Назад в библиотеку


Системы диспетчерского управления и сбора данных (SCADA-системы)


                  

Автор: Журнал «Мир компьютерной автоматизации»

Описание: В данной работе рассматриваются особенности, структура, тенденции развития технических средств и архитектуры систем диспетчерского управления и сбора данных.

Источник: Журнал «Мир компьютерной автоматизации»

Введение

Диспетчерское управление и сбор данных (SCADA Supervisory Control And Data Acquisition) является основным и в настоящее время остается наиболее перспективным методом автоматизированного управления сложными динамическими системами (процессами) в жизненно важных и критичных с точки зрения безопасности и надежности областях. Именно на принципах диспетчерского управления строятся крупные автоматизированные системы в промышленности и энергетике, на транспорте, в космической и военной областях, в различных государственных структурах.

За последние 10 15 лет за рубежом резко возрос интерес к проблемам построения высокоэффективных и высоконадежных систем диспетчерского управления и сбора данных. С одной стороны, это связано со значительным прогрессом в области вычислительной техники, программного обеспечения и телекоммуникаций, что увеличивает возможности и расширяет сферу применения автоматизированных систем. С другой стороны, развитие информационных технологий, повышение степени автоматизации и перераспределение функций между человеком и аппаратурой обострило проблему взаимодействия человека-оператора с системой управления. Расследование и анализ большинства аварий и происшествий в авиации, наземном и водном транспорте, промышленности и энергетике, часть из которых привела к катастрофическим последствиям, показали, что, если в 60-х годах ошибка человека являлась первоначальной причиной лишь 20% инцидентов (80%, соответственно, за технологическими неисправностями и отказами), то в 90-х годах доля человеческого фактора возросла до 80%, причем, в связи с постоянным совершенствованием технологий и повышением надежности электронного оборудования и машин, доля эта может еще возрасти  (рис.1)

Рис.1. Тенденции причин аварий в сложных автоматизированных системах 

Основной причиной таких тенденций является старый традиционный подход к построению сложных автоматизированных систем управления, который применяется часто и в настоящее время: ориентация в первую очередь на применение новейших технических (технологических) достижений, стремление повысить степень автоматизации и функциональные возможности системы и, в то же время, недооценка необходимости построения эффективного человеко-машинного интерфейса (HMI Human-Machine Interface), т.е. интерфейса, ориентированного на пользователя (оператора). Не случайно именно на последние 15 лет, т.е. период появления мощных, компактных и недорогих вычислительных средств, пришелся пик исследований в США по проблемам человеческого фактора в системах управления, в том числе по оптимизации архитектуры и HMI-интерфейса систем диспетчерского управления и сбора данных.

Изучение материалов по проблемам построения эффективных и надежных систем диспетчерского управления показало необходимость применения нового подхода при разработке таких систем: human-centered design (или top-down, сверху-вниз), т.е. ориентация в первую очередь на человека-оператора (диспетчера) и его задачи, вместо традиционного и повсеместно применявшегося hardware-centered (или bottom-up, снизу-вверх), в котором при построении системы основное внимание уделялось выбору и разработке технических средств (оборудования и программного обеспечения). Применение нового подхода в реальных космических и авиационных разработках и сравнительные испытания систем в Национальном управлении по аэронавтике и исследованию космического пространства (NASA), США, подтвердили его эффективность, позволив увеличить производительность операторов, на порядок уменьшить процедурные ошибки и свести к нулю критические (не корректируемые) ошибки операторов.

     

 
       
SCADA-системы: общие понятия и структура

 
         Определение и общая структура SCADA

SCADA процесс сбора информации реального времени с удаленных точек (объектов) для обработки, анализа и возможного управления удаленными объектами. Требование обработки реального времени обусловлено необходимостью доставки (выдачи) всех необходимых событий (сообщений) и данных на центральный интерфейс оператора (диспетчера). В то же время понятие реального времени отличается для различных SCADA-систем.

Прообразом современных систем SCADA на ранних стадиях развития автоматизированных систем управления являлись системы телеметрии и сигнализации. 

Все современные SCADA-системы включают три основных структурных компонента (см. рис. 2)      Remote Terminal Unit (RTU) удаленный терминал, осуществляющий обработку задачи (управление) в режиме реального времени. Спектр его воплощений широк от примитивных датчиков, осуществляющих съем информации с объекта, до специализированных многопроцессорных отказоустойчивых вычислительных комплексов, осуществляющих обработку информации и управление в режиме жесткого реального времени. Конкретная его реализация определяется конкретным применением. Использование устройств низкоуровневой обработки информации позволяет снизить требования к пропускной способности каналов связи с центральным диспетчерским пунктом.

Рис. 2. Основные структурные компоненты SCADA-системы

Master Terminal Unit (MTU), Master Station (MS) диспетчерский пункт управления (главный терминал); осуществляет обработку данных и управление высокого уровня, как правило, в режиме мягкого (квази-) реального времени; одна из основных функций обеспечение интерфейса между человеком-оператором и системой (HMI, MMI). В зависимости от конкретной системы MTU может быть реализован в самом разнообразном виде от одиночного компьютера с дополнительными устройствами подключения к каналам связи до больших вычислительных систем (мэйнфреймов) и/или объединенных в локальную сеть рабочих станций и серверов. Как правило, и при построении MTU используются различные методы повышения надежности и безопасности работы системы.

Communication System (CS) коммуникационная система (каналы связи), необходима для передачи данных с удаленных точек (объектов, терминалов) на центральный интерфейс оператора-диспетчера и передачи сигналов управления на RTU (или удаленный объект в зависимости от конкретного исполнения системы).

     

 Функциональная структура SCADA

Существует два типа управления удаленными объектами в SCADA: автоматическое и инициируемое оператором системы.

Шеридан  (рис.3) выделил четыре основных функциональных компонента систем диспетчерского управления и сбора данных человек-оператор, компьютер взаимодействия с человеком, компьютер взаимодействия с задачей (объектом), задача (объект управления), а также определил пять функций человека-оператора в системе диспетчерского управления и охарактеризовал их как набор вложенных циклов, в которых оператор.


Рис. 3. Основные структурные компоненты SCADA-систем

     

Планирует, какие следующие действия необходимо выполнить; обучает (программирует) компьютерную систему на последующие действия; отслеживает результаты (полу)автоматической работы системы; вмешивается в процесс в случае критических событий, когда автоматика не может справиться, либо при необходимости подстройки (регулировки) параметров процесса; обучается в процессе работы (получает опыт).

Данное представление SCADA явилось основой для разработки современных методологий построения эффективных диспетчерских систем.


Особенности SCADA как процесса управления

 

     Области применения SCADA-систем

  Основными областями применения систем диспетчерского управления (по данным зарубежных источников), являются:

- управление передачей и распределением электроэнергии;

- промышленное производство;

- производство электроэнергии;

- водозабор, водоочистка и водораспределение;

- добыча, транспортировка и распределение нефти и газа;

- управление на транспорте (все виды транспорта: авиа, метро, железнодорожный, автомобильный, водный);

- телекоммуникации;

- военная область.

  В настоящее время в развитых зарубежных странах наблюдается настоящий подъем по внедрению новых и модернизации существующих автоматизированных систем управления в различных отраслях экономики; в подавляющем большинстве случаев эти системы строятся по принципу диспетчерского управления и сбора данных. Характерно, что в индустриальной сфере (в обрабатывающей и добывающей промышленности, энергетике и др.) наиболее часто упоминаются именно модернизация существующих производств SCADA-системами нового поколения. Эффект от внедрения новой системы управления исчисляется, в зависимости от типа предприятия, от сотен тысяч до миллионов долларов в год; например, для одной средней тепловой станции он составляет, по подсчетам специалистов, от 200000 до 400000 долларов. Большое внимание уделяется модернизации производств, представляющих собой экологическую опасность для окружающей среды (химические и ядерные предприятия), а также играющих ключевую роль в жизнеобеспечении населенных пунктов (водопровод, канализация и пр.). С начала 90-х годов в США начались интенсивные исследования и разработки в области создания автоматизированных систем управления наземным (автомобильным) транспортом ATMS (Advanced Traffic Management System).

 Тенденции развития технических средств систем диспетчерского управления

 

     Общие тенденции

     Прогресс в области информационных технологий обусловил развитие всех 3-х основных структурных компонентов систем диспетчерского управления и сбора данных RTU, MTU, CS, что позволило значительно увеличить их возможности; так, число контролируемых удаленных точек в современной SCADA-системе может достигать 100000.

     Основная тенденция развития технических средств (аппаратного и программного обеспечения) SCADA миграция в сторону полностью открытых систем. Открытая архитектура позволяет независимо выбирать различные компоненты системы от различных производителей; в результате расширение функциональных возможностей, облегчение обслуживания и снижение стоимости SCADA-систем.

        Удаленные терминалы (RTU)

     Главная тенденция развития удаленных терминалов увеличение скорости обработки и повышение их интеллектуальных возможностей. Современные терминалы строятся на основе микропроцессорной техники, работают под управлением операционных систем реального времени, при необходимости объединяются в сеть, непосредственно или через сеть взаимодействуют с интеллектуальными электронными датчиками объекта управления и компьютерами верхнего уровня.

   Конкретная реализация RTU зависит от области применения. Это могут быть специализированные (бортовые) компьютеры, в том числе мультипроцессорные системы, обычные микрокомпьютеры или персональные ЭВМ (РС); для индустриальных и транспортных систем существует два конкурирующих направления в технике RTU индустриальные (промышленные) PC и программируемые логические контроллеры (в русском переводе часто встречается термин промышленные контроллеры ) PLC.

  Индустриальные компьютеры представляют собой, как правило, программно совместимые с обычными коммерческими РС машины, но адаптированные для жестких условий эксплуатации буквально для установки на производстве, в цехах, газокомпрессорных станциях и т.д. Адаптация относится не только к конструктивному исполнению, но и к архитектуре и схемотехнике, так как изменения температуры окружающей среды приводят к дрейфу электрических параметров. В качестве устройств сопряжения с объектом управления данные системы комплектуются дополнительными платами (адаптерами) расширения, которых на рынке существует большое разнообразие от различных изготовителей (как, впрочем, и самих поставщиков промышленных РС). В качестве операционной системы в промышленных PC, работающих в роли удаленных терминалов, все чаще начинает применяться Windows NT, в том числе различные расширения реального времени, специально разработанные для этой операционной системы (подробнее см. ниже).

     Промышленные контроллеры (PLC) представляют собой специализированные вычислительные устройства, предназначенные для управления процессами (объектами) в реальном времени. Промышленные контроллеры имеют вычислительное ядро и модули ввода-вывода, принимающие информацию (сигналы) с датчиков, переключателей, преобразователей, других устройств и контроллеров, и осуществляющие управление процессом или объектом выдачей управляющих сигналов на приводы, клапаны, переключатели и другие исполнительные устройства. Современные PLC часто объединяются в сеть (RS-485, Ethernet, различные типы индустриальных шин), а программные средства, разрабатываемые для них, позволяют в удобной для оператора форме программировать и управлять ими через компьютер, находящийся на верхнем уровне SCADA-системы диспетчерском пункте управления (MTU). Исследование рынка PLC показало, что наиболее развитой архитектурой, программным обеспечением и функциональными возможностями обладают контроллеры фирм Siemens, Fanuc Automation (General Electric), Allen-Bradley (Rockwell), Mitsubishi. Представляет интерес также продукция фирмы CONTROL MICROSYSTEMS промышленные контроллеры для систем мониторинга и управления нефте- и газопромыслами, трубопроводами, электрическими подстанциями, городским водоснабжением, очисткой сточных вод, контроля загрязнения окружающей среды.

     Много материалов и исследований по промышленной автоматизации посвящено конкуренции двух направлений PC и PLC; каждый из авторов приводит большое количество доводов за и против по каждому направлению. Тем не менее, можно выделить основную тенденцию: там, где требуется повышенная надежность и управление в жестком реальном времени, применяются PLC. В первую очередь это касается применений в системах жизнеобеспечения (например, водоснабжение, электроснабжение), транспортных системах, энергетических и промышленных предприятиях, представляющих повышенную экологическую опасность. Примерами могут служить применение PLC семейства Simatic (Siemens) в управлении электропитанием монорельсовой дороги в Германии или применение контроллеров компании Allen-Bradley (Rockwell) для модернизации устаревшей диспетчерской системы аварийной вентиляции и кондиционирования на плутониевом заводе 4 в Лос-Аламосе. Аппаратные средства PLC позволяют эффективно строить отказоустойчивые системы для критических приложений на основе многократного резервирования. Индустриальные РС применяются преимущественно в менее критичных областях (например, в автомобильной промышленности, модернизация производства фирмой General Motors), хотя встречаются примеры и более ответственных применений (метро в Варшаве управление движением поездов). По оценкам экспертов, построение систем на основе PLC, как правило, является менее дорогостоящим вариантом по сравнению с индустриальными компьютерами.