Abstract
Сontent
- Introduction
- 1. Theme urgency
- 2. Goal and tasks of the research
- 3. Review of work on modeling
- Conclusion
- References
Introduction
The rapid development of industry has set an acute problem of mankind—protecting the environment. Local pollution from industrial emissions have exceeded the maximum permissible sanitary norms. Giant works associated with the extraction of coal, nonferrous metals and other minerals has led to erosion and contamination of large areas. When emissions at power plants Zuevskaya warm gas impurities undergoing complex chemical reactions, which occur as a result of new toxic substances, which were not in the original emissions. Among the inorganic substances particularly harmful emissions of nitrogen oxides and sulfur oxides and carbon dioxide. Almost all of the impurities eventually deposited on the surface of the earth, and heavy precipitated mainly by the gravitational field, and light—as a result of the diffusion process. Currently Zuevskaya thermal power plant to reduce emissions to the environment and the applied electrostatic desulfurization unit. The causes of high concentrations of certain pollutants into the atmosphere, emissions can be either one, and a number of sources, or the occurrence of adverse meteoobstanovki. In both situations it is necessary to identify the source of emission reduction which reduces the elevated levels of air pollution. Therefore, the operation of an automated system for environmental monitoring and management of air quality it is necessary to solve the problem of identification of sources of air pollution. The most effective way of solving this problem is all the equipment and ventilation pipes gazovodov automatic devices company rate and the concentration of harmful substances in exhaust gases. However, the absence of many analyzers and the high cost of such monitoring systems make it difficult to use this method. Questions matemiticheskogo modeling described in Marchuk [5].
1. Theme urgency
Master's thesis is devoted to environmental issues, which are currently very topical. The state of the atmosphere depends on the life of every person. Mathematical modeling in the environmental field are engaged in a long time. The results of mathematical modeling allows to calculate the maximum allowable concentration of pollution by harmful impurities. To obtain the values of the limiting concentrations need to develop a mathematical model that will provide the best solution.
Master's work is dedicated to the actual scientific task of development a unified approach to the synthesis of Moore FSM, which is directing on hardware amount reduction in resultant device and is including algorithmic, combinatory and circuitry optimizing techniques. FPGAs by Xilinx, which combine functionality, programmability and availability to consumers, are used as the target basis. CAD Xilinx ISE, Verilog HDL and Java SE are applied as tools of the research.
2. Goal and tasks of the research
The purpose of this work is to construct a mathematical model that allows to analyze the spread of harmful impurities in the atmosphere.
The object of research is thermal power, which results in the spread of harmful substances into the atmosphere.
The subject of research are mathematical models and algorithms for modeling the spread of harmful pollutants in the atmosphere.
Within the master's work to get the following results:
1. The study of the thermal power plant.
2. Analysis of warm power plant.
3. Calculate the value of the location of the source of the spread of harmful impurities, provided that the concentration should not exceed the limits.
As the practical results are the following:
1. The calculation using a mathematical model of the maximum concentration of harmful substances.
2. Getting the results desired location of the source of the spread of harmful contaminants using a software package Maple.
3. Analysis of results.
3. Review of work on modeling
One of the urgent problems of our time is to protect the environment from adverse human impact. From a correct and timely solutions to this problem depends on the health and well-being. The most significant contribution to pollution made by the energy, chemical industry and ferrous metallurgy. The most common are the air emissions of sulfur and nitrogen oxides, dust, carbon monoxide, as well as ash and slag, ash dumps in the coming.
Environment is devoted to a large series of studies. Assessment and control of pollution of the atmosphere, hydrosphere and land surface is currently based on the results theoretical and experimental study of the spread of pollutants from their sources. The main work of modeling are summarized in the book the author MF Kozhevnikov [12].
From the known profiles of wind, and various forms of a polynomial distribution of surface concentrations is based on mass continuity equation a simple model of urban atmospheric pollution. Approximately relate the maximum concentrations of impurities with the wind velocity vector graphic techniques allow, when the pie chart constructed isopleths of wind frequency plane in polar coordinates, which are set out in the book SP Dudarova [11].
Significant development work was to forecast potential air pollution V. Novikov [6].
The basis of these studies laid the account of the statistical repeatability conditions (ie, anticyclonic type of weather with the air stagnation, weak winds), dangerous from the standpoint of the formation of high levels of concentration.
In some works LT Rybakov, AN Yasensky [13-5]by measuring the concentrations of polluting components are constructed of the empirical distribution functions, which are then used to estimate the probability of exceeding the maximum permissible concentrations. The analysis of literature data we can conclude the feasibility of modeling the propagation of impurities near the industrial plant. An approach to solving the problem of propagation of atmospheric pollutants from the source of any system in the works of PN Belova, AI Degtyarev [17-18] concentration S polluting substance at a given point depends on the parameters (И) source, the distance (d) before him, and meteorological characteristics, defining a vector of which is the wind speed:
Therefore we can assume that the value of sdepends on the distribution wind direction. Random parameters are wind characteristics observed at meteorological stations in the region for many years a particular season or month. From the entire set of wind characteristics, select only a subset, which contributes to higher concentrations of impurities MPC.Thus stands out as an area of solutions of the differential equation describing the transport and turbulent diffusion of impurities, and the integration domain given probability density function. Integrating the probability density function of wind velocity on the selected subset can be estimated from the probabilistic point of view of the frequency of implementation of all the winds. Despite the fact that all the analytical solutions are obtained for certain simplifications of processes, the possibility of greatly enhanced if one to one link distribution of impurities with the probability integral and differential distribution functions of meteorological parameters. As the original equation we get.
где t—time,
x,y,z —axis of the Cartesian coordinate system,
s—the impurity concentration,
u,v,w—components of wind speed,
a—decay rate of the impurity,
wg—the rate of gravitational deposition of particles.
You can use the analytical solution obtained under the following simplifications of the equation: light admixture of passive and conservative, the motion is stationary, the axis х oriented in the direction of the wind, vertical motion in the atmosphere is small compared with the horizontal, the impurity diffusion flux along the axis х much smaller than the convective.
Suppose you want to post a new industrial plant near the settlements on the condition that their total annual pollution from harmful industrial emissions did not exceed acceptable health standards and that the total environmental load of the entire region due to its contamination was minimal and within the global health standards, which set out in AS Noskov, MA Savinkina, LY Anishchen.
Conclusion
A study of the spread of contaminants in the atmosphere of an analysis of the thermal power plant, from which enter the atmosphere contaminants. In reviewing the topic were used real data and simulated thermal power plant during operation. In the analysis it was found that it is necessary to simulate the process of the location of the source of the spread of harmful substances into the atmosphere thermal power plant in such a way as to minimize air pollution.
A study of the spread of contaminants in the atmosphere of an analysis of the thermal power plant, from which enter the atmosphere contaminants. In reviewing the topic were used real data and simulated thermal power plant during operation. In the analysis it was found that it is necessary to simulate the process of the location of the source of the spread of harmful substances into the atmosphere thermal power plant in such a way as to minimize air pollution.
Master's thesis is devoted to actual scientific problem of air pollution. In the trials carried out:
- The mathematical model.
- Based on the analysis of the literature highlights the main algorithms that can be used to solve the mathematical model.
- A number of experiments, analyzed the results.
- The possibilities of the future solution of the problem, assessed the requirements for the software, scan your computer for software products.
In writing this essay master's work is not yet complete. Final completion: January 2012. The full text of the and materials on the topic can be obtained from the author or his head after that date.
References
- Аргучинцева А. В. Моделирование мезомасштабных гидротермодинамических процессов и переноса антропогенных примесей в атмосфере и гидросфере[Электронный ресурс]. – Режим доступа: http://window.edu.ru/resource/972/55972/files/publication.pdf.
- Алоян А. Е. Динамика и кинетика газовых примесей и аэрозолей в атмосфере и их значение для биосферы[Электронный ресурс]. – Режим доступа: http://www.inm.ras.ru/library/direct2/Aloyan.pdf.
- Берлянд М. Я. Прогноз и регулирование загрязнения атмосферы. – Ленинград: Гидрометеоиздат, 1985. – 270 с.
- Бергер М.И. и др. Справочник по пыле- и золоулавливанию. М., Энергоиздат. 1983. 261 с.
- Марчук Г. И. Математическое моделирование в проблеме окружающей среды.- М.: Наука, 1982.- 320 с.
- Новиков Ю.В. Охрана окружающей среды. - М.: Высш. шк., 1987
- Носков А.С., Савинкина М.А., Анищенко Л.Я – Воздействие ТЭС на окружающую среду и способы снижения наносимого ущерба / Ин-т катализа СО АН СССР, Ин-т химии твердого тела и переработки минерального сырья СО АН СССР, ГПНТБ СО АН СССР – Новосибирск: Изд. ГПНТБ СО АН СССР, 1990. – 177 с.
- Скалкин Ф.В. Энергетика и окружающая среда. - Л.: Энергоиздат, 1981.
- Афиногенова О. Я. О стабилизации решения задачи идентификации функции источника одномерного параболического уравнения // ДАН, 2009, Т. 424, №4, с.439 – 441.
- Белов Ю. Я. О задаче идентификации двух коэффициентов параболического полулинейного уравнения с условиями переопределения, заданными на глпдкой кривой // Вычислительные технологи, 2006, Т.11, Ч. 1, с. 46 – 54.
- Дударов С. П. Методы идентификации промышленных источников аварийных выбросов/Дударов С. П., Савицкая Т. В. Сб. тр. МНК ММТТ14. – Т. 1. Смоленск: СФМЭИ, 2001.
- Кожевникова М. Ф. Идентификация источников загрязнения: вычислительные методы. Национальный научный центр «Харьковски физико – технический институт»,Харьков, Украина, 156 c.
- Рыбакова И. В. «Численная модель дальнего и трансграничного переноса загрязнений в атмосфере»/Рыбакова И. В., Свиренко П. И. – Реферативный журнал по экологии, 1198.
- Штыревая Н. В. «Численное моделирование дальнего переноса загрязняющих веществ в атмосфере/ Штыревая Н. В. – Реферативный журнал по экологии, 1197.
- Ясенский А. Н. Оптимизация пространственной структуры сети наблюдений при контроле загрязнений/ Ясенский А. Н.Труды ГГО.1987. Вып. 492.
- Алпатова Ю. Н. «Синтез системы управления состоянием воздушного бассейна в промышленных зонах городов» рассмотрена модель процессов в воздушном бассейне»/Алпанова Ю. Н., Михайлова Ю. А. – Реферативный журнал по экологии, 1198.
- Белов П. Н. Траекторная модель переноса загрязнений / Белов П. Н., Карлова 3. Л. Метеорология и гидрология. 1990. № 12. – С. 67-74.
- Дегтярева А. И. «Численная модель дальнего и трансграничного переноса загрязнений в атмосфере»/ Дегтярева А. И., Наумова А. Д. – Реферативный журнал по экологии, 1198.
- Дударов С. П. Методы идентификации промышленных источников аварийных выбросов/Дударов С. П., Савицкая Т. В. Сб. тр. МНК ММТТ14. – Т. 1. Смоленск: СФМЭИ, 2001.
- Митренко П. Н. «Обратная задача диффузии в экологии и атмосфере»/ Митренко П. Н. – Реферативный журнал по экологии, 1198.