла и процессов охлаждения.-1981
  21. Хейнрих Г. и др. Теплонасосные установки для отопления и горячего водоснабжения.-1985
  22. Холодильные машины и аппараты.Каталог - справочник - М.1970-1971
  23. Орехов Игорь Игнатьевич - Абсорбционные преобразователи теплоты - Л.1989
  24. Мальчина Евгения Викторовна - Холодильные машины и установки - М.1980
  25. Качанов М.А. - Термоэлектрические тепловые насосы.- Л.1970
  26. Бадалькес И.С. - Абсорбционные холодильные машины - М.1966
  27. Рей Д.А. - Тепловые насосы - М.1982