Назад в библиотеку

Энергосбережение при компенсации реактивной мощности у потребителей

Автор: Редакция бюллетеня «ЭНЕРГОСОВЕТ» 
Источник: Журнал Энергосовет № 3 (8) за 2010 г

Аннотация

Редакция бюллетеня «ЭНЕРГОСОВЕТ» . Энергосбережение при компенсации реактивной мощности у потребителейЛаконичная обзорная статья про реактивную мощность, в простой и понятной форме.

Введение

 

В зависимости от вида используемого оборудования нагрузка бывает следующая: активная, индуктивная и емкостная. Потребитель в повседневной практике обычно включает в работу лампы накаливания, электронагреватели и т.д. (активная нагрузка) и электродвигатели, распределительные трансформаторы, люминесцентные лампы и т.д. (индуктивная нагрузка).

Активная составляющая мощности полезно используется, превращаясь в механическую, световую и другие виды энергии. Реактивная составляющая мощности не выполняет полезной работы, она служит для создания магнитных полей в индуктивных приемниках, при этом электроэнергия, запасаемая в каждом индуктивном элементе, распространяется по сети, не рассеиваясь в активных элементах, а совершая колебательные движения (от нагрузки к генератору и обратно).

Показателем потребления реактивной мощности Q является коэффициент мощности cosφ=P/S, который показывает соотношение активной мощности Р и полной мощности S. Полная мощность, в свою очередь, это .

 

Для чего нужна компенсация реактивной мощности в распределительных электрических сетях

Активная мощность вырабатывается только генераторами электрических станций. Реактивная мощность вырабатывается генераторами электрических станций (синхронными двигателями станций в режиме перевозбуждения), а также компенсирующими устройствами (например, батареями конденсаторов).

Передача реактивной мощности от генераторов по электрической сети к потребителям (индукционным приемникам энергии) вызывает в сети затраты активной мощности в виде потерь и дополнительно загружает элементы электрической сети, снижая их общую пропускную способность.

Так, например, генератор с номинальной мощностью 1250 кВА при номинальном коэффициенте мощности cosφ=0,8 может отдать потребителю активную мощность, равную 1250×0,8=1000 кВт. Если генератор будет работать с соsφ=0,6, то в сеть будет отдаваться активная мощность равная 1250×0,6=750 кВт (активная мощность недоиспользуется на четверть).

Поэтому, как правило, увеличение выдачи реактивной мощности генераторами станций с целью доставки ее потребителям нецелесообразно. Наибольший экономический эффект достигается при размещении компенсирующих устройств (генерации реактивной мощности) вблизи потребляющих реактивную мощность индукционных приемников энергии. 

 

Индукционные приемники энергии или потребители реактивной мощности

 

К чему приводит отсутствие компенсации реактивной мощности у абонентов

 

Оборудование для решения проблем компенсации реактивной мощности у потребителей

Компенсировать реактивную мощность возможно синхронными компенсаторами, косинусными конденсаторами (конденсаторными установками) (рис.), шунтирующими реакторами, фильтрами высших гармоник, статическими тиристорными компенсаторами. Применение оборудования для компенсации реактивной мощности полностью зависит от места и цели его установки.

Конденсаторные батареи предназначены для выдачи реактивной мощности в систему. Снижение перетоков реактивной мощности от генератора к нагрузке в сети приводит к снижению потерь активной энергии, снижению потерь напряжения.

Статические тиристорные компенсаторы могут работать как на выдачу, так и на потребление реактивной мощности. В электрических сетях они требуются для оптимизации режимов работы с целью повышения пропускной способности и устойчивости линий электропередачи, стабилизации напряжения в узлах нагрузки, уменьшения потерь электроэнергии и повышения ее качества.

Шунтирующие реакторы используются для компенсации емкостной реактивной мощности, генерируемой протяженными слабонагруженными линиями передач.

Фильтрокомпенсирующие устройства предназначены для снижения гармонических искажений напряжения и компенсации реактивной мощности нагрузок потребителей в сетях электроснабжения промышленных предприятий и в электрических сетях.

Синхронный компенсатор представляет собой синхронную машину, работающую в режиме двигателя без активной нагрузки и генерирующую в сеть реактивную мощность. Синхронные компенсаторы применяют для регулирования энергетических систем, для поддержания напряжения, снижения потерь электроэнергии в сетях, увеличения пропускной способности и обеспечения устойчивости энергосистем. 

Выводы

При проведении мероприятий по энергосбережению должны рассматриваться механизмы компенсации реактивной мощности непосредственно в индукционных приемниках энергии или у потребителей, потому что реактивная мощность, как и активная, учитывается в тарифе за электроэнергию, за рост ее потребления платит абонент.

В распределительных сетях коммунально-бытовых потребителей, содержащих преимущественно однофазную нагрузку, устройства компенсации реактивной мощности применяются крайне редко, но расход электроэнергии в жилом секторе увеличивается, поэтому рассмотрение установки устройств компенсации у таких абонентов становится актуальной темой.

 

Колебательные процессы в технике имеют большое значение. Электромагнитные колебания лежат в основе всех современных электронных средств передачи и обработки информации.

Для облегчения понимания общих закономерностей колебательных процессов целесообразно начинать их изучение с простых и наглядных систем, например, замкнутая цепь, содержащая конденсатор и катушку индуктивности. Изменение во времени физических величин, характеризующих разные колебательные системы, описывается одинаковыми дифференциальными уравнениями.

Исследование компьютерных программ при моделировании разных способов возбуждения колебаний позволяет определить точностные и частотные характеристики программ.