Метод конечных элементов
Автор: В.В. Смирнов
Источник:Источник: http://www.nsu.ru/matlab/Exponenta_RU/educat/systemat/smirnov/main.asp.htm
Автор: В.В. Смирнов
Источник:Источник: http://www.nsu.ru/matlab/Exponenta_RU/educat/systemat/smirnov/main.asp.htm
Метод конечных элементов основан на идее аппроксимации непрерывной функции (в физической интерпретации - температуры, давления, перемещения и т.д.) дискретной моделью, которая строится на множестве кусочно-непрерывных функций, определенных на конечном числе подобластей, называемых конечными элементами. Исследуемая геометрическая область разбивается на элементы таким образом, чтобы на каждом из них неизвестная функция аппроксимировалась пробной функцией (как правило, полиномом). Причем эти пробные функции должны удовлетворять граничным условиям непрерывности, совпадающим с граничными условиями, налагаемыми самой задачей. Выбор для каждого элемента аппроксимирующей функции будет определять соответствующий тип элемента.
В данной работе рассматривается вычислительный алгоритм метода конечных элементов в формулировке, основанной на процедуре минимизации функционала, соответствующего решаемой непрерывной задаче [1]. В результате выполнения указанной процедуры происходит замещение уравнения или системы уравнений в частных производных системой недифференциальных уравнений, имеющих в качестве коэффициентов аппроксимирующие функции, которые фактически являются значениями искомой функции в вершинах разбиения.
При построении алгоритма используется математический аппарат, предоставляемый системой Maple [2,3].
Список литературы: