DonNTU   Masters' portal


Abstract

Содержание

Introduction

The spectrum of geo-ecological problems of big cities and industrial zones that require timely solution is quite broad. These problems include: air pollution emissions from industrial enterprises and vehicles, pollution of surface and ground water due to discharges of pollutants and flush them from urban areas, soil pollution, accumulation of industrial and domestic waste and recycling [1]. One of the major environmental problems has been and remains the rational use and protection of water resources from pollution and depletion. Surface water quality in the urban area should be seen as the result of a complex combined effect of divergent processes of contamination and самоочищения.Экологическое status of water bodies is largely determined by the combined effect of many man-made factors. The most significant of them discharge into water systems are inadequately treated wastewater from municipal and industrial facilities through the sewer system of polluted snowmelt and rain water, household and industrial landfill sites within the catchment area, emissions from industry and road transport, recreation load in the field organized and unorganized recreation. The major pollutants of surface waters until recently considered to be industrial and municipal effluents.

        The control system of the environment consists of three main activities: 1) tracking and monitoring - the systematic monitoring of the environment, 2) the forecast - the definition of the nature of possible changes under the influence of natural and anthropogenic factors, and 3) management - event management of the environment [ 2].

Ability to monitor the environmental remote sensing have opened, installed on aircraft and satellites orbiting the Earth. Images of the Earth's surface, obtained with different heights, infinitely expanding field of view of the researcher. Aerospace methods gave the same powerful impetus to the development of earth sciences, both at the time the invention of the microscope in biology.

The following features and advantages of space monitoring:

- Are observed and recorded information on a wide area, until all visible at the time of the shooting of the globe, thanks to the great visibility of the pictures can be seen particularly large regional economic impact on natural landscapes;

- Give the same type of satellite imagery and detailed information about remote areas with the same accuracy as for the well-studied regions, which allows using the extrapolation method of interpretive signs on the basis of allocation of landscapes, unique;

- Instantaneous images of large areas to minimize the influence of variable weather and seasonal factors, the possibility of regular repeated surveys allows you to select the best images, based on repeated surveys studied the dynamics of natural processes;

- The complexity of the information contained in the satellite imagery, allowing their use for studying the complex processes of interaction between society and nature;

- For high-resolution images can be recognized especially the morphological structure of landscapes and man-made structures. However, due to the natural generalization of the image, satellite images show the largest and most important elements of the geographic envelope, and traces of human impact.

1. Theme urgency

The problem of environmental protection is one of the most important tasks of science, which increases interest in connection with the pace of technological progress in the world. At this stage of development of civilization can not be avoided emissions of pollutants into the air and water, but in the case of the wise use of natural resources can provide a safe level of exposure to the atmosphere [3]. Currently, water quality monitoring conducted in low volume. Increasing environmental stress in the big cities and industrial areas requires more rigorous and more large-scale observations of the environment. The main factors of anthropogenic pollution of the sea are: runoff, runoff, coastal erosion, oil spills and oil products of different origin. First of all, subject to intensive coastal water pollution. To increase the effectiveness of monitoring of environmental conditions necessary to quickly and efficiently determine the type of contaminants, as well as their genesis and consequences [4]. Space remote sensing tools for monitoring the status of water bodies and allow you to identify the sources of pollutants, to determine the degree of contamination of various parts of the object and the dynamics of contamination over time (Figure 1.1).

                                       
                 

            Figure 1.1 – Deshefrirovanie pollution from ships on the ENVISAT image radiolakatsionnom
         ( animation: 10 frames, 5 cycles of repeating, 267 kilobytes)

(ENVISAT-satellite image of the visible range)

Master's thesis is devoted to actual scientific problem of one of the existing methods of informativeness of the test pieces, which is based on a comparison with the standard method, in which the calculated cross-correlation coefficient.

2. Goal and tasks of the research

The study aims to develop a method for the study of informativeness of test pieces, which is based on the method of comparison with the standard.

The main objectives of the study:

   1. Analysis of existing test methods informative figures;

   2. The development of artificial interpretive signs, formed during the processing of satellite images;

   3. Path Selection area of ​ ​interest;

   4. Converting study units;

   5. Normalization of the data [5];

   6. Determination of cross-correlation function between the contours of the study and test figures;

   7. Calculation of correlation coefficients of test pieces for each type of pollution;

   8. The formation of tables of correlation coefficients for all types of pollution for each test figure;

   9. Analysis of the results[6].

Object of study: satellite images of contaminated sites watershed.

Subject of research: the method of study informativeness of test pieces, which is based on a comparison with the standard method, in which the calculated cross-correlation coefficient .

As part of the master plan to get the actual scientific results in the following areas:

   1. The development of artificial interpretive signs, formed during the processing of satellite images[7];

   2. Development of algorithm selection circuit area of ​ ​interest[8];

   3. The implementation of the method of study informativeness of test pieces, based on the method of comparison with the standard[9].

3. Informative study of test pieces using the method of comparison with the standard

In processing the satellite images of the optical range for the tasks of monitoring is insufficient to use only natural interpretive signs, which include spsktralno-brightness features, the shape of the selected spot, its structure and dynamics of the changing contours of the spot in time [30]. All these features are systematized and described verbally [31], and therefore the conclusion about the nature of the anomalous spots on the sea surface is largely dependent on operator experience, which foresees the processing of satellite images. Therefore, to better determine the type of contamination based on the space survey is necessary to develop artificial interpretive signs, formed during the processing of images.

 To isolate the artificial interpretive signs used by a natural interpretive features - a form of isolated spots on the sea surface anomalous phenomena. In [50] showed that for each type of pollution is characterized by some form of spots. In this paper it is assumed that the use of this feature will increase the probability of determining the type of contamination.

The study involves the allocation of spots forms the contour area of ​ ​interest. Allocation algorithm is shown in ris4.3. In the above case, automatic selection of areas in satellite images of water surface is achieved by using a linear function of the separation [4].

Figure 4.1 - Algorithm selection of the contour plot..

One of the main ways to detect objects in the image is compared with the standard. In this model we are interested in is compared with all unidentified objects in the image. If the similarity between an unknown object and the standard is sufficiently large, then the object is flagged as an appropriate reference object. The complete coincidence of a reference to any part of the picture is rare because of the noise and distortion caused by the spatial discretization and quantization of brightness, as well as due to the lack of a priori information on the exact shape and structure of the object to be detected. Therefore, usually with the help of some specific measures razlichiyamezhdu standard and image of the point indicate the presence of the selected object, where the difference is less than some threshold. Usually taken as a measure of the difference srednekvadreticheskaya error, defined as


where  — the array images to be searched, and   — the reference element array. It is believed that there are similarities with the standard at the point with coordinates, if

Now consider this equation as follows:

The term is the energy of the standard, which is constant and independent of the coordinates. The second term - the cross-correlation image and the reference. When a match is a reference image and the cross-correlation must be large, which leads to small values ​​of the mean square error.



It is believed that the similarity with the reference occurs, unless

      Normalized cross-correlation has a maximum value equal to one if and only if the image in the box exactly the same as the standard [32].

Conclusion

The resulting correlation analysis of data showed that application of the proposed method of feature extraction by cross-correlation contours of the test patches and test figures to determine the most informative test figures.

         The results presented here are used for the further development of automated identification algorithm types of pollution, which will enable more effective satellite monitoring of sea areas of the Black and Azov Seas.

Master's thesis is devoted to actual scientific problem of one of the existing methods of informativeness of the test pieces, which is based on a comparison with the standard method, in which the calculated cross-correlation coefficient.

 In the trials carried out:

   1. Analysis of existing test methods informative figures;

   2. The development of artificial interpretive signs, formed during the processing of satellite images;

  3. Path Selection area of ​ ​interest;

  4. Converting study units;

   5. Normalization of the data[10];

   6. Determination of cross-correlation function between the contours of the study and test figures;

Further studies focused on the following aspects:

   1. Calculation of correlation coefficients of test pieces for each type of pollution;

   2. The formation of tables of correlation coefficients for all types of pollution for each test figure[11];

   3. Analysis of the results.

In writing this essay master's work is not yet complete. Final completion: December 2012. The full text of the work and materials on the topic can be obtained from the author or his head after that date[12].

References

  1.    Луканин В.Н., Трофименко Ю.В. Промышленно-транспортная эколо­гия: Учебник для вузов. - М.: Высшая школа., 2001. - 273 с.
  2.  Проблемы создания региональных геоинформационных комплексов и опыт решения прикладных задач на основе аорокосмичсской информации / отв. ред. В.В. Лебедев. - М.: Наука, 2002. - 239 с.
  3. Марчук Г. И. Математическое моделирование в проблеме окружающей    среды – М.: Наука, 1982–315 с.
  4. Красовский Г.Я., Петросов В.А. Інформаційні технології космічного моніторингу водних екосистем і прогнозу водоспоживання міст. – К.: Наукова думка, 2003. – 224 с.
  5.      Математические модели электронных аппара­тов и систем / М.Ф. Бабаков, А.В. Попов, М.И. Луханин: Учебн. пособие. - X.: Нац. аэрокосмический ун-т «Харьк. авиа. ин-т», 2003. - 109 с.
  6. Duda R. О., Hart P. Е., Pattern Classification and Scene Analysis, Wiley-lnterscience, New York, 1973, pp. 276—284. (Имеется перевод: Дуда P., Xapt П., Распознавание образов и анализ сцеп. — М.: Мир, I97G.J
    Ito M. Algebraic theory of automata and languages / M. Ito. – World Scientific Publishing, 2004. – 199 pp.
  7. Highleyman W. Н., An Analog Method for Character Recognition, IRE Trans. Electronic Computers, EC-10, 3, 502—510 (September 1961) - 446 pp..
  8. Kanal L. N.. Randall N. C., Recognition System Design by Statistical Ana-lysis, Proceedings ACM National Conference, 1964.- pp. 107—120.
  9.  Munson J. H., Experiments in the Recognition of Hand-Printed Text: Part I— Character Recognition, Proceedings Fall Joint Computer Conference, December 1968, pp. 1125—1138.
  10. Turin G. L., An Introduction to Matched Filters, IRE Trans. Inf. Theory, IT-6, 3. 311—329 (June 1960).
  11. Cook С. E., Bernfeld M., Radar Signals, Academic Press, New York, 1965. [Имеется перевод: Кук Ч., Берифельд М., Радиолокационные сигналы. Теория и применение. — М.: Советское радио, 1971.] - pp. 16—20.
  12. Thomas J. В., An Introduction to Statistical Communication Theory, Wiley, New York, 1965, pp. 187—218.
  13. Andrews H. C., Computer Techniques in Image Processing, Academic Press, New York, 1970, pp. 55—71. [Имеется перевод: Эидрюс Г., Применение вычислительных машин для обработки изображений.—М.: Энергия, 1977.]
  14. Cutrona L. J., Leith Е. N.. Palermo С. J., Porcello L. J., Optical Data pp. 187—218.
  15. Rosenfeld A., Connectivity in Digital Pictures, J ACM, 17, 1, 146—160 (January 1970).    
  16.  Rosenfeld A., Picture Processing by Computer, Academic Press, New York 1969. [Имеется перевод: Розеифельд А., Распознавание и обработка изображений. — М.: Мир, 1972). - pp. 157—160.
  17.  Концептуальный подход к созданию системы мониторинга состояния земель лесного фонда РФ Текст. / В.Н. Манович // Материалы X международной научно-практической конференции «Геоинфо-кад», Китай. -2006. - С. 18-21.
  18.   Скудин, В.М. Проблема незаконных рубок в России и пути ее решения Текст. / В.М. Скудин // Материалы Всерос. совещания-семинара с между-нар. участием, Красноярск: Ин-т леса им. В.Н. Сукачева СО РАН, 2005. — С. 9 — 14. 
  19. Белов, В.В. Мониторинг лесных пожаров по данным дистанционного зондирования Текст. / В.В. Белов, С.В. Афонин, Ю.В. Гриднев // Геоинформатика 2000: Тр. Междунар. научно-практ. конф., Томск: ТГУ, 2000. -С.17-22.
  20. Биосфера и другие результаты дистанционного зондирования Текст. / А.Г. Топчиев и др. М.: Наука, 1999. - 224 с.
  21.  Манович, В.Н. Лесоустройство и экологический мониторинг Текст. / В.Н. Манович // Материалы 7-ой международной научно-практической конференции «Геоинфокад», Австрия. 2003. - с. 16-20.
  22.  Манович, В.Н. Лесоустройство и экологический мониторинг Текст. / В.Н. Манович // Материалы 8-ой международной научно-практической конференции «Геоинфокад», Франция. — 2004. — с.55-58.   
  23.  Манович, В.Н. Экологический мониторинг и аудит земель лесного фонда с использованием данных дистанционного зондирования Земли Текст. / В.Н. Манович // Материалы 9-ой международной научно-практической конференции «Геоинфокад», Италия. 2005. - с.50-54.
  24. Манович, В.Н. Использование геоинформационных систем лесного хозяйства для организации государственной инвентаризации лесов Текст. / В.Н. Манович // Геодезия и картография. 2009. - №1. - С. 45 — 47.
  25. Сухих, В.И. Аэрокосмические методы в лесном хозяйстве и ландшафтном строительстве Текст.: учебник. / В.И. Сухих. Йошкар-Ола: МарГТУ, 2005.-392 с.
  26. Сухих, В.И. Аэрометоды в лесоустройстве. Текст. / В.И. Сухих, Н.Н. Гусев, Е.П. Данюлис. М.: Лесная промышленность, 1977. — 192 с.
  27. Chain-I Chang and oth. Least Squares Subspace Projection Approach to Mixed Pixel Classification for Hiperspectral Images. IEEE Transaction of Geoscience & Remote Sensing, 1998, V. 36, № 3, p. 899-912. 
  28. Davison L., Dan Bosence, G. Lan Alsop & Mohammed H. Al-Aawah (1996); Deformation and sedimentation around active Miocene salt diapirs on the Tihama Plain, northwest Yemen; Geo. Soci. Special publication No. 100, 23-39. 
  29. El-Anbaawy, M. I. H., Aawah, M. A. H. Al- Thour, K. A. and Tucker, M. (1992): Miocene evaporates of the Red Sea rift, Yemen Republic; Sedimentlogy of the Salif halite. Sed. Geo. V. 81; 61-77. 
  30. Брук В.В. Исследование загрязнения водных объектов взвешенными веществами но материалам космических съемок: Дис.  канд. техн. наук. - X., 1991.- 181 с. 
  31.   Красовский Г.Я. Аэрокосмический монито­ринг поверхностных вод. - Л.:ВНИИКАМ, 1992. - 231 с. 
  32.  Мацокин Л.В. Метод районирования вод Чер­ного моря но комплексу параметров. Проблемы Черного моря. - Севастополь. МГИ Академии Наук Украины, 1992. - С.69-70. 
  33. Прэтт У. Цифровая обработка изображений: Пер. с англ. – М.: Мир, 1982. – Кн. 2. – 480 с.