Назад в библиотеку

Введение в Smart Grid

Автор: В.В. Ильин
Источник: АВОК, Журнал №7, Автоматизация и регулирование, 2012

Аннотация

Цель статьи – дать общее представление о технологии Smart Grid как одном из самых важных и перспективных направлений в области энергоэффективности XXI века. Используя конкретные примеры, автор показывает различия между текущей электроэнергетической системой и Smart Grid. В статье также рассмотрены перспективы развития Smart.

Из истории возникновения

Термин Smart Grid до сих пор не имеет четкого терминологического эквивалента на русском языке. К наиболее распространенным русскоязычным эквивалентным терминам относится «интеллектуальная электроэнергетическая система». В настоящей статье мы будем использовать именно англоязычный вариант Smart Grid как наиболее применимый на международном и пока на нашем рынке.

Smart Grid – это название глобальной технологии развития электроэнергетической системы на уровне как планеты, отдельных стран и городов, так и отдельных потребителей электрической энергии. Термин и сама технология родились и на данный момент получили наибольшее распространение в США, однако уже можно уверенно констатировать международное признание этой стратегии на планетарном уровне.

Формально термин Smart Grid был впервые оформлен в 2007 году в законодательном акте об энергетической независимости и безопасности США. Так была названа технология модернизации национальной электроэнергетической системы с целью защиты, контроля и оптимизации энергопотребления всех элементов и участников сети.

Предпосылкой развития Smart Grid является общая планетарная стратегия на снижение энергопотребления, а также обеспечение важнейших потребителей мегаполисов качественным и бесперебойным электроснабжением.

Толчком для развития технологий в США можно назвать глобальные перебои с электроснабжением крупнейших городов США в 90-е годы, так называемые энергетические «блэкауты», когда несколько мегаполисов США остались без электрической энергии. После обследования состояния электроэнергетической системы власти США пришли к выводу, что принципиальная схема управления энергосетями в целом мало изменилась с момента ее создания в начале XX века. Нынешний президент США Обама назвал Smart Grid ключевым фактором повышения энергоэффективности и безопасности американской экономики.

Технологической предпосылкой развития Smart Grid, безусловно, явились прорывные достижения информационных, компьютерных технологий, возможности локальных и глобальных коммуникационных сетей, в том числе Интернета.

По уровню развития Smart Grid в 2012 году находится на этапе перехода от разработки принципиальной концепции, проектирования до создания национальных и международных стандартов, реализации отдельных пилотных, а также ряда промышленных проектов. Пока речь идет о наиболее развитых индустриальных странах.

Появление и развитие концепции Smart Grid является понятным и естественным этапом эволюции электроэнергетической системы, обусловленным с одной стороны явными потребностями и проблемами текущего электрического энергорынка, а с другой стороны технологическим прогрессом, в первую очередь в области компьютерных, информационных технологий.

Современное состояние

Действующую электроэнергетическую систему без Smart Grid можно охарактеризовать как пассивную и централизованную, особенно в части последней цепочки – от распределительных сетей до потребителей. Именно в этой части цепочки поставки электроэнергии технология Smart Grid наиболее существенно изменяет принципы функционирования, предлагая новые принципы активного и децентрализованного взаимодействия.

Для понимания основных принципов текущей системы по отношению к принципам функционирования Smart Grid, о которых пойдет речь ниже, рассмотрим пример отдельного здания как конечного потребителя.

В настоящий момент здание с точки зрения взаимодействия с распределительной сетью (110/10/0,4 кВ) является практически полностью пассивным элементом (влияние на качество параметров электросети оставим в стороне, т.к. они существенно не влияют на основной параметр – потребляемую мощность). Это в первую очередь касается влияния здания как потребителя в реальном масштабе времени (т.е. в масштабе текущего месяца, дня, часа, секунды и т.д.) на генерируемую и распределяемую сетью электроэнергию. Здание никак не может влиять ни на объемы электрической мощности, ни на выделенные ресурсы инфраструктуры сети (например, элементы распределительных, трансформаторных подстанций). Более того, сами распределительные сети в большинстве случаев не обладают полной информацией об электропотреблении здания в реальном масштабе времени. Реализация АСКУЭ в этом контексте до сих пор является скорее исключением и используется исключительно в целях коммерческого учета электроэнергии постфактум в рамках ежемесячного интервала.

Коммерческая составляющая взаимодействия, в свою очередь, целиком зависящая от вышеуказанной технологической части, также выглядит пассивной и однонаправленной. Сети в виде энергосбытовых организаций узнают о зданиях и их потребностях только в моменты ежемесячных коммерческих взаиморасчетов, исключая договорные сведения, обновляемые не чаще раза в год. Здания (вернее, потребители в зданиях) платят по фиксированным, централизованным тарифам, распространяющимся на целые районы, города. Тарифы для конечных потребителей изменяются централизованно организационными процедурами с участием государства на длительных интервалах времени. Никакой обратной связи с точки зрения информации о состоянии энергопотребления в здании, возможности взаимодействия, тем более в режиме реального времени, у здания с сетями и тем более централизованными производителями энергии на данный момент нет.

Теперь представьте себе общую картину, в которой крупные производители электроэнергии генерируют и поставляют электроэнергию в объеме, в режимах и по стоимости (!), практически не зависящих от реального состояния электропотребителя в масштабе реального времени. Таким образом, между спросом и предложением отсутствует оперативная связь. С точки зрения надежности функционирования такой сети в условиях дефицита мощности и высоких требований со стороны потребителя такая схема является крайне уязвимой, поскольку не может оперативно выявлять проблемы и реагировать на них на уровне потребителей.

Давайте теперь подумаем о конечных потребителях не только как об отдельных зданиях, но и как о крупных предприятий, районах, городах! Особенно это критически важно для крупнейших мегаполисов с централизованной схемой электроснабжения, когда единые параметры энергоснабжения касаются большого количества разнообразных потребителей и учитывают их индивидуальные характеристики.

Важно отметить, что текущая схема с точки зрения энергоснабжения является полностью однонаправленной, т.е. потребитель только получает электрическую энергию. В последнее время развиваются схемы с аккумуляторами и распределителями энергии, позволяющими накапливать, трансформировать и распределять электрическую энергию между сетями и потребителями. В отличие от текущей схемы, Smart Grid знает о таких элементах и умеет управлять ими. Таким образом, Smart Grid является комплексной технологией, затрагивающей принципы не только взаимодействия участников и устройств, но и распределения самой электрической энергии.

Описанная пассивно-централизованная схема вполне устраивала всех до определенного момента в условиях дешевой электроэнергии, неисчерпаемых возможностей как генераторов энергии, так и распределительных сетей. Однако времена изменились. Рост мегаполисов, увеличение стоимости электроэнергии, требований к качеству электроэнергии, затрат на развитие генерирующей и распределительной инфраструктуры, увеличение риска внешних угроз (терроризм, катаклизмы) явным образом приводит к изменению стратегии развития энергорынка.

Технология Smart Grid характеризуется несколькими инновационными свойствами, отвечающими новым потребностям рынка, среди которых можно выделить следующие:

  1. Активная двунаправленная схема взаимодействия в реальном масштабе времени информационного обмена всеми между элементами и участниками сети, от генераторов энергии до оконечных устройств электропотребителей.
  2. Охват всей технологической цепочки электроэнергетической системы, от энергопроизводителей (как центральных, АЭС, ТЭЦ, ГЭС, так и автономных ДГУ, солнечных индивидуальных генераторов, накопителей энергии), электрораспределительных сетей и конечных потребителей.
  3. Для обеспечения информационного обмена данными в Smart Grid предусмотрено использование цифровых коммуникационных сетей и интерфейсов обмена данными. Одной из важнейших целей Smart Grid является обеспечение практически непрерывного управляемого баланса между спросом и предложением электрической энергии. Для этого элементы сети должны постоянно обмениваться между собой информацией о параметрах электрической энергии, режимах потребления и генерации, количестве потребляемой энергии и планируемом потреблении, коммерческой информацией.
  4. Smart Grid умеет эффективно защищаться и самовосстанавливаться от крупных сбоев, природных катаклизмов, внешних угроз.
  5. Способствует оптимальной эксплуатации инфраструктуры электроэнергетической системы.
  6. С точки зрения общей экономики Smart Grid способствует появлению новых рынков, игроков и услуг.
  7. Благодаря современным технологиям Smart Grid может применяться как в масштабах зданий, предприятий, так и для обычных домашних электрических устройств, например холодильника или стиральной машины. Соответственно, все устройства, входящие в состав Smart Grid, должны быть оснащены техническими средствами, осуществляющими информационное взаимодействие.

Основные преимущества Smart Grid

Надежность и качество электроснабжения

Smart Grid предотвращает массовые отключения, обеспечивает поставку чистой электроэнергии.

Безопасность

Smart Grid постоянно контролирует все элементы сети с точки зрения безопасности их функционирования.

Здесь можно вспомнить как о недавних проблемах с энергоснабжением в Московской области в зимнее время, в связи с погодными условиями и обледенением линий электропередач, так и о проблемах в Москве жарким летом в связи с пожарами на высоковольтных подстанциях.

Энергоэффективность

Снижение потребления электрической энергии. Оптимальное потребление приводит к снижению потребностей в генерирующих мощностях.

Экология и охрана окружающей среды

Самый главный эффект достигается за счет снижения количества и мощностей генерирующих элементов сети. Это ведет, например, к снижению выброса СО в атмосферу.

Финансовые преимущества

Снижение операционных затрат. Потребители имеют точную информацию о стоимости и могут оптимизировать свои затраты на электрическую энергию. Бизнес, в свою очередь, может оптимально планировать и формировать затраты на эксплуатацию и развитие генерации и распределительных сетей.

Указанные преимущества касаются всех участников, от конечных потребителей и энергопоставщиков до всего общества в целом.

Перспективы применения

Продолжим наш пример со зданием, теперь уже с учетом перспективы применения Smart Grid.

Современное здание, оснащенное устройством связи с коммуникационной сетью Smart Grid, может автоматически выбрать режим работы наиболее энергозатратного оборудования (освещение, кондиционирование и приводная вентиляция) в течение недели, с точностью до часа, с учетом оптимального коммерческого тарифа (и потребностей арендаторов), информация о котором была доставлена из местной энергосбытовой компании также по цифровой сети. Соответственно, энергосбытовая компания, имея текущие данные о планируемом энергопотреблении отдельных зданий, может оптимально сконфигурировать свои мощности, в т.ч., например, используя аккумуляторы элеткроэнергии и активные распределительные устройства, закупить необходимую электроэнергию у сетевого поставщика по оптимальным тарифам и т.д. Вся цепочка постоянно обменивается информацией, которая активно используется управляющими элементами для обеспечения сбалансированного графика потребления/генерации и безопасной трансформации и передачи электроэнергии.

Начальный, генерирующей элемент цепи (например, городская ТЭЦ) вместо постоянной генерации максимального количества электрической энергии выдает оптимальную мощность в соответствии с реальным балансом мощности/потребления электроэнергетической системы в текущий момент времени.

Для конкретизации приведем еще пример из жизни современного мегаполиса. Современные коммерческие здания, сложные инфраструктурные объекты вынужденно оснащаются большим количеством систем гарантированного и бесперебойного электроснабжения (ДГУ, ИБП), поскольку рабочие системы централизованного городского электроснабжения не могут более гарантировать качественное снабжение сложной инженерной и компьютерной инфраструктуры таких объектов. Затраты на производство, реализацию и эксплуатацию таких специальных систем электроснабжения являются весьма существенными. Применение Smart Grid позволило бы не только сократить такие затраты, но и в отдельных случаях избежать их полностью.

Конечно, задача перехода к технологиям Smart Grid должна являться долговременной стратегией, инициируемой и поддерживаемой на уровне государства. Переход к столь инновационной технологии предъявляет самые серьезные требования как к технической модернизации основных элементов инфраструктуры, так и к изменению правил работы всего рынка. Основным драйвером такого перехода должна быть государственная стратегия повышения энергоэффективности и безопасности электроэнергетической системы страны в целом.

В России пока можно отметить начальный этап ознакомления и формирования первых организационных инициатив по Smart Grid, а также опробования отдельных технических решений. Пока не будет выработана реальная государственная стратегия по отношению к энергоэффективности, о развитии технологий Smart Grid говорить еще рано. Необходимо также учитывать гигантскую протяженность электрораспределительных сетей в нашей стране и недостаточно развитую инфраструктуру. Однако первые инициативы в этой области у нас уже появляются.

Ссылки на технологии Smart Grid были включены, например, в проекты создания технологической инфраструктуры инновационного центра Сколково.

Государственная компания ОАО «Системный оператор Единой энергетической системы», ответственная за контроль и управление электрораспределительными сетями, активно рассматривает Smart Grid и отдельные элементы этой технологии на предмет применения в РФ и уже реализует отдельные пилотные технические проекты.

Как видится, нам необходимо внимательно знакомиться с опытом ведущих стран мира, уже активно пробующих Smart Grid, и делать правильные выводы с учетом нашей вечной российской специфики.

P.S. Буквально во время подготовки данной статьи была опубликована важная новость о выходе стандарта «Facility Smart Grid Information Model» в области Smart Grid, подготовленного совместно такими известными на международном рынке организациями, как ASHRAE и NEMA. Поезд уже идет.

Литература

  1. www.nethaus.ru/tags/smartgrid.
  2. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0. Февраль 2012. Авторы: NIST (Национальный институт технологий и стандартизации, США), Государственный коммерческий департамент США. Концепция и дорожная карта по стандартам взаимодействия для Smart Grid.